跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.19) 您好!臺灣時間:2025/09/04 02:55
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:鄧桔程
研究生(外文):Deng, Jie-Cheng
論文名稱:Nucleophilic anti-Michael Addition of Phosphines and Amines to Enynedioates and Oligoynoates: Fluorescent γ-Lactones, γ-Lactams, Drug Precursors 3-Phosphorus Oxindoles and Trisubstituted Furans via Three-Component Reactions
論文名稱(外文):Nucleophilic anti-Michael Addition of Phosphines and Amines to Enynedioates and Oligoynoates: Fluorescent γ-Lactones, γ-Lactams, Drug Precursors 3-Phosphorus Oxindoles and Trisubstituted Furans via Three-Component Reactions
指導教授:莊士卿
指導教授(外文):Chuang, Shih-Ching
口試委員:鄭建鴻鍾文聖李文泰陳傳霖莊士卿
口試委員(外文):Cheng, Chien-HongChung, Wen-ShengLi, Wen-TaiChen, Chuan-LinChuang, Shih-Ching
口試日期:20150312
學位類別:博士
校院名稱:國立交通大學
系所名稱:應用化學系碩博士班
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:英文
論文頁數:156
中文關鍵詞:反麥可加成三級膦環內酯內醯胺氧化吲哚23-吲哚二酮呋喃伊立德
外文關鍵詞:anti-Michael additionPhosphorusYlideWittig reactionFluorescencelactoneoxindoleisoxazolinonefuranlactam
相關次數:
  • 被引用被引用:0
  • 點閱點閱:225
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在本論文中,我們發現以三級膦作親核加成在炔基酯上時,會行麥可與反麥可親核加成反應。在丁炔二酸二甲酯 (DMAD)、三芳香基膦與缺電子的苯基醛反應中,經由麥可加成 (Michael addition) 可生成高產率的伽瑪-環內酯 (γ-lactone),此外,在三烷基膦作親核試劑的反應中,經由穩定磷基烯醇中間體所形成的伽瑪-環內酯則可當作Wittig試劑與缺電子的苯基醛反應,得到產率不錯的烯基伽瑪-環內酯。伽瑪-環內酯與伽瑪-內醯胺 (γ-lactam) 亦可由三級膦經反麥可加成 (anti-Michael addition) 至共軛炔基酯之反應中獲得,而這些五圓雜環分子擁有從未被報導過的高度螢光性質。由於它們的重要性與創新性,我們測量每個分子之螢光量子產率與電腦計算其前沿分子軌域 (frontier orbital)。
Dimethyl (E)-hex-2-en-4-ynedioate可與一級胺、二級胺行反麥可加成生成α,β脫氫胺酯之衍生物 (α,β-dehydroamino acid derivatives),也可與三級膦及α,β-不飽和亞胺醛產生具有三個連續烯基的伽瑪-內醯胺,而此內醯胺可經由照光及加熱進行6π-電子環化反應產生氧化吲哚 (oxindole)。這些在3號碳上有三級膦的氧化吲哚伊立德 (ylide) 可使用適當當量的間氯過氧苯甲酸 (mCPBA) 將其氧化為2,3-吲哚二酮 (isatin) 與 isoxazolinone。最後,三級膦、缺電子苯基醛與對稱雙缺酯 (symmetric diyndioate) 所產生之三取代呋喃伊立德除了可和苯基醛行Wittig反應將三級膦置換生成烯類化合物外,也可使用適間氯過氧苯甲酸將碳磷雙鍵氧化為碳氧雙鍵。這些結構可透過氫、碳、磷核磁共振儀、紅外線光譜儀、高解析質譜儀以及X光單晶繞射儀來分析並確定其正確結構。

In this content, we have provided a full investigation of the normal and abnormal addition pattern of phosphines to substituted ynoates. The reaction of DMAD, arylphosphines and benzaldehydes could give γ-lactone bearing α-phosphorus ylides in good yields. The γ-lactones synthesized by alkyphosphines, through stable tetravalent phosphonium enolate zwitterions as intermediates, could react with aldehydes to give olefinic γ-lactones via Wittig reaction in moderate yields. The γ-lactones and γ-lactams could be synthesized by first anti-Michael or α(δ')-addition of phosphines to enynedioates as well. These five-membered heterocyclics, on the other hand, possessed strong fluorescent emissions that never reported as chromophores before. As a result, due to their novalty and importance, we also synthesized and investigated the fluorescent properties and computational data of the oligoynoates derived γ-lactones.
