跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.59) 您好!臺灣時間:2025/10/15 07:36
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:余崧輝
研究生(外文):YU,SONG-HUI
論文名稱:氧化鎳觸媒之析氧反應的快篩與優化特性分析
論文名稱(外文):Optimization and Characterization by Rapid Screening of Nickel Oxide Based Catalysts for Oxygen Evolution Reaction
指導教授:翁于晴翁于晴引用關係
指導教授(外文):WENG, YU-CHING
口試委員:杜景順周澤川
口試日期:2019-07-17
學位類別:碩士
校院名稱:逢甲大學
系所名稱:化學工程學系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:149
中文關鍵詞:金屬氧化物觸媒氧化鎳析氧反應掃描式電化學顯微鏡
外文關鍵詞:metal oxide catalystsnickel oxideoxygen evolution reactionscanning electrochemical microscopy
相關次數:
  • 被引用被引用:0
  • 點閱點閱:235
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究以掃描式電化學顯微鏡(SECM)快篩以氧化鎳為主之二元及三元金屬氧化物觸媒陣列,先利用集合組成法之概念,製備以鎳為主其它元素(鈷、鐵、鍶、鎵、釩、金、銀、銥、錳、鑭、錫、鋅、銅、鎢)為輔之多元金屬氧化物觸媒,再將篩選後活性較高之多元金屬氧化物觸媒製備成大電極,利用極化曲線、線性掃描、塔佛曲線、掃描式電子顯微鏡、能量分散式光譜儀、高解析度X光繞射儀與X光電子能譜儀來分析研究多元金屬氧化物觸媒之電化學行為、表面型態、元素比例、結晶性和化學鍵結型態。研究結果顯示Ni0.4Ir0.2Co0.4Ok具有最佳電解水產氧之活性,當施加電壓0.55 V vs. Ag/AgCl時,電流密度為9.44 nA/cm2,其標準速率常數為2.4110-12 cm/s。
關鍵字:金屬氧化物觸媒,氧化鎳,析氧反應,掃描式電化學顯微鏡

The aim of this study is to discovery the optimum composition of NiO2-based binary and ternary metal oxide catalysts for oxygen evolution reaction (OER) by scanning electrochemical microscopy. A metal oxide mainly composed of nickel and added with other metals such as cobalt, iron, lanthanum, gallium, vanadium, gold, silver, lanthanum, manganese, lanthanum, tin, zinc, copper, tungsten by the combinatorial methods. The ratio of the catalyst with higher activity after screening is prepared into a large electrode. The Tafel slope, electron transfer coefficient, standard rate constant, onset potential and amount of oxygen evolution of the catalysts were determinded by Tafel plots, linear sweep voltammetry and polarization curve . The surface morphology and elemental compositon of catalysts were characterized by sanning electron microscope and energy dispersive spectrometer while the crystalline and chemical state of the catalysts were characterized by high resolution X-ray diffractometer and X-ray photoelectron spectroscope. The results show that the Ni0.4Ir0.2Co0.4Ox catalysts have the best activity for OER. The catalytic current value, overpotential and standard rate constant of the Ni0.4Co0.4Ir2Ox catalysts are 9.44 nA/cm2, 0.492V and 2.4110-12 cm/s at 0.55 V vs. Ag/AgCl.
