跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.41) 您好!臺灣時間:2026/01/13 23:57
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃繼輝
研究生(外文):Chi-Hui Huang
論文名稱:應用田口法於五軸CNC銑削加工製程之最佳化參數設計
論文名稱(外文):Optimization of Five-axis CNC Milling Operations using Taguchi Methods
指導教授:陳政順陳政順引用關係
口試委員:林守儀蔡哲雄
口試日期:2008-07-01
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:製造科技研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:82
中文關鍵詞:五軸銑削加工田口法製程參數最佳化
外文關鍵詞:Five-Axis MillingTaguchi MethodParameter Optimization
相關次數:
  • 被引用被引用:30
  • 點閱點閱:789
  • 評分評分:
  • 下載下載:93
  • 收藏至我的研究室書目清單書目收藏:0
現今產品設計的造型多為複雜曲面,由於五軸加工之特性與優勢,使得應用五軸加工技術取代三軸加工成為業界的主流。本研究的目的在於嘗試找出利用五軸銑削曲面時之最佳參數。本研究之實驗機台為本實驗室之床台傾斜旋轉型態之五軸加工機,加工的成品模型為凹型半球面,其材料為NAK80模具鋼。實驗程序為使用L9(34)直交表、計算訊雜比、繪製折線圖和反應曲面、最佳化實驗因子和使用ANOVA分析表驗證田口法的正確性與各因子的貢獻度;實驗的因子有切削速度、進給率、刀具路徑規劃和表面接觸點,同時每因子都設定為三個水準。本研究的品質特性為望小特性,亦即取得較小的表面粗糙度值為佳。實驗結果顯示利用12,000rpm的切削速度、600mm/min的進給率、五軸同動的路徑規劃與360個接觸點可以達到較佳的表面粗糙度。ANOVA分析表也驗證了與田口法的實驗結果是一致的,同時也以刀具規劃因子貢獻度最大,有60.5%的影響力,其次為主軸轉速,接下來為進給率,影響程度最不明顯的為刀具接觸點。除此之外,也進行真圓度的分析,其品質特性也是望小特性,運用與研究表面粗糙度相同的流程得到的最佳化結果為五軸同動放射狀加工路徑,主軸轉速為10000rpm,進給率為900mm/min,刀具接觸點為360個接觸點。真圓度的ANOVA分析也得到與田口法相同的結果驗證了實驗的正確性,同時也發現以路徑規畫因子對真圓度的影響最大,有高達25%的影響程度,其次為刀具接觸點,只有8%,接下來則是刀具接觸點有2%的貢獻度,至於進給率對於真圓度的影響就更小了。
Different kinds of complex surfaces of products have become popular in product design in recent years and consequently 5-axis machining techniques become a mainstream in the manufacturing of the die and moulds used in products mentioned above, because of their features and flexibility. This research applies Taguchi method to find out a set of optimal machining parameters in five-axis milling process. The table rotating-tilting type five-axis machine is used to perform the experimental cutting in this study. The geometry of die is modeled as convex half spherical surface, and the material of die is NAK 80 die steel. Experimental procedures consist of using L9(34)orthogonal array, calculating S/N ratio, charting broken-line graph, and response plane, optimizing parameters, an applying ANOVA analysis chart to verify Taguchi experiment results. The four parameters studied are cutting speed, feed rate, tool paths, and contact points, and each of these factors has three levels. The target of this study is the feature of smaller-the-better that is minimization of the surface roughness. The final results of optimal surface roughness experiment shows that the optimal parameters are 12,000rpm cutting speed, 600mm/min feed rate, five-axis tool path, and 360 contact points. The results of ANOVA analysis is correspondent with our research and that can prove Taguchi method is effective. The factors contributing most to the improvement of surface roughness is tool path which accounts for 60.5%,the second is spindle speed. Besides surface roughness, we also conduct research for roundness using the same experiment procedures applied for surface roughness because they have the same quality character. The optimal machining parameters for roundness is 10,000rpm cutting speed, 900mm/min feed rate, five-axis tool path, and 360 contact points. The results of ANOVA analysis is correspondent with our research and that can prove Taguchi method is effective. The factors contributing most to the improvement of surface roughness is tool path which accounts for 25%, the second is tooling contact point.
