|
[1] Hanbit Lee, Jinseok Seol, Sang-goo Lee,“Style2Vec: Representation Learning for Fashion Items from Style Sets”, ARXIV, eprint arXiv:1708.04014, 08/2017. [2] Yang Hu, Xi Yi, Larry S. Davis, “Collaborative Fashion Recommendation: A Functional Tensor Factorization Approach”, ACM, Brisbane, New York, NY, USA, Pages 129-138, 10/2015. [3] Yong-Siang Shih, Kai-Yueh Chang, Hsuan-Tien Lin, Min Sun, “Compatibility Family Learning for Item Recommendation and Generation”, ARXIV, eprint arXiv:1712.01262, 12/2017. [4] Qiang Liu, Shu Wu, Liang Wang, “DeepStyle: Learning User Preferences for Visual Recommendation”, ACM, Shinjuku, New York, NY, USA, Pages 841-844, 11/2017. [5] Karen Simonyan, Andrew Zisserman, “Very Deep Convolutional Networks for Large-Scale Image Recognition”, ARXIV, eprint arXiv:1409.1556, 09/2014. [6] Tomas Mikolov, Kai Chen, Greg Corrado, Jeffrey Dean,“Efficient Estimation of Word Representations in Vector Space”, ARXIV, eprint arXiv:1301.3781, 01/2013. [7] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Corrado, Jeffrey Dean, “Distributed Representations of Words and Phrases and their Compositionality”,ARXIV, eprint arXiv:1310.4546, 10/2013. [8] Yoav Goldberg, Omer Levy, “word2vec Explained: deriving Mikolov et al.'snegative-sampling word-embedding method”, ARXIV, eprint arXiv:1402.3722, 02/2014. [9] Xin Rong, “word2vec Parameter Learning Explained”, ARXIV, eprint arXiv:1411.2738, 11/2014. [10] Laurens van der Maaten, GeoffreyHinton, “VisualizingDatausingt-SNE”, Journel of machine learning research, 9(Nov):2579--2605, 2008. [11] Cosine_Similarity, 取自http://mlwiki.org/index.php/Cosine_Similarity#Cosine_Similarity [12] Machine Learning :: Cosine Similarity for Vector Space Models, 取自 http://blog.christianperone.com/2013/09/machine-learning-cosine-similarity-for-vector-space-models-part-iii/ [13] Python for Data Analysis Part 28: Logistic Regression, 取自 http://hamelg.blogspot.com/2015/11/python-for-data-analysis-part-28.html [14] Activation function, 取自 https://en.wikipedia.org/wiki/Activation_function [15] Activation Functions: Neural Networks, 取自 https://towardsdatascience.com/activation-functions-neural-networks-1cbd9f8d91d6 [16] CS231n Convolutional Neural Networks for Visual Recognitio, 取自 http://cs231n.github.io/neural-networks-1/ [17] An Intuitive Explanation of Convolutional Neural Networks, 取自 https://ujjwalkarn.me/2016/08/11/intuitive-explanation-convnets/ [18] sklearn.manifold.TSNE, 取自 http://scikit-learn.org/stable/modules/generated/sklearn.manifold.TSNE.html [19] Deep Convolutional Neural Networks with transfer learning for computer vision-baseddata-driven pavement distress detection, 取自 https://www.researchgate.net/figure/A-s chematic-of-the-VGG-16-Deep-Convolutional-Neural-Network-DCNN-architecture-tr ained_fig2_319952138 [20] 機器學習(4) 類神經網路 Neural network, 取自 http://mropengate.blogspot.com/2015 /06/ch15-4-neural-network.html [21] Neural Network 的概念探討, 取自 https://ithelp.ithome.com.tw/articles/10191528?sc =iThelpR [22] 資料分析&機器學習:卷積神經網絡介紹(Convolutional Neural Network), 取自 https://medium.com/@yehjames/ [23] 計算機視覺與卷積神經網路, 取自 https://www.readhouse.net/articles/160795770/ [24] 激活函數, 取自https://feisky.xyz/machine-learning/neural-networks/active.html [25] T-SNE 完整筆記, 取自 http://www.datakit.cn/blog/2017/02/05/t_sne_full.html [26] [Machine Learning] kNN分類演算法 , 取自 https://medium.com/@NorthBei/machine-learning-knn%E5%88%86%E9%A1%9E%E6%BC%94%E7%AE%97%E6%B3%9 5-b3e9b5aea8df
|