|
1.Jamesh, M. I. (2016). Recent progress on earth abundant hydrogen evolution reaction and oxygen evolution reaction bifunctional electrocatalyst for overall water splitting in alkaline media. Journal of Power Sources, 333, 213-236. 2.Rashid, M. M., Al Mesfer, M. K., Naseem, H., & Danish, M. (2015). Hydrogen production by water electrolysis: a review of alkaline water electrolysis, PEM water electrolysis and high temperature water electrolysis. Int J Eng Adv Technol, 4(3), 80-93. 3.Fabbri, E., Habereder, A., Waltar, K., Kotz, R., & Schmidt, T. J. (2014). Developments and perspectives of oxide-based catalysts for the oxygen evolution reaction. Catalysis Science & Technology, 4(11), 3800-3821. 4.Reier, T., Oezaslan, M., & Strasser, P. (2012). Electrocatalytic oxygen evolution reaction (OER) on Ru, Ir, and Pt catalysts: a comparative study of nanoparticles and bulk materials. Acs Catalysis, 2(8), 1765-1772 5.Skorupska, K., & Parkinson, B. A. (2016). Combinatorial synthesis and screening of oxide materials for photoelectrochemical energy conversion. In Photoelectrochemical Solar Fuel Production (pp. 427-462). Springer International Publishing. 6.Walsh, D. A., Fernández, J. L., & Bard, A. J. (2006). Rapid screening of bimetallic electrocatalysts for oxygen reduction in acidic media by scanning electrochemical microscopy. Journal of the Electrochemical Society, 153(6), E99-E103. 7.R. L. Doyle and M. E. G. Lyons, J. Electrochem. Soc., 2013,160, H142. 8.M. E. G. Lyons and R. L. Doyle, Int. J. Electrochem. Sci.,2012, 7, 9488. 9.S. Medway, et al.In situ studies of the oxidation of nickel electrodes in alkaline solutionJ. Electroanal. Chem., 587 (2006), pp. 172-181 10.Richard, L., Godwin, J., Brandon,P., Lyons, E.G., (2013).Redox and electrochemical water splitting catalytic properties of hydrated metal oxide modified electrodes.Royal Society of chemistry, 15, 13737-13783 11.B. E. Conway and P. L. Bourgault, Trans. Faraday Soc., 1962, 58, 593 12.Guarnieri, M., Negro, E., Di Noto, V., & Alotto, P. (2016). A selective hybrid stochastic strategy for fuel-cell multi-parameter identification. Journal of Power Sources, 332, 249-264. 13.Sumboja, A., Ge, X., Zheng, G., Goh, F. T., Hor, T. A., Zong, Y., & Liu, Z. (2016). Durable rechargeable zinc-air batteries with neutral electrolyte and manganese oxide catalyst. Journal of Power Sources, 332, 330-336 14.Sun, B., Shi, T., Tan, X., Liu, Z., Wu, Y., & Liao, G. (2016). Iridium Oxide Modified CdSe/CdS/TiO2 Nanorods for Efficient and Stable Photoelectrochemical Water Splitting. Materials Today: Proceedings, 3(2), 443-448. 15.Trasatti, S. (2009). Oxygen evolution. University of Milan, 3-4. 16.Matsumoto, Y., & Sato, E. (1986). Electrocatalytic properties of transition metal oxides for oxygen evolution reaction. Materials chemistry and physics, 14(5), 397-426. 17.Zheng, J. (2017). Binary platinum alloy electrodes for hydrogen and oxygen evolutions by seawater splitting. Applied Surface Science, 413, 72-82. 18.Trotochaud, L., & Boettcher, S. W. (2014). Precise oxygen evolution catalysts: Status and opportunities. Scripta Materialia, 74, 25-32. 19.Lewis, N. S., & Nocera, D. G. (2006). Powering the planet: Chemical challenges in solar energy utilization. Proceedings of the National Academy of Sciences of the United States of America, 103(43), 15729-15735. 20.Walter, M. G., Warren, E. L., McKone, J. R., Boettcher, S. W., Mi, Q. X., Santori, E. A., & Lewis, N. S. (2010). Solar Water Splitting Cells. Chemical Reviews, 110(11), 6446-6473. 