|
1. DNAnexus <https://www.dnanexus.com/> (2016). 2. Partek Flow <http://www.partek.com/partekflow> (2016). 3. Goecks, J., Nekrutenko, A. & Taylor, J. Galaxy: a comprehensive approach for supporting accessible, reproducible, and transparent computational research in the life sciences. Genome Biology 11, R86 (2010). 4. Griffith, M. et al. Genome Modeling System: A Knowledge Management Platform for Genomics. PLoS Comput Biol 11, 1–21 (2015). 5. Metzker, M. L. Sequencing technologies —the next generation. Nature Reviews Genetics 11, 31–46 (2010). 6. Van Dijk, E. L., Auger, H., Jaszczyszyn, Y. & Thermes, C. Ten years of next-generation sequencing technology. Trends in Genetics 30, 418–426 (2014). 7. Wang, Z., Gerstein, M. & Snyder, M. RNA-Seq: a revolutionary tool for transcriptomics. Nature Reviews Genetics 10, 57–63 (2009). 8. Nielsen, R., Paul, J. S., Albrechtsen, A. & Song, Y. S. Genotype and SNP calling from next-generation sequencing data. Nature Reviews Genetics 12, 443–451 (2011). 9. Lander, E. S. et al. Initial sequencing and analysis of the human genome. Nature 409, 860–921 (2001). 10. Gawad, C., Koh, W. & Quake, S. R. Single-cell genome sequencing: current state of the science. Nature Reviews Genetics 17, 175–188 (2016). 11. NCBI GRCh38.p7 Assembly <http://www.ncbi.nlm.nih.gov/assembly/GCA_ 000001405.22> (2016). 12. E pluribus unum. Nature Methods 7, 331–331 (2010). 13. Leipzig, J. A review of bioinformatic pipeline frameworks. Briefings in Bioinformatics, bbw020 (2016). 14. bcbio-nextgen <https://bcbio-nextgen.readthedocs.io/> (2016). 15. Guimera, R. V. bcbio-nextgen: Automated, distributed next-gen sequencing pipeline. EMBnet.journal 17, p. 30 (B 2012). 16. Köster, J. & Rahmann, S. Snakemake—a scalable bioinformatics workflow engine. Bioinformatics 28, 2520–2522 (2012). 17. IPython Parallel <http://ipyparallel.readthedocs.io/> (2016). 18. Amstutz, P. et al. Common Workflow Language, draft 3. <https://figshare.com/articles/Common_Workflow_Language_draft_3/3115156> (2016). 19. GNU Make <https://www.gnu.org/software/make/> (2016). 20. Ewels, P., Magnusson, M., Lundin, S. & Käller, M. MultiQC: Summarize analysis results for multiple tools and samples in a single report. Bioinformatics, btw354 (2016). 21. Trapnell, C. et al. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nature Biotech- nology 28, 511–515 (2010). 22. Trapnell, C. et al. Differential analysis of gene regulation at transcript resolution with RNA-seq. Nature Biotechnology 31, 46–53 (2013). 23. cummeRbund <http://bioconductor.org/packages/cummeRbund/> (2016). 24. Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biology 15, 550 (2014). 25. Liao, Y., Smyth, G. K. & Shi, W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics (Oxford, England) 30, 923–930 (2014). 26. Anders, S., Pyl, P. T. & Huber, W. HTSeq—a Python framework to work with highthroughput sequencing data. Bioinformatics 31, 166–169 (2015). 27. Kim, D. et al. TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biology 14, R36 (2013). 28. Kim, D., Langmead, B. & Salzberg, S. L. HISAT: a fast spliced aligner with low memory requirements. Nature Methods 12, 357–360 (2015). 29. Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013). 30. Picard <https://broadinstitute.github.io/picard/> (2016). 31. Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics (Oxford, England) 25, 2078–2079 (2009). 32. Patro, R., Mount, S. M. & Kingsford, C. Sailfish enables alignment-free isoform quantification from RNA-seq reads using lightweight algorithms. Nature Biotechnology 32, 462–464 (2014). 33. Bray, N. L., Pimentel, H., Melsted, P. & Pachter, L. Near-optimal probabilistic RNA-seq quantification. Nature Biotechnology 34, 525–527 (2016). 34. Patro, R., Duggal, G. & Kingsford, C. Accurate, fast, and model-aware transcript expression quantification with Salmon. bioRxiv, 021592 (2015). 35. Pimentel, H. J., Bray, N., Puente, S., Melsted, P. & Pachter, L. Differential analysis of RNA-Seq incorporating quantification uncertainty. bioRxiv, 058164 (2016). 36. Alamancos, G. P., Pagès, A., Trincado, J. L., Bellora, N. & Eyras, E. Leveraging transcript quantification for fast computation of alternative splicing profiles. RNA (New York, N.Y.) 21, 1521–1531 (2015). 37. FastQC <http://www.bioinformatics.babraham.ac.uk/projects/fastqc/>. 38. Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics (Oxford, England) 25, 1754–1760 (2009). 39. Koboldt, D. C. et al. VarScan 2: Somatic mutation and copy number alteration discovery in cancer by exome sequencing. Genome Research 22, 568–576 (2012). 40. Van der Auwera, G. A. et al. From FastQ data to high confidence variant calls: the Genome Analysis Toolkit best practices pipeline. Current Protocols in Bioinformatics 43, 11.10.1–33 (2013). 41. McKenna, A. et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Research 20, 1297–1303 (2010). 42. Wang, K., Li, M. & Hakonarson, H. ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Research 38, e164–e164 (2010). 43. CommonMark <http://commonmark.org/>. 44. iGenomes <http://support.illumina.com/sequencing/sequencing_software/igenome.html>. 45. YAML Ain’t Markup Language (YAML) Version 1.1 <http://yaml.org/spec/1.1/>. 46. Eswaran, J. et al. Transcriptomic landscape of breast cancers through mRNA sequencing. Scientific Reports 2, 264 (2012). 47. Himes, B. E. et al. RNA-Seq transcriptome profiling identifies CRISPLD2 as a glucocorticoid responsive gene that modulates cytokine function in airway smooth muscle cells. PloS One 9, e99625 (2014). 48. Engström, P. G. et al. Systematic evaluation of spliced alignment programs for RNA-seq data. Nature Methods 10, 1185–1191 (2013). 49. Rapaport, F. et al. Comprehensive evaluation of differential gene expression analysis methods for RNA-seq data. Genome Biology 14, 3158 (2013).
|