跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.172) 您好!臺灣時間:2025/09/11 06:05
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳宥任
研究生(外文):You-Ren Chen
論文名稱:以有限元素模擬結果評估振動應力消除之效果
指導教授:黃以玫黃以玫引用關係
學位類別:碩士
校院名稱:國立中央大學
系所名稱:機械工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:120
中文關鍵詞:殘留應力振動應力消除低周疲勞
相關次數:
  • 被引用被引用:2
  • 點閱點閱:330
  • 評分評分:
  • 下載下載:4
  • 收藏至我的研究室書目清單書目收藏:1
殘留應力的消除一直以來都是金屬加工領域的重要課題,隨著技
術的發展,振動應力消除(Vibration stress relief, VSR)技術逐漸受到關注,它是一種基於低周疲勞理論,藉由材料內部殘留應力與外部負載疊加以產生塑性變形,來達到應力釋放、重新分布的目的。但其運作機制及可消除的應力量目前仍不甚明確。故本研究藉由有限元素模擬
方法(Finite element method)來觀察材料SS400在低周疲勞之循環負載下的行為,以期能用模擬的方法預估施作振動應力消除的效果。本研究中首先採用1/8 立方體模型進行單軸拉伸之低周疲勞模擬,並搭配
實驗結果,分別使用位移控制與力量控制來觀察材料的平均應力鬆弛
(Mean stress relaxation)與循環潛變行為(Cyclic creep);接著使用具缺口(Notch)試片模型進行低周疲勞模擬來觀察材料在進行循環負載時,集中應力現象對材料行為的影響;最後利用具有殘留應力之銲接試片來進行彎曲實驗的低周疲勞模擬,以觀察振動應力消除的效果與應力分布的變化,模擬結果發現具有銲接殘留應力之試片的高應力區的應力重新分布,且整體的應力範圍也有下降,顯示出振動應力消除的效
果。
To reduce the residual stress is an important issue of metal processing. A method, Vibration Stress Relief (VSR) was chosen here to reduce the residual stress. VSR is performed by applying cyclic load to the specimen. This method can release the residual stress and alter stress distribution due to the superposition of the residual stress and the cyclic external load. It is said that VSR is based on low cycle fatigue theorem. But the mechanism of reducing the stress is still unclear. This research numerically investigated the behavior of material SS400’s under cyclic loading by using finite element method. A cubic model, under a uni-axis, low cyclic fatigue load, was first considered for examining the material behavior of mean stress relaxation and cyclic creep. A specimen with a notch was then studied to understand the behavior due to stress concentration. Finally, a welded specimen, with residual stress, was studied to present the effect of VSR on a more realistic model. The numerical results show that the stress relief effect of applying cyclic load can be achieved if the amplitude of the load close to the yielding stress of the material.
摘要 I
Abstract II
致謝 III
目錄 IV
圖目錄 VI
表目錄 XI
符號說明 XII
第一章 緒論 1
1-1 研究動機與目的 1
1-2 文獻回顧 1
1-3 論文架構 4
第二章 金屬材料基本理論 6
2-1 低周疲勞理論與實驗 6
2-1-1 塑性變形 7
2-1-2 包辛格效應與硬化行為 8
2-1-3 材料的循環應力-應變行為與實驗施作 10
2-1-4 平均應力效應 14
2-2 沙博什材料模型(Chaboche Model) 16
2-3 非線性等向硬化模型(Voce model) 19
2-4 殘留應力消除效果檢測 20
第三章 單軸拉伸之低周疲勞特性數值模擬與實驗 22
3-1 有限元素方法簡介 22
3-2 模擬方法與流程 23
3-3 材料參數與曲線擬合 24
3-4 以有限元素模型進行低周疲勞模擬與實驗比較 29
3-4-1不同振幅大小之等應變振幅的模擬與實驗比較 31
3-4-2不同平均應變之等應變振幅的模擬與實驗比較 39
3-4-3不同平均應力之等應力振幅的模擬與實驗比較 51
3-4-4 Voce模型對材料於循環負載下的行為之影響 62
第四章 具缺口試片之低周疲勞數值模擬 65
4-1 模擬方法與流程 65
4-2 具平均應變之等應變振幅的低周疲勞試驗 67
4-3 具平均應力之等應力振幅的低周疲勞試驗 74
4-4 Voce模型對具缺口試片於循環負載下行為之影響 80
第五章 具銲接殘留應力試片之低周疲勞數值模擬 84
5-1 模擬手法與流程 84
5-2 等應變振幅的低周疲勞模擬 87
第六章 結論與未來展望 95
6-1 結論 95
6-2 未來展望 97
參考文獻 98
Budaházy, V. and Dunai, L., 2013, "Parameter refreshed Chaboche model for mild-steel cyclic plasticity behaviour," Periodica Polytechnica, Vol. 57, pp. 139-155.