Key word:metal oxide catalysts, nickel oxide, oxygen evolution reaction (OER), scanning electrochemical microscopy (SECM)

致謝 2
摘要 3
ABSTACT 4
目錄 6
圖目錄 9
表目錄 14
第一章 緒論 15
1-1 前言 15
1-2 電解水產氧觸媒之應用 16
1-3 電解水產氫之影響效率因素 18
1-4 研究動機 19
第二章 實驗原理與文獻回顧 20
2-1 電解水產氧反應之原理 20
2-1-1 電解水產氧之觸媒反應機制 20
2-1-2 電解水產氧之觸媒反應途徑 22
2-1-3 產氧觸媒之選擇 26
2-2 掃描式電化學顯微鏡 SCANNING ELECTROCHEMICAL MICROSCOPE 27
2-2-2 回饋模式 Feedback mode 29
2-2-3 基材產生-微電極收集模式 Substrate generation - Tip collection (SG-TC) mode 32
2-2-4 動力學原理 33
第三章 實驗步驟 36
3-1 實驗儀器 36
3-2 實驗藥品 38
3-3實驗步驟 40
3-3-1 微電極製備 40
3-3-2 基材製備 41
3-3-3 實驗前作業 42
3-3-4 製備以鎳為主二與三成份之金屬氧化物觸媒之陣列 43
3-3-5 金屬氧化物觸媒之大電極製備 45
3-4 實驗方法 46
3-4-1 SG-TC模式之SECM分析 48
3-4-2 線性掃描 LSV 50
3-4-3 極化曲線 Polarization Curve 51
3-4-4 塔佛曲線 Tafel plot 52
3-4-5 最佳活化圈數分析 53
3-4-6 穩定度測試 Stability 54
3-4-7 濃度測試 Concentration 55
3-4-8 穩態極化 Steady-state polarization 56
3-4-9 開路電位衰變 Open circuit potential decay 57
3-4-10 觸媒之特性分析 58
3-4-10-1 掃描式電子顯微鏡 (SEM) 58
3-4-10-2 能量分散式光譜儀 (EDS) 59
3-4-10-3 X光繞射儀 (XRD) 60
3-4-10-4 X射線光電子能譜學 (XPS) 60
第四章 結果與討論 61
4-1 電解水產氧之金屬氧化物觸媒之篩選 61
4-1-1 金屬氧化物觸媒之電位選擇 61
4-1-2 鎳鐵銥氧化物觸媒陣列之SECM分析 63
4-1-3 鎳鈷銥氧化物觸媒陣列之SECM分析 67
4-1-4 鎳鈷鐵氧化物觸媒陣列之SECM分析 71
4-1-5 鎳銀金氧化物觸媒陣列之SECM分析 75
4-1-6 金屬氧化物觸媒與氧化鎳之比值 79
4-1-7 陣列以能量分散式光譜儀 EDS 分析元素比例 80
4-1-8 最佳陣列比例選擇 87
4-2 最佳金屬氧化物觸媒之大電極分析 88
4-2-1 觸媒特性分析 88
4-2-1-1 能量分散式光譜儀 EDS 分析 88
4-2-1-2 掃描式電子顯微鏡 SEM 分析 89
4-2-1-3 高解析X光繞射儀 HRXRD 分析 93
4-2-1-4 X射線光電子能譜學 XPS分析 99
4-2-2 電催化效能分析 112
4-2-2-1 線性掃描 (LSV) 與極化曲線 (Polarization Curve) 分析 112
4-2-2-2 最佳活化圈數分析 116
4-2-2-3 濃度 (Concentration) 分析 123
4-2-2-4 穩定性 (Stability) 分析 126
4-2-3 反應機制與動力學分析 132
4-2-3-1 塔佛曲線 (Tafel plot) 分析 132
4-2-3-2 穩態極化 (Steady-state polarization)分析 135
4-2-3-3 開路電位衰變 (Open circuit potential decay) 140
第五章 結論 146
第六章 參考文獻 147




























1.Jamesh, M. I. (2016). Recent progress on earth abundant hydrogen evolution reaction and oxygen evolution reaction bifunctional electrocatalyst for overall water splitting in alkaline media. Journal of Power Sources, 333, 213-236.
2.Rashid, M. M., Al Mesfer, M. K., Naseem, H., & Danish, M. (2015). Hydrogen production by water electrolysis: a review of alkaline water electrolysis, PEM water electrolysis and high temperature water electrolysis. Int J Eng Adv Technol, 4(3), 80-93.
