跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.172) 您好!臺灣時間:2025/09/11 06:05
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:吳禎祥
研究生(外文):Jhen-SiangWu
論文名稱:利用折射係數漸變奈米結構提升單晶矽太陽能電池轉換效率之研究
論文名稱(外文):Improving Crystalline Silicon Solar Cells Efficiency Using Refractive-Index-Matched SiON/ZnO Nanostructures
指導教授:王水進
指導教授(外文):Shui-Jinn Wang
學位類別:碩士
校院名稱:國立成功大學
系所名稱:微電子工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:77
中文關鍵詞:太陽能電池氧化鋅表面粗化氮氧化矽折射係數漸變
外文關鍵詞:solar cellsZnOsurface-texturingSiONgraded refractive index
相關次數:
  • 被引用被引用:0
  • 點閱點閱:238
  • 評分評分:
  • 下載下載:8
  • 收藏至我的研究室書目清單書目收藏:0
本論文旨在利用水熱法(Hydrothermal Growth, HTG)成長氧化鋅(ZnO)奈米管(nanotubes、NTs)於太陽能電池表面再利用PECVD沉積氮氧化矽於氧化鋅奈米結構表面,製備出具表面粗化與折射係數漸變之結構,提升太陽能電池之入光量進而提升光電轉換效率。
本研究架構分為兩個部分,第一部分以理論模擬分析為主,係透過光學模擬軟體(TracePro),分析不同氧化鋅奈米結構及包覆不同厚度之氮氧化矽於氧化鋅奈米管對傳統太陽能電池之入光量影響。由模擬結果顯示,在奈米管直徑寬度為100 nm、長度為400 nm且氮氧化矽沉積厚度為150 nm之結構於太陽能電池表面有最佳之入光能量。第二部分則著重於實驗之進行,本論文使用水熱法成長氧化鋅奈米線於傳統太陽能電池表面,再利用室溫之逆反應形成奈米管結構,最後使用PECVD沉積氮氧化矽作為折射係數漸變層。由實驗結果顯示,於奈米管直徑寬度為100 nm、長度為400 nm且氮氧化矽厚度為150 nm之結構於太陽能電池與傳統太陽能電池比較,其光電轉換效率增加39.2%。
模擬與實驗結果顯示,本論文所提藉由氧化鋅奈米結構之表面粗化與折射係數漸變層確實可降低光線反射率與菲涅耳損失,增加光電轉換效率。本論文所提氮氧化矽包覆氧化鋅奈米管結構於提升太陽能電池或其他光電元件效率極具應用潛力。

The present thesis is devoted to improve light absorption and efficiency using a ZnO/SiON-based refractive-index-matched (RIM) surface-roughening structure. The ZnO nanowires (NWs) and nanotubes (NTs) were first hydrothermally synthesized on regular solar cells (SCs)as a surface-roughening structure. And a SiON film was deposited on the surface of NTs by PECVD to form a surface roughening structure with a graded refractive index.
In the first part of this thesis, an optical simulating software, TracePro, was used to simulate the size effects of nanostructure and SiON/ZnO NTs on light absorption of SC. According to calculated results, it indicates that a RIM structure with a 150-nm-thick SiON film and nanotubes arrays with 100-nm-width and 400-nm-length in size could have the largest improvement in the cell efficiency for about 39.2%. Experimental study is presented in the second part of the thesis. ZnO nanostructures and SiON/ZnO NTs were implemented on regular SCs. Material analysis including surface morphology, components, and photoelectrical properties of the prepared SCs are examined and results are presented and discussed.
In summary, the effectiveness of SiON/ZnO NTs RIM structure surface roughening scheme in improving efficiency of SCs has been studied and demonstrated theoretically and experimentally. The proposed RIM structure with a 150-nm-thick SiON film and NTs structure with 100-nm-width and 400-nm-length in size has shown an improvement in the cell efficiency by 39.2% as compared with the regular SC. It is expected that the RIM SiON/ZnO nanotubes structure proposed in the present thesis could be applied for optoelectronics to minimize the Fresnel loss and maximize photoelectric efficiency.