Chaboche, J. L., 1986, "Time-independent constitutive theories for cyclic plasticity," International Journal of Plasticity, Vol. 2, pp. 149-188.
吳志榮, 胡緒騰, 辛朋朋 且 宋迎東, 2013, “基於Chaboche模型的金屬材料穩態循環應力-應變曲線的本構建模方法,” 機械工程材料, 第37冊, pp. 92-95.
Indermohan, H. and Reinhardt, W., 2011, "Ratcheting Responses of Strain Hardening Plasticity Models," in Proceedings of the ASME 2011 Pressure Vessels & Piping Division Conference.
Paranjape, H. M., Stebner, A. P. and Bhattacharya, K., 2018, "A macroscopic strain-space model of anisotropic, cyclic plasticity with hardening," International Journal of Mechanical Sciences, Vol.0, pp. 1-8.
Kwofie, S., 2009, "Plasticity model for simulation, description and evaluation of vibratory stress relief," Materials Science and Engineering, Vol. A516, pp. 154-161.
Kulkarni, S., Desai, Y. M, Kant, T., Reddy, G.R., Prasad, P., Vaze, K. K. and Gupta, C., 2004, "Uniaxial and biaxial ratchetting in piping materials—experiments and analysis," International Journal of Pressure Vessels and Piping, Vol. 81, pp. 609-617.
Ahmadzadeh, G. R. and Varvani-Farahani, A., 2013, "Ratcheting assessment of materials based on the modified Armstrong–Frederick hardening rule at various uniaxial stress levels," Fatigue & Fracture of Engineering Materials & Structures, Vol. 36, pp. 1232-1245.
Riccius, J. R. and Haidn, O. J., 2003, "Determination of Linear and Nonlinear Parameters of Combustion Chamber Wall Materials," in 39th AIAA/ASME/SAE/ASEE Joint Propulsion Conference.
Hu, W., Wang, C. H. and Barter, S., 1999, "Analysis of Cyclic Mean Stress Relaxation and Strain Ratchetting Behaviour of Aluminium 7050," Defence Techanical Information Center.
Dahlberg, M. and Segle, P., 2010, "Evaluation of models for cyclic plastic deformation – A literature study," Swedish Radiation Safety Authority.
Novak, J. S., Benasciutti, D., Bona, F. D., Stanojević, A., Luca, A. D. and Raffaglio, Y., 2016, "Estimation of Material Parameters in Nonlinear Hardening Plasticity Models and Strain Life Curves for CuAg Alloy," in IOP Conference Series: Materials Science and Engineering.
Shimada, Y., Jiao, Y., Kim, J. and Yamada, S., 2012, "Effects of Strain-rate on the Hysteretic behavior of Structural Steels," in 15th World Conference on Earthquake Engineering 2012.
Das, D. and Chakraborti, P. C., 2011, "Effect of stress parameters on ratcheting deformation stages of polycrystalline OFHC copper," Fatigue & Fracture of Engineering Materials & Structures, Vol. 34, pp. 734-742.