3.Fabbri, E., Habereder, A., Waltar, K., Kotz, R., & Schmidt, T. J. (2014). Developments and perspectives of oxide-based catalysts for the oxygen evolution reaction. Catalysis Science & Technology, 4(11), 3800-3821.
4.Reier, T., Oezaslan, M., & Strasser, P. (2012). Electrocatalytic oxygen evolution reaction (OER) on Ru, Ir, and Pt catalysts: a comparative study of nanoparticles and bulk materials. Acs Catalysis, 2(8), 1765-1772
5.Skorupska, K., & Parkinson, B. A. (2016). Combinatorial synthesis and screening of oxide materials for photoelectrochemical energy conversion. In Photoelectrochemical Solar Fuel Production (pp. 427-462). Springer International Publishing.
6.Walsh, D. A., Fernández, J. L., & Bard, A. J. (2006). Rapid screening of bimetallic electrocatalysts for oxygen reduction in acidic media by scanning electrochemical microscopy. Journal of the Electrochemical Society, 153(6), E99-E103.
7.R. L. Doyle and M. E. G. Lyons, J. Electrochem. Soc., 2013,160, H142.
8.M. E. G. Lyons and R. L. Doyle, Int. J. Electrochem. Sci.,2012, 7, 9488.
9.S. Medway, et al.In situ studies of the oxidation of nickel electrodes in alkaline solutionJ. Electroanal. Chem., 587 (2006), pp. 172-181
10.Richard, L., Godwin, J., Brandon,P., Lyons, E.G., (2013).Redox and electrochemical water splitting catalytic properties of hydrated metal oxide modified electrodes.Royal Society of chemistry, 15, 13737-13783
11.B. E. Conway and P. L. Bourgault, Trans. Faraday Soc., 1962, 58, 593
12.Guarnieri, M., Negro, E., Di Noto, V., & Alotto, P. (2016). A selective hybrid stochastic strategy for fuel-cell multi-parameter identification. Journal of Power Sources, 332, 249-264.
13.Sumboja, A., Ge, X., Zheng, G., Goh, F. T., Hor, T. A., Zong, Y., & Liu, Z. (2016). Durable rechargeable zinc-air batteries with neutral electrolyte and manganese oxide catalyst. Journal of Power Sources, 332, 330-336
14.Sun, B., Shi, T., Tan, X., Liu, Z., Wu, Y., & Liao, G. (2016). Iridium Oxide Modified CdSe/CdS/TiO2 Nanorods for Efficient and Stable Photoelectrochemical Water Splitting. Materials Today: Proceedings, 3(2), 443-448.
15.Trasatti, S. (2009). Oxygen evolution. University of Milan, 3-4.
16.Matsumoto, Y., & Sato, E. (1986). Electrocatalytic properties of transition metal oxides for oxygen evolution reaction. Materials chemistry and physics, 14(5), 397-426.
17.Zheng, J. (2017). Binary platinum alloy electrodes for hydrogen and oxygen evolutions by seawater splitting. Applied Surface Science, 413, 72-82.
18.Trotochaud, L., & Boettcher, S. W. (2014). Precise oxygen evolution catalysts: Status and opportunities. Scripta Materialia, 74, 25-32.
19.Lewis, N. S., & Nocera, D. G. (2006). Powering the planet: Chemical challenges in solar energy utilization. Proceedings of the National Academy of Sciences of the United States of America, 103(43), 15729-15735.
20.Walter, M. G., Warren, E. L., McKone, J. R., Boettcher, S. W., Mi, Q. X., Santori, E. A., & Lewis, N. S. (2010). Solar Water Splitting Cells. Chemical Reviews, 110(11), 6446-6473.
21.Man, I. C., Su, H. Y., Calle-Vallejo, F., Hansen, H. A., Martinez, J. I., Inoglu, N. G., Rossmeisl, J. (2011). Universality in Oxygen Evolution Electrocatalysis on Oxide Surfaces. Chemcatchem, 3(7), 1159-1165.