The anti-Michael or α(δ')-addition of dimethyl (E)-hex-2-en-4-ynedioate could also be utilized to give α,β-dehydroamino acid derivatives and 3-phosphorus oxindoles via 6π electrocyclization. The oxindoles could be further oxidized with appropriate amount of mCPBA and workup process to give isatins and isoxazolinones in moderate to excellent yields. Finally, we also synthesized trisubstituted furan with the reaction of diynedioates, phsophines and aldehydes via cumulated trienoates as key step. The resulting phosphorus furan could be oxidized to α-keto ester furans and utilized as Wittig reagents.

1 Dimethyl (E)-hex-2-en-4-ynedioate Reaction A: anti-Michael Addition of Phosphines and Amines to give Fluorescent γ-Lactones, γ-Lactams and α,β-Dehydroamino Acid Derivatives 1
1.1 Introduction 1
1.2 Motive 9
1.3 Results and Discussions 10
1.3.1 Synthesis of γ-Lactam Derived from Various Phosphines and Aldimines 10
1.3.2 UV-Vis Spectra of γ-Lactams 7 12
1.3.3 Fluorescent Properties of γ-Lactams 7 14
1.3.4 Fluorescent Properties and Computations of γ-Lactones 6 17
1.3.5 Applications of α-Phosphorus γ-Lactones as Wittig Reactions 22
1.3.6 Reaction of Amines and (E)-hex-2-en-4-ynedioate (1a) 33
1.4 Conclusion 36
1.5 Reference 38
2 Dimethyl (E)-hex-2-en-4-ynedioate Reaction B: Synthesis of oxindole, Isatin and Isoxazolinone through anti-Michael Reaction of Phosphines and α,β-Unsaturated Imines via 6π Electrocyclization as Key Step 42
2.1 Introduction 42
2.2 Motive 52
2.3 Results and Discussions 53
2.3.1 Synthesis of γ-Lactam Intermediates 53
2.3.2 Synthesis of 3-Phosphorus Oxindoles 57
2.3.3 Characterization of 3-Phosphorus Oxindoles 60
2.3.4 Applications and Discussions of 3-Phosphorus Oxindoles 64
2.3.5 Synthesis of γ-Lactone 15 and Benzofuranone 17 74
2.4 Conclusion 75
2.5 Reference 77
3 Nucleophilic Conjugate 1,3-Addition of Phosphines to Oligoynoates to Give γ-Lactones And Their Fluorescent Properties 82
3.1 Introduction 82
3.2 Motive 95
3.3 Results and Discussion 98
3.3.1 Synthesis of γ-Lactones Derived from Poliynoates 98
3.4 Applications of γ-Lactones Derived from Poliynoates 106
3.4.1 Wittig Reaction 106
3.4.2 Fluorescent Properties of γ-Lactones Derived from Oligoynoates 108
3.5 Conclusion 122
3.6 Reference 123
4 anti-Michael Reactions of Diynedioates: the Development of Trisubstituted Furans 129
4.1 Introduction 129
4.2 Motive 137
4.3 Results and Discussions 138
4.3.1 Optimization Condition for Trisubstituted Furan 138
4.3.2 Reaction scope for trisubstituted furan 140
4.3.3 Characterization of Trisubstituted Furan 143
4.3.4 Oxidation and Wittig Reaction of Furan 149
4.4 Conclusion 154
4.5 Reference 155

1. Michael, A. J. Prakt. Chem. 1887, 35, 349.
2. Jung, M. E. Comprehensive Organic Synthesis; Trost, B. M., Fleming, I., Semmelhack, M. F., Eds; Pergamon: Oxford, UK, 1991; Vol. 4, pp 1-67.