摘 要 I
SUMMARY III
誌 謝 VIII
目 錄 IX
表 目 錄 XII
圖 目 錄 XIII
第一章、緒論 1
1-1、太陽能電池之發展 1
1-2、研究動機 5
第二章、太陽能電池元件及其挑戰議題 7
2-1、太陽能電池之原理 7
2-2、太陽能電池光電轉換效率與表面粗化技術 9
2-2-1、太陽能電池光電轉換效率 9
2-2-2、菲涅耳損失 14
2-2-3、表面粗化技術 16
2-3、氧化鋅奈米結構與水熱法成長技術 19
2-3-1、氧化鋅基本性質及應用 19
2-3-2、水熱法成長氧化鋅奈米線之理論演進 20
2-3-3、氧化鋅奈米線成長機制 25
第三章、實驗流程、分析方法與設備 28
3-1、實驗流程 28
3-2、實驗材料 29
3-3、實驗設備 29
3-3-1、製程設備介紹 29
3-3-2、材料分析儀器 35
3-3-3、 量測使用儀器 37
第四章、光學模擬分析 39
4-1、TracePro 光學模擬軟體簡介 39
4-2、奈米結構與氮氧化矽包覆奈米管之光輸入模擬分析 40
4-2-1、奈米線直徑寬度、長度之入光模擬 41
4-2-2、奈米管之入光模擬 44
4-2-3、氮氧化矽包覆奈米結構之入光模擬 45
4-2-4、入光角度之模擬 47
4-3、元件模擬結果與討論 50
第五章、具氧化鋅奈米結構與氮氧化矽包覆氧化鋅奈米管於太陽能電池元件製作 51
5-1、具氧化鋅奈米結構與氮氧化矽包覆氧化鋅奈米管於太陽能電池表面之製備流程 51
5-2、具氧化鋅奈米結構與氮氧化矽包覆氧化鋅奈米管於太陽能電池表面之外觀型態(SEM) 54
5-3、具氧化鋅奈米結構與氮氧化矽包覆氧化鋅奈米管於太陽能電池表面之材料分析 58
5-3-1、能量散射光譜儀 (EDS analysis) 58
5-3-2、穿透率量測 (Transmittance) 59
5-3-3、氮氧化矽折射係數分析 (Refractive index analysis) 61
5-4、元件特性量測結果與討論 62
5-4-1、具不同直徑寬度之奈米線於太陽能電池之光電特性 63
5-4-2、具不同長度之奈米線於太陽能電池之光電特性 64
5-4-3、具不同奈米結構於太陽能電池之光電特性 66
5-4-4、具不同厚度氮氧化矽包覆奈米管於太陽能電池之光電特性 67
第六章、結論與未來研究之建議 71
6-1、結論 71
6-2、未來研究之建議 72
參考文獻 74

[1]Hairen Tan, Efthymia Psomadaki, Olindo Isabella, Marinus Fischer, Pavel Babal, Ravi Vasudevan, Miro Zeman, and Arno H. M. Smets, “Micro-textures for efficient light trapping and improved electrical performance in thin film nanocrystalline silicon solar cells, Applied Physics Letters, Vol. 103, p. 173905, 2013.
[2]Anuradha Rai Chowdhury, V. Padmanapan Rao, B. Ghosh and S.Banerjee, “Antireflection Coating On Solar Cell Using ZnO, NanostructureSolid State Physics, Vol. 1447, pp. 777-778, 2012.
[3]Xuegong Yu, Dong Wang, Dong Lei, Genhu Li and Deren Yang, “Efficiency improvement of silicon solar cells enabled by ZnO nanowhisker array coating, Nanoscale Research Letters, Vol. 7, pp. 1-5, 2012.
[4]http://www.moneydj.com/kmdj/report/ReportViewer.aspx?a=e56903f8-3f31-4097-9345-b098ba579aad.
[5]The National Center for Photovoltaics (NCPV) at NREL, DOE, USA, April 2012.
[6]James Montgomery, SunPower Tops in Mono C-Si Solar Cell Efficiency, Renewable Energy World, 2012.
[7]P. A. Iles, “Antireflection coatings for solar cells, Journal of Vacuum Science & Technology, Vol. 14, pp. 1100-1105, 1977.
[8]C.K. Huang, K.W. Sun and W.-L. Chang, “Efficiency enhancement of silicon solar cells using a nano-scale honeycomb broadband antireflection structure, OPTICS EXPRESS, Vol. 20, pp. A85-A93, 2012.