22.Bard, A. J. (2010). Inner-sphere heterogeneous electrode reactions. Electrocatalysis and photocatalysis: the challenge. Journal of the American Chemical Society, 132(22), 7559-7567.
23.Lin, C. L., Sánchez-Sánchez, C. M., & Bard, A. J. (2008). Methanol tolerance of Pd–Co oxygen reduction reaction electrocatalysts using scanning electrochemical microscopy. Electrochemical and Solid-State Letters, 11(8), B136-B139.
24.Wain, A. J. (2014). Scanning electrochemical microscopy for combinatorial screening applications: A mini-review. Electrochemistry Communications, 46, 9-12.
25.Liu, B., & Bard, A. J. (2002). Scanning electrochemical microscopy. 45. Study of the kinetics of oxygen reduction on platinum with potential programming of the tip. The Journal of Physical Chemistry B, 106(49), 12801-12806.
26.Zhang, C., Fan, F. R. F., & Bard, A. J. (2008). Electrochemistry of oxygen in concentrated NaOH solutions: solubility, diffusion coefficients, and superoxide formation. Journal of the American Chemical Society, 131(1), 177-181.
27.Sánchez-Sánchez, C. M., Rodríguez-López, J., & Bard, A. J. (2008). Scanning electrochemical microscopy. 60. Quantitative calibration of the SECM substrate generation/tip collection mode and its use for the study of the oxygen reduction mechanism. Analytical chemistry, 80(9), 3254-3260.
28.Fernández, J. L., & Bard, A. J. (2003). Scanning electrochemical microscopy. 47. imaging electrocatalytic activity for oxygen reduction in an acidic medium by the tip generation− substrate collection mode. Analytical chemistry, 75(13), 2967-2974.
29.Martin, R. D., & Unwin, P. R. (1998). Theory and experiment for the substrate generation/tip collection mode of the scanning electrochemical microscope: application as an approach for measuring the diffusion coefficient ratio of a redox couple. Analytical Chemistry, 70(2), 276-284.
30.Shinagawa, T., Garcia-Esparza, A. T., & Takanabe, K. (2015). Insight on Tafel slopes from a microkinetic analysis of aqueous electrocatalysis for energy conversion. Scientific reports, 5.
31.Santos, D. M., Sequeira, C. A., & Figueiredo, J. L. (2013). Hydrogen production by alkaline water electrolysis. Química Nova, 36(8), 1176-1193.
32.Zhang, J., Yuan, B., Ma, J., Wei, J., Wang, J., Zhou, J., ... & Zhang, D. (2017). Synthesis of Zn 0.3 Co 2.7 O 4 porous willow-leaf like structure for enhanced electrocatalytic oxygen evolution reaction. Materials Letters, 198, 196-200.
33.Raghuveer, V., Manthiram, A., & Bard, A. J. (2005). Pd− Co− Mo electrocatalyst for the oxygen reduction reaction in proton exchange membrane fuel cells. The Journal of Physical Chemistry B, 109(48), 22909-22912.
34.Ai, Y., Lou, Z., Li, L., Chen, S., Park, H. S., Wang, Z. M., & Shen, G. (2016). Meters‐long flexible CoNiO2‐nanowires@ carbon‐fibers based wire‐supercapacitors for wearable electronics. Advanced Materials Technologies, 1(8).
35.Bocca, C., Barbucci, A., Delucchi, M., & Cerisola, G. (1999). Nickel–cobalt oxide-coated electrodes: influence of the preparation technique on oxygen evolution reaction (OER) in an alkaline solution. International journal of hydrogen energy, 24(1), 21-26.
36.Zhao, Z. L., Leonard, K. C., & Boika, A. (2019). Hot-Tip Scanning Electrochemical Microscopy: Theory and Experiments Under Positive and Negative Feedback Conditions. Analytical Chemistry, 91(4), 2970-2977.





電子全文 電子全文(本篇電子全文限研究生所屬學校校內系統及IP範圍內開放)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top