目 錄

中文摘要 i
英文摘要 ii
誌謝 iv
目錄 v
表目錄 vii
圖目錄 viii
第一章 緒論 1
1.1 研究動機 1
1.2 文獻回顧 2
1.2.1 五軸加工機加工複雜曲面實例 2
1.2.2 NAK80模具鋼應用之研究 4
1.2.3 田口實驗方法應用於工業製程之研究 5
1.2.4 加工參數對於表面粗糙度的影響 9
1.3 研究目的與方法 12
1.3.1 研究目的方法 12
1.3.2 研究流程 13
1.4 本文架構 15
第二章 實驗原理與實驗因子的選擇 16
2.1 田口實驗方法 16
2.2 雜訊:造成品質差異的原因 17
2.3 損失函數與訊雜比 17
2.3.1 望目特性 19
2.3.2 望小特性 19
2.3.3 望大特性 20
2.4 實驗設計 20
2.5 ANOVA變異數分析 21
2.6 表面粗糙度 23
2.7 真圓度 26
2.8 實驗因子的選擇 28
2.8.1 刀具路徑 29
2.8.2 主軸轉速 29
2.8.3 進給率 30
2.8.4 刀具接觸點 31
2.9 田口實驗配置 33
第三章 實驗加工過程 36
3.1 加工機具與刀具 36
3.1.1 五軸工具機簡介 36
3.1.2 實驗用五軸工具機介紹 37
3.1.3 加工刀具介紹 38
3.2 加工材料介紹 40
3.2.1 NAK80模具鋼 40
3.2.2 代木塑膠材料 41
3.3 電腦輔助設計軟體的介紹 41
3.4 模型的建構與後處理 42
3.4.1 模型的建構與選用 42
3.4.2 加工路徑規畫 43
3.4.2.1 平面端銑削 44
3.4.2.2 球面粗銑削 45
3.4.2.3 精加工三軸同心圓狀加工路徑 46
3.4.2.4 四軸同心圓狀加工路徑 46
3.4.2.5 五軸放射狀加工路徑 47
3.5 加工前之準備 49
3.5.1 五軸工具機旋轉中心 49
3.5.2 刀具補正 50
3.5.3 加工座標原點 52
3.6 五軸實際加工過程 54
第四章 實驗結果與分析 57
4.1 加工成品介紹 57
4.1.1 三軸同心圓狀加工路徑之成品 57
4.1.2 四軸同心圓狀加工路徑之成品 58
4.1.3 五軸放射狀加工路徑之成品 58
4.2 成品特徵之量測 59
4.3 田口方法分析 64
4.3.1 表面粗糙度之田口分析 64
4.3.2 真圓度之田口分析 67
4.4 成品特徵之ANOVA變異數分析 70
4.4.1 表面粗糙度之變異數分析 70
4.4.2 真圓度之變異數分析 75
第五章 結論與建議 77
5.1 結論 77
5.2 建議 78
參考文獻 79
參考文獻

[1] A. WARKENTIN, S. BEDI and F. ISMAIL,“Five-axis milling of spherical surfaces” ,International Journal of Machine Tools and ManufactureVolume 36, Issue 2, February 1996, pp. 229-243.
[2] R. Baptista, J.F. Antune Simões, “Three and five axes milling of sculptured surfaces”, Journal of Materials Processing Technology Volume 103, Issue 3, 17, July 2000, pp. 398-403.
[3] Y.S. Liao, H.M. Li, “Mechanism of minimum quantity lubrication in high-speed milling of hardened steel”, International Journal of Machine Tools and Manufacture Volume 47, Issue 11, September 2007, pp. 1660-1666.
[4] Hun-Keun Chang, Jin-Hyun Kim, “In-process surface roughness prediction using displacement signals from spindle motion”, International Journal of Machine Tools and Manufacture Volume 47, Issue 6, May 2007, pp. 1021-1026.
[5] 鄭至雄,以球擠光拋光製程於鏡面鋼材模仁之自動化表面精加工研究 ,碩士論文,國立台灣科技大學機械工程系,2004。
[6] 梁宏彬,應用五軸加工機銑削球形曲面之探討,碩士論文,國立台北科技大學製造科技研究所,2007。
[7] J.A. Ghani, I.A. Choudhury, H.H. Hassan, “Application of Taguchi method in the optimization of end milling parameters”, Journal of Materials Processing Technology Volume 145, Issue 1, 1 January 2004, pp. 84-92.
[8] Jae-Seob Kwak, “Application of Taguchi and response surface methodologies for geometric error in surface grinding process”, International Journal of Machine Tools & Manufacture 45 ,2005, pp. 327–334.