[9]DaeYoung Jeong1, ChanSeok Kim, JunYong Song, Jeong Chul Lee, Jun Sik Cho, Sang Hyun Park, Jin-Suk Wang, Kyung Hoon Yoon and Jinsoo Song, “Effect of Texture Morphology on the Surface Passivation and a-Si/c-Si Heterojunction Solar Cells, IEEE, Vol. 9, pp. 2950-4244, 2009.

[10]Sanjay K. Sardana, Venkata S. N. Chava, Eshwar Thouti, Nikhil Chander, Sanjai Kumar, S. R. Reddy, and Vamsi K. Komarala, “Influence of surface plasmon resonances of silver nanoparticles on optical and electrical properties of textured silicon solar cell, Applied Physics Letters, Vol. 104, p. 073903, 2014.
[11]http://www.materialsnet.com.tw/DocView.aspx?id=7004
[12]Shih-Wei Chen, Sung-Yu Chen, Chien-Hsun Chen, Bing-Lun Cai, Chien-Hung Wu, Chen-Hsun Du, and Wen-Haw Lu, “ Crystalline Silicon Cells Fabricated by Different Preclean Processes, Japanese Journal of Applied Physics, Vol. 51, p. 10NA11, 2012.
[13]Francisco Llopis, and Ignacio Tobías, “Texture profile and aspect ratio influence on the front reflectance of solar cells, Journal of Applied Physics, Vol. 100, p. 124504, 2006.
[14]Janez Krc, Martin Sever, and Marko Topic, “The Two Approaches of Surface-Texture Optimization in Thin-Film Silicon Solar Cells, IEEE, Vol. 3, pp.1156-1162, 2013.
[15]B. E. Yoldas, “Investigations of porous oxides as an antireflective coating for glass surfaces, Applied Optics, Vol. 19, no. 9, pp. 1425-1429, 1980.
[16]Fatima Toor, Howard M. Branz, Matthew R. Page, Kim M. Jones, and Hao-Chih Yuan, “Multi-scale surface texture to improve blue response of nanoporous black silicon solar cells, Applied Physics Letters, Vol. 66, p. 103501, 2011.
[17]Li-Ko Yeh, Kun-Yu Lai, Guan-Jhong Lin, Po-Han Fu, Hung-Chih Chang, Chin-An Lin, and Jr-Hau He, “Giant Efficiency Enhancement of GaAs Solar Cells with Graded Antireflection Layers Based on Syringe-like ZnO Nanorod Arrays, Adv. Energy Mater, Vol. 1, pp. 506-510, 2011.
[18]Yan Liu, Ziyin Lin, Kyoung Sik Moon, and C. P. Wong, “Novel ZnO Nanowires/Silicon Hierarchical Structures for Superhydrophobic, Low Reflection, and High Efficiency Solar Cells, IEEE, Vol. 11, pp. 2114-2118, 2011.
[19]Xuegong Yu, Dong Wang, Dong Lei, Genhu Li and Deren Yang, “Efficiency improvement of silicon solar cells enabled by ZnO nanowhisker array coating, Nanoscale Research Letters, Vol. 7, pp. 1-5, 2012.
[20]Daniel B. Thompson, Jacob J. Richardson, Steven P. DenBaars, and Frederick F., “Lange Light Emitting Diodes with ZnO Current Spreading Layers Deposited from a Low Temperature Aqueous Solution, Applied Physics Express, Vol. 2, p. 042101, 2009.
[21]Zhifeng Shi, Yuantao Zhang, Xljun Cui, Bin Wu, Shiwei Zhuang, Fan Yang, Xiaotian Yang Baolin Zhang, and Guotong Du, “ Improvement of electroluminescence performance by integration of ZnO nanowires and single-crystalline films on ZnO/GaN heterojunction , Applied Physics Letters, Vol. 104, p. 131109, 2014.
[22]Jacob J. Richardson and Frederick F. Lange, “Controlling Low Temperature Aqueous Synthesis of ZnO. 2. A Novel Continuous Circulation Reactor, Crystal Growth & Design, Vol. 9, pp. 2570-2575, 2009.
[23]Jacob J. Richardson and Frederick F. Lange, “Controlling Low Temperature Aqueous Synthesis of ZnO. 1. Thermodynamic Analysis, Crystal Growth & Design, Vol. 9, pp. 2576-2581, 2009.
