|
1. Murty, B., J.-W. Yeh, and S. Ranganathan, High-entropy alloys. 2014: p. 1-7. 2. Otto, F., et al., The influences of temperature and microstructure on the tensile properties of a CoCrFeMnNi high-entropy alloy. Acta Materialia, 2013. 61(15): p. 5743-5755. 3. Huang, S., et al., Temperature dependent stacking fault energy of FeCrCoNiMn high entropy alloy. Scripta Materialia, 2015. 108: p. 44-47. 4. Zhang, Y., et al., The origin of negative stacking fault energies and nano-twin formation in face-centered cubic high entropy alloys. Scripta Materialia, 2017. 130: p. 96-99. 5. Zhang, F., et al., Polymorphism in a high-entropy alloy. Nature communications, 2017. 8: p. 15687. 6. 李軝, Ni 至 CoCrFeMnNi 等莫耳合金變形行為之比較探討. 2013: p. 3-4. 7. Yeh, J.W., et al., Nanostructured high‐entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Advanced Engineering Materials, 2004. 6(5): p. 299-303. 8. Hsiu, P., AlxCoCrFeMnNi (x= 0~ 1) 微結構與機械性質之研究. 清華大學材料科學工程學系學位論文, 2015: p. 5-6. 9. Gaskell, D.R., Introduction to the Thermodynamics of Materials. 2008: p. 152-155. 10. Ragone, D.V., Thermodynamics of Materials. 1994: Wiley: p. 23-24. 11. Jien-Wei, Y., Recent progress in high entropy alloys. Ann. Chim. Sci. Mat, 2006. 31(6): p. 633-648. 12. Murty, B., J.-W. Yeh, and S. Ranganathan, High-entropy alloys. 2014: p. 56-59. 13. Lu, C.-L., et al., Thermal expansion and enhanced heat transfer in high-entropy alloys. Journal of Applied Crystallography, 2013. 46(3): p. 736-739. 14. RA, S., Thermodynamics of solid, 2nd edn. Wiley, New York. 1972: p. 263–266. 15. Murty, B., J.-W. Yeh, and S. Ranganathan, High-entropy alloys. 2014: p. 59-62. 16. Liu, W., et al., Grain growth and the Hall–Petch relationship in a high-entropy FeCrNiCoMn alloy. Scripta Materialia, 2013. 68(7): p. 526-529. 17. Ranganathan, S., Alloyed pleasures: multimetallic cocktails. Current science, 2003. 85(5): p. 1404-1406. 18. Tong, C.-J., et al., Microstructure characterization of Al x CoCrCuFeNi high-entropy alloy system with multiprincipal elements. Metallurgical and Materials Transactions A, 2005. 36(4): p. 881-893. 19. Senkov, O., et al., Refractory high-entropy alloys. Intermetallics, 2010. 18(9): p. 1758-1765. 20. Senkov, O., et al., Mechanical properties of Nb 25 Mo 25 Ta 25 W 25 and V 20 Nb 20 Mo 20 Ta 20 W 20 refractory high entropy alloys. Intermetallics, 2011. 19(5): p. 698-706. 21. Dieter, G.E. and D.J. Bacon, Mechanical metallurgy. 1986: p. 155-159. 22. Hull, D. and D. Bacon, Introduction to dislocations, international series on materials science and technology, vol. 37. 1984, Pergamon Press London. p. 94-96. 23. Hull, D. and D. Bacon, Introduction to dislocations, international series on materials science and technology, vol. 37. 1984, Pergamon Press London. p. 10-11. 24. Dieter, G.E. and D.J. Bacon, Mechanical metallurgy. 1986: p. 135-137. 25. Reed, R.C., The Superalloys: Fundamentals and Applications. 2006: p. 56-59. 26. Shekar, N.C. and K.G. Rajan, Kinetics of pressure induced structural phase transitions-A review. Bulletin of Materials Science, 2001. 24(1): p. 1-22. 27. McMahon, M.I. and R.J. Nelmes, High-pressure structures and phase transformations in elemental metals. Chemical Society Reviews, 2006. 