3. For selected reviews, see: (a) Ye, L.-W.; Zhou, J.; Tang, Y. Chem. Soc. Rev. 2008, 37, 1140. (b) Methot, J. L.; Roush, W. R. Adv. Synth. Catal. 2004, 346, 1035.
4. (a) Lu, X.; Du, Y.; Lu, C. Pure Appl. Chem. 2005, 77, 1985. (b) Lu, X.; Zhang, C.; Xu, Z. Acc. Chem. Res. 2001, 34, 535. (c) Zhang, C.; Lu, X. J. Org. Chem. 1995, 60, 2906.
5. Selected examples, see: (a) Smith, S. W.; Fu, G. C. J. Am. Chem. Soc. 2009, 131, 14231. (b) Fang, Y.-Q.; Jacobsen, E.-N. J. Am. Chem. Soc. 2008, 130, 5660. (c) Voituriez, A.; Panossian, A.; Fleury-Bregeot, N.; Retailleau, P.; Marinetti, A. J. Am. Chem. Soc. 2008, 130, 14030. (d) Sriramurthy, V.; Barcan, G. A.; Kwon, O. J. Am. Chem. Soc. 2007, 129, 12928. (e) Cowen, B. J.; Miller, S. J. J. Am. Chem. Soc. 2007, 129, 10988. (f) Wurz, R. P.; Fu, G. C. J. Am. Chem. Soc. 2005, 127, 12234.
6. Wang, J. C.; Krische, M. J. Angew. Chem., Int. Ed. 2003, 42, 5855.
7. (a) Sinisi, R.; Sun, J.; Fu, G. C. Proc. Natl. Acad. Sci. U.S.A. 2010, 107, 20652. (b) Sun, J.; Fu, G. C. J. Am. Chem. Soc. 2010, 132, 4568. (c) Wilson, J. E.; Sun, J.; Fu, G. C. Angew. Chem., Int. Ed. 2010, 49, 161. (d) Chung, Y. K.; Fu, G. C. Angew. Chem., Int. Ed. 2009, 48, 2225.
8. (a) Guo, H.; Xu, Q.; Kwon, O. J. Am. Chem. Soc. 2009, 131, 6318. (b) Creech, G. S.; Kwon, O. Org. Lett. 2008, 10, 429. (c) Henry, C. E.; Kwon, O. Org. Lett. 2007, 9, 3069. (d) Tran, Y. S.; Kwon, O. J. Am. Chem. Soc. 2007, 129, 12632. (e) Zhu, X.-F.; Henry, C. E.; Kwon, O. J. Am. Chem. Soc. 2007, 129, 6722.
9. (a) Lecercl_e, D.; Sawicki, M.; Taran, F. Org. Lett. 2006, 8, 4283. (b) Zhang, X.-C.; Cao, S.-H.; Wei, Y.; Shi, M. Org. Lett. 2011, 13, 1142. (c) Guan, X.-Y.; Wei, Y.; Shi, M. Org. Lett. 2010, 12, 5024.
10. Walborsky, H. M.; Schwarz, M. J. Am. Chem. Soc. 1953, 75, 3241.
11. Knunyanta, I. L.; Cheburkov, Ya. A. Izv. Akad. Nauk, SSSR, Ser. Khim. 1960, 2162.
12. (a) Rosenberg, S. H.; Rapoport, H. J. Org. Chem. 1985, 50, 3979. (b) Klumpp, G. W.; Mierop, A. J. C.; Vrielink, J. J.; Brugman, A.; Schakel, M. J. Am. Chem. Soc. 1985, 107, 6740.