[9] Chih-Wei Chang, and Chun-Pao Kuo, “Evaluation of surface roughness in laser-assisted machining of aluminum oxide ceramics with Taguchi method”, International Journal of Machine Tools & Manufacture, 47, 2007, pp. 141–147.
[10] M. Nalbant, H. Gökkaya, G. Surr, “Application of Taguchi method in the optimization of cutting parameters for surface roughness in turning”, Materials & Design Volume 28, Issue 4, 2007, pp. 1379-1385.
[11] P. Viljian, V.P. Arunachalam, “Optimization of squeeze cast parameters of LM6 aluminium alloy for surface roughness using Taguchi method”, Journal of Materials Processing Technology Volume 180, Issues 1-3, 1 December 2006, pp. 161-166.
[12] G.-L. Chern, Jia-Ming Liang, “Study on boring and drilling with vibration cutting”, International Journal of Machine Tools and Manufacture Volume 47, Issue 1, January 2007, pp. 133-140.
[13] W. Anotaipaiboona, S.S. Makhanov, E.L.J. Bohez,“Optimal setup for five-axis machining”,International Journal of Machine Tools & Manufacture 10 ,2005, pp. 1–14.
[14] Hasan Gökkaya and Muammer Nalbant, “The effects of cutting tool geometry and processing parameters on the surface roughness of AISI 1030 steel”, Materials and Design 28, 2007, pp. 717–721.
[15] Oguz Çolak, Cahit Kurbanoglu, M. Cengiz Kayacan, “Milling surface roughness prediction using evolutionary programming methods”, Materials and Design 28, 2007, pp. 657–666.
[16] Babur Ozcelik, Mahmut Bayramoglu, “The statistical modeling of surface roughness in high-speed flat end milling”, International Journal of Machine Tools and Manufacture Volume 46, Issues 12-13, October 2006, pp. 1395–1402.
[17] Julie Z. Zhang, Joseph C. Chen, E. Daniel Kirby, “Surface roughness optimization in an end-milling operation using the Taguchi design method”, Journal of Materials Processing Technology Volume 184, Issues 1-3, 12 April 2007, pp. 233–239.
[18] 戴久永編著,品質管理 = Managing quality : principles and methods engineering ,臺中市 , 滄海,2006,第100–146頁。

[19] Montgomery, Design and analysis of experiments, John Wiley and Sons,1991, pp. 60–200.
[20] 范漢欽 黃士佳 蔡宗賢,田口軟體應用,義守大學工業工程與管理學系,http://www.im.isu.edu.tw/IEMproject/2002/list_b/B15.doc.
[21] Ferguson, George A., Takane, Yoshio., "Statistical Analysis in Psychology and Education", Sixth Edition. Montreal, Quebec: McGraw-Hill Ryerson Limited.,2004.
[22] Whitehouse, DJ. , Handbook of Surface Metrology, Bristol: Institute of Physics Publishing. ISBN 0-7503-0039-6, pp. 324–350.
[23] Roundness, http://en.wikipedia.org/wiki/Roundness_%28object%29#Roundness_error_definitions.
[24] 范光照,張郭益編著,精密量測,臺北縣五股鄉, 高立,2003第三版,第186-188頁。
[25] Han-Ming Chow, Shin-Min Lee, Lieh-Dai Yang,“Machining characteristic study of friction drilling on AISI 304s.s. ”, Journal of Materials Processing Technology 12,2008, pp. 201–207.
[26] D.I. Lalwani, N.K. Mehta, P.K. Jain, “Experimental investigations of cutting parameters influenceon cutting forces and surface roughness in finish hardturning of MDN250 steel”, Journal of Materials Processing Technology 13 ,2008, pp. 144–157.
[27] David Montwid Bernhard,Ph.D. Thesis, “some aspects of five-axis machine tool design, assembly, and testing”, University of FLORIDA, FLORIDA, U.S.A., 1997.
[28] 盛方源公司網站,http://www.sfy-tech.com.tw/c1-1.html
[29] Tungsten Carbide, http://en.wikipedia.org/wiki/Tungsten_carbide
[30] 高級鏡面塑膠模專用析出硬化型預硬鋼 大同“NAK80” ,http://www.daidosteel.com.tw/daidosteel/files/P115-120_NAK80.pdf
[31] Unigraphics, http://en.wikipedia.org/wiki/Unigraphics
[32] 台灣三豐儀器股份有限公司,SVC3000系列輪廓型狀測定機 http://www.mitutoyo.com.tw/Mitutoyo_2006_Web/product/images/d_pdf/E4293%20CV3100_4100.pdf
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