跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.19) 您好!臺灣時間:2025/09/05 02:54
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:鄭庭宇
研究生(外文):Ting-Yu Cheng
論文名稱:硫化鎘薄膜應用於太陽電池之研究
論文名稱(外文):The study of cadmium sulfide thin films applied on solar cells
指導教授:陳文瑞陳文瑞引用關係
學位類別:碩士
校院名稱:國立虎尾科技大學
系所名稱:光電與材料科技研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:70
中文關鍵詞:太陽電池硫化鎘
外文關鍵詞:solar cellsphotovoltaicCdS/GaAs
相關次數:
  • 被引用被引用:0
  • 點閱點閱:1242
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
本研究分為兩大方向,第一部份係利用化學水浴法以及真空蒸鍍法成長硫化鎘薄膜於玻璃基板,並分析硫化鎘薄膜之基本特性。像是硫化鎘薄膜之晶相結構、表面型態以及光穿透特性。利用此兩種方法所製備之硫化鎘薄膜均有(111)之結晶方向,經過退火處理後可以產生(002)之結晶方向,硫化鎘薄膜能隙由2.387 eV減小至2.376eV,隨後再上升至2.433 eV。由能隙改變與XRD分析可判斷其內部晶格之轉變是由四方晶體結構轉變為六角晶體結構,在退火條件400℃下也可產生較大粒徑之薄膜結構。而化學水浴法中加入氯化銨緩衝液可得到較平坦之表面,其平均粗糙度可由258nm減小至14nm。
另一部份則是太陽電池元件製作,利用真空蒸鍍的方式將硫化鎘結合砷化鎵基板(CdS/GaAs),針對窗戶層材料的研發對於砷化鎵太陽電池之特性研究,而硫化鎘薄膜利用不同退火溫度,分析其光穿透率與光吸收之能隙變化。CdS/GaAs太陽電池元件利用AM1.5 (97mW/cm2) 之光源照射下,其量測之開路電壓Voc=375mV,短路電流密度Jsc=78.1mA/cm2,填充因子FF=29.6%,光電轉換效率η=1.21%。化學水浴法所製備之硫化鎘薄膜則應用於染料敏化太陽電池上,最主要是利用CdS/TiO2之雙層電極結構改變其基本架構,在硫化鎘薄膜成長中並使用硼掺雜。CdS/TiO2 雙層電極結構之太陽電池元件與TiO2單層電極結構相比,其元件效率有明顯之增加。
In this thesis, a CdS/GaAs heterostructure was interesting to develop a non epitaxy and low cost process and was expected to have higher absorption efficiency than homo GaAs photovolitaic devices. Cadmium sulphide (CdS) thin films were deposited by vacuum evaporation on GaAs substrate and post annealing was also carried out in an atmosphere of nitrogen. Optical and crystal qualities of CdS window layer has been investigated by x-ray diffraction (XRD) and scanning electron microscopic (SEM) measurement. It was found that either a hexagonal or a cubic structure was existed within the CdS layer. From SEM images, it was also found that grain size of CdS films increased with increasing annealing temperature. Average grain size of CdS film was also increased during the wet-CdCl2 treatment. Transmittance of CdS films was found as high as 80% at different annealing temperature. It can be seen that the blue-shift presented in the optical transmittance spectra. During the AM 1.5 illumination, open-circuit voltage, short-circuit current density, and fill factor of our CdS/GaAs heterostructure PV devices were measured and discussed in detail.
The GaAs substrate was used in this study, the front contact of CdS/GaAs was aluminum. The aluminum was deposited on the down side of GaAs substrate by electron beam evaporation, and thermal annealing of GaAs substrate was carried out in nitrogen atmosphere at 450 oC for 30 min, to make the ohmic contact between GaAs substrate and aluminum contact. In order to remove the oxide of the GaAs substrate, the GaAs substrate was put into a non-selective, wet etch solution (H2SO4 : H2O2 : H2O = 5 : 2 : 2) about 10 seconds to obtain the pure surface. After etched, the GaAs substrates were cleaned by acetone, methanol and de-ionized water under ultrasonic stirring for 10 min sequentially. The CdS films were deposited on the etched side of GaAs substrate by vacuum evaporation technique in a turbo-molecular pumped vacuum system operating in the 10-5 ~ 10-6 Torr rage of vacuum pressures. The distance between source and substrate was 7 cm, the source temperature above 500℃. An aluminum mesh electron was used for solar cells back contact, the solar cells with an area of 0.25cm2.