Yang, R., Hao, Y. and Li, S., 2011, "Development and application of low-modulus biomedical titanium alloy Ti2448," Trends in Material Science, pp. 225-248.
Qian, Z., Chumbley, S., Karakulak, T. and Johnson, E., 2013, "The Residual Stress Relaxation Behavior of Weldments During Cyclic Loading," Metallurgical and Materials Transactions A, Vol. 44A, pp. 3147-3156.
Song, J. and Zhang, Y., 2016, "Effect of vibratory stress relief on fatigue life of aluminum alloy 7075-T651," Advances in Mechanical Engineering, Vol. 8(6), pp. 1-9.
He, W., Gu, B., Zheng, J. and Shen, R., 2012, "Research on High-Frequency Vibratory Stress Relief of Small Cr12MoV Quenched Specimens," Applied Mechanics and Materials, Vols.157-158, pp. 1157-1161.
Zhao, X. C., Zhang, Y. D., Zhang, H. W. and Wu, Q., 2008, "Simulation of vibration stress relief after welding based on FEM," Acta Metallurgica Sinica, Vol. 21, pp. 289-294.
Chen, Y., Liu, B. and Kang, R., 2013, "Study of vibratory stress relief effect of quartz flexible accelerometer with FEA method," Journal of Vibroengineering, Vol. 15, pp. 784-793.
Dowling, N. E., 1988, Mechanical Behavior of Materials, Fourth ed., Pearson, UK.
Chaboche, J. L., 1989, "Constitutive Equations for Cyclic Plasticity and Cyclic Viscoplasticity," International Journal of Plasticity, Vol. 5, pp. 247-302.
ANSYS Inc., 2011, ANSYS Mechanical Advanced Nonlinear Materials.
Martin, H. S., 2014, Elasticity: Theory, Applications, and Numerics, 3 ed., Elsevier: USA.
Yang, M., Pan, Y., Yuan, F., Zhu, Y. and Wu, Z., 2016, "Back stress strengthening and strain hardening in gradient structure," Materials Research Letters, Vol. 4, pp. 145-151.
Asraff, A. K., Sheela, S., Eapen, R. K. and Babu, A., 2015, "Cyclic stress analysis of a rocket engine thrust chamber using Chaboche constitutive model," in International Conference on Materials.
D. Robert Basan and M. Tea Marohnić, 2016, "Constitutive Modeling and Material Behavior," University of Rijeka Faculty of Engineering.
ANSYS Inc., 2013, ANSYS Help Viewer, SAS IP,INC.
Withers, P. J. and Bhadeshia, H. K. D. H., 2001, "Residual stress Part 1 – Measurement techniques," Materials Science and Technology, Vol. 17, pp. 355-365.
Gary, S. S., 2013, Practical residual stress measurement methods, John Wiley & Sons.
林麗娟, 1994, “X光繞射原理及其應用,” 工業材料, Vol.86, pp. 100-109.
Rao, D., Wang, D., Chen, L. and Ni, C., 2007, "The effectiveness evaluation of 314L stainless steel vibratory stress relief by dynamic stress," International Journal of Fatigue, Vol. 29, pp. 192-196.
Moaveni, S., 2015, Finite Element Analysis: Theory and Application with ANSYS, 4 ed., Pearson: UK.
Sulamet-Ariobimo, R. D., Soedarsono, J. W., Sukarnoto, T., Rustandi, A., Mujalis, Y. and Prayitno, D., 2016, "Tensile properties analysis of AA1100 aluminium and SS400 steel using different JIS tensile standard specimen," Journal of Applied Research and Technology, Vol. 14, pp. 148-153.
Bertini, L., Le Bone, L., Santus, C., Chiesi, F. and Tognarelli, L. , 2017, "High Load Ratio Fatigue Strength and Mean Stress Evolution of Quenched and Tempered 42CrMo4 Steel," Journal of Materials Engineering and Performance, Vol. 26, pp. 3784-3793.
安迪亞, 2018, 對接銲接之熱傳與應力分析, 國立中央大學機械工程學系碩士論文.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