21.Man, I. C., Su, H. Y., Calle-Vallejo, F., Hansen, H. A., Martinez, J. I., Inoglu, N. G., Rossmeisl, J. (2011). Universality in Oxygen Evolution Electrocatalysis on Oxide Surfaces. Chemcatchem, 3(7), 1159-1165. 22.Bard, A. J. (2010). Inner-sphere heterogeneous electrode reactions. Electrocatalysis and photocatalysis: the challenge. Journal of the American Chemical Society, 132(22), 7559-7567. 23.Lin, C. L., Sánchez-Sánchez, C. M., & Bard, A. J. (2008). Methanol tolerance of Pd–Co oxygen reduction reaction electrocatalysts using scanning electrochemical microscopy. Electrochemical and Solid-State Letters, 11(8), B136-B139. 24.Wain, A. J. (2014). Scanning electrochemical microscopy for combinatorial screening applications: A mini-review. Electrochemistry Communications, 46, 9-12. 25.Liu, B., & Bard, A. J. (2002). Scanning electrochemical microscopy. 45. Study of the kinetics of oxygen reduction on platinum with potential programming of the tip. The Journal of Physical Chemistry B, 106(49), 12801-12806. 26.Zhang, C., Fan, F. R. F., & Bard, A. J. (2008). Electrochemistry of oxygen in concentrated NaOH solutions: solubility, diffusion coefficients, and superoxide formation. Journal of the American Chemical Society, 131(1), 177-181. 27.Sánchez-Sánchez, C. M., Rodríguez-López, J., & Bard, A. J. (2008). Scanning electrochemical microscopy. 60. Quantitative calibration of the SECM substrate generation/tip collection mode and its use for the study of the oxygen reduction mechanism. Analytical chemistry, 80(9), 3254-3260. 28.Fernández, J. L., & Bard, A. J. (2003). Scanning electrochemical microscopy. 47. imaging electrocatalytic activity for oxygen reduction in an acidic medium by the tip generation− substrate collection mode. Analytical chemistry, 75(13), 2967-2974. 29.Martin, R. D., & Unwin, P. R. (1998). Theory and experiment for the substrate generation/tip collection mode of the scanning electrochemical microscope: application as an approach for measuring the diffusion coefficient ratio of a redox couple. Analytical Chemistry, 70(2), 276-284. 30.Shinagawa, T., Garcia-Esparza, A. T., & Takanabe, K. (2015). Insight on Tafel slopes from a microkinetic analysis of aqueous electrocatalysis for energy conversion. Scientific reports, 5. 31.Santos, D. M., Sequeira, C. A., & Figueiredo, J. L. (2013). Hydrogen production by alkaline water electrolysis. Química Nova, 36(8), 1176-1193. 32.Zhang, J., Yuan, B., Ma, J., Wei, J., Wang, J., Zhou, J., ... & Zhang, D. (2017). Synthesis of Zn 0.3 Co 2.7 O 4 porous willow-leaf like structure for enhanced electrocatalytic oxygen evolution reaction. Materials Letters, 198, 196-200. 33.Raghuveer, V., Manthiram, A., & Bard, A. J. (2005). Pd− Co− Mo electrocatalyst for the oxygen reduction reaction in proton exchange membrane fuel cells. The Journal of Physical Chemistry B, 109(48), 22909-22912. 34.Ai, Y., Lou, Z., Li, L., Chen, S., Park, H. S., Wang, Z. M., & Shen, G. (2016). Meters‐long flexible CoNiO2‐nanowires@ carbon‐fibers based wire‐supercapacitors for wearable electronics. Advanced Materials Technologies, 1(8). 35.Bocca, C., Barbucci, A., Delucchi, M., & Cerisola, G. (1999). Nickel–cobalt oxide-coated electrodes: influence of the preparation technique on oxygen evolution reaction (OER) in an alkaline solution. International journal of hydrogen energy, 24(1), 21-26. 36.Zhao, Z. L., Leonard, K. C., & Boika, A. (2019). Hot-Tip Scanning Electrochemical Microscopy: Theory and Experiments Under Positive and Negative Feedback Conditions. Analytical Chemistry, 91(4), 2970-2977.
|