In this study, CdS films were also deposited on glass substrate to analysis the quality and property of CdS films. The CdCl2 treatment was used after CdS films deposited, the CdS films were immersed in 0.3 M CdCl2 solution and then annealed at 400 oC. The thicknesses of CdS films were determined in suface profiler system; Veeco Dektak 6M, the optical transmission spectra of CdS films were measured by spectrophotometer; Hitachi U-2800, the surface morphology were observed by field-emission scanning electron microscopy; JEOL JSM-6700F and the crystal structures were determined by the X-ray diffraction measurement; Rikagu D/MAX2500.
The research direction in this study was divided into two parts. First, the characterization of cadmium sulfide (CdS) thin films were investigated whose deposited methods were carried out by chemical bath deposition (CBD) and vacuum evaporation (VE). The crystal structure and morphology of CdS thin films were analyzed by X-ray diffraction (XRD) and field-emission scanning electron microscopy (FESEM), respectively. For the as-grown samples of the two deposited methods, it was found that the strongest diffraction peak (111) was easily observed. The cubic phase of the as-deposited CdS films will transfer to the hexagonal phase when the annealing process was carried out above 300oC. Also, the x-ray peak corresponding to the hexagonal phase would be significantly seen at the (002) plane. The bang gap of CdS thin films was varied that we can judge that form the inner crystal structure changed. On another hand, the solar cell device was fabricated by using CdS/GaAs structure. The solar cell test were carried out by using illuminated current-voltage characteristics, the open-circuit voltage, short-circuit current density and fill factor of the device were 375 mV, 78.1 mA/cm2 and 29.6% respectively, the conversion efficiency of 1.21% under AM 1.5 conditions. Furthermore, the conversion efficiency of dye-sensitized solar cell increased by using CdS-CBD/TiO2 double electrode structure.
中文摘要 .................................................i
英文摘要 ................................................ii
誌謝 .....................................................v
目錄 ....................................................vi
表目錄 ..................................................ix
圖目錄 ...................................................x
第一章 序論 ..............................................1
1.1 前言 .................................................1
1.2 太陽電池種類 .........................................2
1.3 研究動機 .............................................4
第二章 文獻探討 ..........................................6
2.1 各種硫化鎘薄膜製備方式 ...............................6
2.2 硫化鎘薄膜之晶格轉換 .................................8
2.3 硫化鎘薄膜成長於砷化鎵基板 ...........................9
2.4 硫化鎘薄膜應用於太陽電池 .............................9
第三章 實驗方法與量測設備介紹 ...........................12
3.1 化學水浴法 ..........................................12
3.1.1化學水浴法實驗藥品與溶劑 ...........................12
3.1.2 化學水浴法相關參數 ................................13
3.1.3 化學水浴法之反應機制 ..............................13
3.1.4 化學水浴法成長硫化鎘薄膜製程 ......................14
3.2 熱蒸鍍法 ............................................15
3.2.1 熱蒸鍍法沉積硫化鎘薄膜製程 ........................16
3.3 太陽電池元件製作 ....................................16
3.3.1 黃光微影製程 ......................................16
3.3.2 染料敏化太陽電池製程 ..............................17
3.4 量測設備介紹 ........................................19
3.4.1 霍爾量測 ..........................................19
3.4.2 X-ray繞射儀量測 ...................................20
3.4.3 α-step 量測 .......................................20
3.4.4 原子力顯微鏡量測 ..................................21
3.4.5 場發射掃描式電子顯微鏡量測 ........................21
3.4.6 穿透光譜量測 ......................................22
3.4.7 電流-電壓特性量測 .................................23
第四章 結果與討論 .......................................24
4.1 硫化鎘薄膜特性分析 ..................................24
4.1.1 薄膜結晶特性 ......................................24
4.1.2 薄膜表面形貌 ......................................26
4.1.3 薄膜光穿透分析 ....................................27
4.2 製程參數分析 ........................................28
4.3 硫化鎘薄膜應用於太陽電池元件分析 ....................29
4.3.1 CdS/GaAs異質結構太陽電池 ..........................29
4.3.2 CdS/TiO2 染料敏化太陽電池 .........................30
第五章 結論 .............................................32
參考文獻 ................................................33
[1] World Nuclear Association
[2] IPCC 4th Assessment Report,Climate Change 2007: The Physical Science Basis Summary for Policymakers
[3] WebElements™ periodic table
[4] O. Zelaya-Angel, J. J. Alvarado-Gil, R. Lozada-Morales, H. Vargas and A. Ferreira da Silva, Appl. Phys. Lett. 64 (1994) 291
[5] M. Ichimura, F. Goto and E. Arai, J. Appl. Phys. 85 (1999)
[6] S. A. Al. Kuhaimi, Vacuum. 51 (1998) 349.