35(10): p. 943-963. 28. Zhang, F., et al., Pressure-induced fcc to hcp phase transition in Ni-based high entropy solid solution alloys. Applied Physics Letters, 2017. 110(1): p. 011902. 29. Lei, L., et al., Structural and magnetic transition in stainless steel Fe-21Cr-6Ni-9Mn up to 250 GPa. Chinese Physics B, 2015. 24(6): p. 066103. 30. 李軝, Ni 至 CoCrFeMnNi 等莫耳合金變形行為之比較探討. 2013: p. 44-45. 31. 許火順, 從粉末繞射解析未知物之晶體結構. 2004: p. 1-3. 32. 鍾宜臻, Co-Ni-Fe-Cr-Mn (Al) 合金系列 X 光繞射強度, 硬度, 熱傳導及熱膨脹之研究. 清華大學材料科學工程學系學位論文, 2007: p. 1-105. 33. Rietveld, H., A profile refinement method for nuclear and magnetic structures. Journal of Applied Crystallography, 1969. 2(2): p. 65-71. 34. 鍾宜臻, Co-Ni-Fe-Cr-Mn (Al) 合金系列 X 光繞射強度, 硬度, 熱傳導及熱膨脹之研究. 2007: p. 45-47. 35. Balogh, L., G. Ribárik, and T. Ungár, Stacking faults and twin boundaries in fcc crystals determined by x-ray diffraction profile analysis. Journal of applied physics, 2006. 100(2): p. 023512. 36. Kanitpanyacharoen, W., et al., Significance of mechanical twinning in hexagonal metals at high pressure. Acta Materialia, 2012. 60(1): p. 430-442. 37. Crystallography Course Docs Cambridge Material Science Dept. 2014: p. 15-17. 38. Zhang, F.X., et al., X-ray absorption investigation of local structural disorder in Ni1-xFex (x= 0.10, 0.20, 0.35, and 0.50) alloys. Journal of Applied Physics, 2017. 121(16): p. 165105. 39. Sergueev, I., et al., Hyperfine splitting and room-temperature ferromagnetism of Ni at multimegabar pressure. Physical review letters, 2013. 111(15): p. 157601. 40. Jamieson, J.C. and A. Lawson, X‐Ray Diffraction Studies in the 100 Kilobar Pressure Range. Journal of Applied Physics, 1962. 33(3): p. 776-780. 41. Takahashi, T. and W.A. Bassett, High-pressure polymorph of iron. Science, 1964. 145(3631): p. 483-486. 42. Yoo, C., et al., New β (fcc)-cobalt to 210 GPa. Physical review letters, 2000. 84(18): p. 4132. 43. Ming, L.c. and M.H. Manghnani, Isothermal compression of bcc transition metals to 100 kbar. Journal of Applied Physics, 1978. 49(1): p. 208-212. 44. Fujihisa, H. and K. Takemura, Stability and the equation of state of α-manganese under ultrahigh pressure. Physical Review B, 1995. 52(18): p. 13257. 45. 李軝, Ni 至 CoCrFeMnNi 等莫耳合金變形行為之比較探討. 2013: p. 80-81. 46. Li, R., et al., Stacking fault energy of face-centered cubic metals: thermodynamic and ab initio approaches. Journal of Physics: Condensed Matter, 2016. 28(39): p. 395001. 47. Lin, K.-L., et al., Structural properties of pressure-induced structural phase transition of Si-doped GaAs by angular-dispersive X-ray diffraction. Applied Physics A, 2016. 122(2): p. 1-6. 48. Zuo, J., J. Spence, and M. O'keeffe, Bonding in GaAs. Physical review letters, 1988. 61(3): p. 353. 49. Cordero, B., et al., Covalent radii revisited. Dalton Transactions, 2008(21): p. 2832-2838. 50. Murty, B., J.-W. Yeh, and S. Ranganathan, High-entropy alloys. 2014: p. 82-89. 51. Moon, J., et al., Deformation-induced phase transformation of Co 20 Cr 26 Fe 20 Mn 20 Ni 14 high-entropy alloy during high-pressure torsion at 77 K. Materials Letters, 2017. 52. Porter, D.A., K.E. Easterling, and M. Sherif, Phase Transformations in Metals and Alloys. 2009: p. 163-168.
|