13. (a) Wenkert, E.; Adams, K. A. H.; Leicht, C. L. Can. J. Chem. 1963, 41, 1844. (b) Ramachandran, P.V.; Rudd, M.T.; Reddy, M.V.R. Tetrahedron Lett. 2005, 46, 2547.
14. Chung, S.-C.; Santhosh, K. C.; Lin, C.-H.; Wang, S.-L.; Cheng, C.-H. J. Org. Chem. 1999, 64, 6664.
15. Chuang, S.-C.; Deng, J.-C.; Chan, F.-W.; Chen, S.-Y.; Huang, W.-J.; Lai, L.-H.; Rajeshkumar, V. Eur. J. Org. Chem. 2012, 2606.
16. Deng, J.-C.; Chuang, S.-C. Org. Lett. 2011, 13, 2248.
17. Nair, V.; Bindu, S.; Sreekumar, V.; Rath, N. P. Org. Lett. 2003, 5, 665.
18. Nair, V.; Sreekumar, V.; Bindu, S.; Suresh, E. Org. Lett. 2005, 7, 2297.
19. Zhou, L.-H.; Yu, X.-Q.; Pu, L. Tetrahedron Lett. 2010, 51, 425.
20. Gaussian 09, Revision A.02, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2009.
21. For a review, see: Lewandowska, E. Tetrahedron 2007, 63, 2107. For selected examples of -Michael additions, see: (a) Li, Y.; Xu, X.; Tan, J.; Liao, P.; Zhang, J.; Liu, Q. Org. Lett. 2010, 12, 244. (b) Bi, X.; Zhang, J.; Liu, Q.; Tang, J.; Li, B. Adv. Synth. Catal. 2007, 349, 2301. (c) Klumpp, G. W.; Mierop, A. J. C.; Vrielink, J. J.; Brugman, A.; Schakel, M. J. Am. Chem. Soc. 1985, 107, 6740. (d) Shim, J. G.; Park, J. C.; Cho, C. S.; Shim, S. C.; Yamamoto, Y. Chem. Commun. 2002, 852. (e) Guo, C.; Lu, X. J. Chem. Soc., Perkin Trans. 1 1993, 1921. (f) Dong, D.; Bi, X.; Liu, Q.; Cong, F. Chem. Commun. 2005, 3580. (g) Li, Y.; Liang, F.; Bi, X.; Liu, Q. J. Org. Chem. 2006, 71, 8006.
22. Trost, B. M.; Dake, G. R. J. Am. Chem. Soc. 1997, 119, 7595.
23. 林鈺偉,「(1) 合成抗反轉錄病毒藥物之中間體反應探討 (2) 開洞富勒烯之性質探討」,國立交通大學,碩士論文,民國 100 年。
24. Williams, A.T.R.; Winfield, S.A.; Miller, J. N. Analyst. 1983, 108, 1067.
25. (a) Cossiello, R. F.; Akcelrud, L.; Atvars, T. D. Z. J. Braz. Chem. Soc. 2005, 16, 74. (b) Lackowicz, J. R.; Principles of Fluorescence Spectroscopy, 2nd ed. 1999.; Kluwer Academic Publishers, New York.
26. Imhof, A.; Megens, M.; Engelberts, J. J.; de Lang, D. T. N.; Sprik, R.; Vos, W. L. J. Phys. Chem. B. 1999, 103, 1408.
27. (a) Ono, M.; Hayashi, S.; Kimura, H.; Kawashima, H.; Nakayama, M.; Saji, H. Bioorg. Med. Chem. 2009, 17, 7002. (b) Ciuffreda, P.; Casati, S.; Meroni, G.; Santaniello, E. Tetrahedron 2013, 69, 5893.
28. Deng, J.-C.; Chan, F.-W.; Kuo, C.-W.; Cheng, C.-A.; Huang, C.-Y.; Chuang, S.-C. Eur. J. Org. Chem. 2012, 5738.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top