[7] D. Albin, D. Rose, R. Dhere, D. Levi, L.Woods, A. Swartzlander and P. Sheldon, 26th PSVC. (1997) 367.
[8] Z. Y. Pan, Z. G. Peng, T. J. Li and J. Z. Liu, Applied Surface Science. 108 (1997) 439.
[9] E. Cordoncillo, P. Escribano, G.Monros, M. A. Tena, V.Orera and J. Carda, Journal Of Solid State Chemistry. 118 (1995) 1.
[10] S. M. Song and S. Y. Choi, Journal Of Non-Crystalline Solids. 291 (2001) 50.
[11] U. Pal, R. Silva-Gonzalez, G. Martinez-Montes, M. Gracia-Jimenez, M. A. Vidal and Sh. Torres, Thin Solid Films. 305 (1997) 345.
[12] B. Su and K. L. Choy, Thin Solid Film. 361-362 (2000) 102.
[13] H. Uda, H. Yonezawa, Y. Ohtsubo, M. Kosaka and H. Sonomura, Solar Energy Materials & Solar Cell. 75 (2003) 219.
[14] H. Uda, T. Fujii, S. lkegami and H. Sonomura, Proceedings of the First WCPEC, Dec. 5-9, Hawaii, 1994, p.p. 99-102.
[15] B. Su and K. L. Choy, Thin Solid Films, vol. 361-362, issue 1, (2000) p.p. 102-106.
[16] I. Clemminck, A. Vervaet, M. Burgelman and A. Demeyere, IEEE, p.p. 1585-1590
[17] J. H. Lee and D. J. Lee, Thin Solid Films, vol. 515, issue 15, (2007) p.p. 6055-6059.
[18] J.N. Ximello-Quiebras, G. Contreras-Puente, G. Rueda-Morales, O. Vigil, G. Santana-Rodriguez and A. Morales-Acevedo, Solar Energy Materials & Solar Cells, 90 (2006) 727–732.
[19] O. Zelaya-Angel, L. Hernandez, O de Melo, J. J. Alvarado-Gil, R. Lozada-Morales, C. Falcony, H. Vargas and R. Ramirez-Bon, Vacuum, 46 (1995) 1083-1085.
[20] H. Ariza-Calderon, R. Lozada-Morales, O. Zelaya-Angel, J. G. Mendoza-Alvarez and L. Banos, J. Vac. Sci. Technol. A 14(4), 1996 2480-2482.
[21] A. Yoshikawa and Y. Sakai, J. Appl. Phys. 45 (1999) 3521-3529.
[22] A. Yoshikawa and Y. Sakai, J. J. Appl. Phys. 14 (1975) 1547-1554.
[23] H. Uda, S. Ikegami, H. Sonomura, Solar Energy Materials & Solar Cell 50 (1998) 141-146.
[24] P. Nollet, M. Burgelman, S. Degrave, Thin Solid Films 361-362 (2000) 293-297.
[25] K. Durose, M.A. Cousins, D.S. Boyle, J. Beier and D. Bonnet, Thin Solid Films 403-404 (2002) 396-404.
[26] K. Nakamura, M. Gotoh, T. Fujihara, T. Toyama and H. Okamoto, Solar Energy Materials & Solar Cells 75 (2003) 185-192.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top