[24]Jin Hyeok Kim, Eun-Mi Kim, David Andeen, Daniel Thomson, Steven P. DenBaars, and Fred. F. Lange, “Growth of Heteroepitaxial ZnO Thin Films on GaN-Buffered Al2O3 (0001) Substrates by Low-Temperature Hydrothermal Synthesis at 90 °C, Advanced Functional Materials, Vol. 17, pp. 463-471, 2007.
[25]Y. X. Zhang, G. H. Li , Y. X. Jin, Y. Zhang, J. Zhang, L. D. Zhang, “Hydrothermal synthesis and photoluminescence of TiO2 nanowires, Chemical Physics Letters, Vol. 365, pp. 300-304, 2002.
[26]S. Li, H. Zhang, Y. Ji, D. Yang, “CuO nanodendrites synthesized by a novel hydrothermal route, Nanotechnology, Vol. 15, pp. 1428-1432, 2004.
[27]Y. Y. Xi, Y. F. Hsu, A.B. Djurisic, A. M. C. Ng, W. K. Chan, H. L. Tam, and K. W. Cheah, “NiO/ZnO light emitting diodes by solution based growth, Appl. Phsy. Lett, Vol. 92, pp. 113505-113507, 2008.
[28]M. K. Lee, C. L. Ho, and C. H. Fan, “Enhancement of light extraction efficiency of gallium nitride flip-chip light-emitting diode with silicon oxide hemispherical microlens on its back, IEEE Photonics technology Letters, Vol. 20, no. 15, pp. 1293-1295, 2008.

[29]K. Tsukuma, T. Akiyama, and Imai, “Liquid phase deposition film of tin oxide, J. Non-Cryst. Solid, Vol. 210, no. 48, pp. 48-54, 1997.
[30]W. Guo, L. Fu, Y. Zhang, K. Zhang, L. Y. Liang, Z. M. Liu, H. T. Cao, and X. Q. Pan, “Microstructure, optical, and electrical properties of p-type SnO thin films, Appl. Phys. Lett, Vol. 96, pp. 856-857, 2010.
[31]Qi Qi, Tong Zhang, Qingjiang Yu, RuiWang, Yi Zeng, Li Liu, and Haibin Yang, “Properties of humidity sensing ZnO nanorods-base sensor fabricated by screen-printing, Sensors and Actuators B, Vol. 133, pp. 638-643, 2008.
[32]L. Vayssieres, K. Keis, S. E. Lindquist, and A. Hagfeldt, “Purpose-built anisotropic metal oxide material: 3D highly oriented microrod array of ZnO, J. Phys. Chem. B., Vol. 105, pp. 3350-3352, 2001.
[33]Z. R. Tian, J. A. Voigt, J. Liu, B. Mckenzie, M. J. Mcdermott, “Biomimetic arrays of oriented helical ZnO nanorods and columns, J. Am. Chem. Soc., Vol. 124(44), p. 12954, 2002.
[34]L. E. Greene, M. Law, J. Goldberger, F. Kim, J. C. Johnson, Y. Zhang, R. J. Saykally, P. Yang, “Low-temperature wafer-scale production of ZnO nanowire arrays, Angew. Chem., Vol. 115, p. 3139, 2003.
[35]K. Tsukuma, T. Akiyama , and Imai, “Liquid phase deposition film of tin oxide, J. Non-Cryst. Solid, Vol. 210, no. 48, p. 48, 1997.
[36]K. Govender, David S. Boyle, P. B. Kenway, and P. O’Brien, “Understanding the factors that govern deposition and morphology of thin film of ZnO from aqueous solution, J. Mater. Chem., Vol. 14, p. 2575, 2004.
[37]K. Govender, David S. Boyle, P. B. Kenway and P. O’Brien, “Understanding the factors that govern deposition and morphology of thin film of ZnO from aqueous solution, J. Mater. Chem., Vol. 14, pp. 2575-2591, 2004.
[38]R. W. Nosker and P. Mark, “Polar surfaces of wurtzite and zincblende lattices, Surf. Sci., Vol. 19, pp. 291-317, 1970.
[39]Q Ahsanulhaq, A Umar and Y B Hahn1, “Growth of aligned ZnO nanorods and nanopencils on ZnO/Si in aqueous solution: growth mechanism and structural and optical properties, Nanotechnology, Vol. 18, pp. 115603-115609, 2007.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