跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.176) 您好!臺灣時間:2025/09/08 14:07
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳翊閎
研究生(外文):Chen, Yi-Hung
論文名稱:高熵合金CoCrFeMnNi於高壓下相變與機制探討
論文名稱(外文):Structural Transition in High Entropy Alloy CoCrFeMnNi Subjected to High Pressure
指導教授:黃爾文
指導教授(外文):Huang, E-Wen
口試委員:張守一陳世偉
口試委員(外文):Chang, Shou-YiChen, Shi-Wei
口試日期:2017-07-19
學位類別:碩士
校院名稱:國立交通大學
系所名稱:材料科學與工程學系所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:136
中文關鍵詞:同步X光繞射金屬與合金相變微結構高熵合金
外文關鍵詞:synchrotron x-ray diffractionmetal and alloysphase transformationmicrostructurehigh entropy alloy
相關次數:
  • 被引用被引用:0
  • 點閱點閱:263
  • 評分評分:
  • 下載下載:6
  • 收藏至我的研究室書目清單書目收藏:0
等莫耳比高熵合金CoCrFeMnNi在常溫常壓下為單一Face-centered cubic (FCC)相的合金,近期研究相信該高熵合金有低疊差能,低溫下因奈米雙晶有優秀的機械性質,但未觀察到相變現象。本研究利用角度解析式X-光繞射(Angular-dispersive X-ray diffraction ,ADXRD)高壓實驗,結果發現該高熵合金在7.1GPa時觀察到FCC至Hexagonal close packing (HCP)相的高壓相變,兩相持續共存到實驗最大壓力20GPa,卸載回常壓後仍有殘存HCP相,此過程為不可逆高壓相變。本研究也計算兩相的晶格常數、相比例與半高寬,也確認該高熵合金在高壓下非受到靜水壓力,受到非等向性的壓縮,材料在變形中將有對應的織構與滑移系統產生,與文獻比對發現高熵合金轉為HCP相後的織構分布與鋅在高壓下的結果相似,確認最終應轉變為單一HCP相,最後此研究也對高壓相變的機制進行探討。
An equal-molar CoCrFeMnNi high-entropy alloy has the cubic crystal system of face-centered-cubic (FCC) at room temperature and atmospheric pressure. The recent research believed that the high-entropy has the property of low stacking fault energy, and excellent mechanic property because of the structure of nanocrystalline in low temperature. However, there was no phase-changing observed. This research used Angular-dispersive X-ray Diffraction (ADXRD) under high-pressure, pressurized the CoCrFeMnNi high-entropy alloy system to 20GPa. After analyzing diffraction data, there was phase transformation from FCC to Hexagonal Close Packing (HCP) when the pressure reached 7.1GPa. Both phases existed until the maximum pressure of 20GPa. When the pressure was unloaded to atmospheric pressure, there are remaining HCP-phase in the alloy, which shows the phase transformation is a non-reversible phenomenon. Besides observing phase transformation under high-pressure and the remaining HCP phase, this research will also calculate the lattice constant, ratio and full width at half maximum (FWHM) of both phases. Then, the result of the analysis will be compared with other theses, and to ensure that high-entropy alloy will not be affected by hydrostatic pressure in a high-pressure environment and non-isotropic compression. During the transformation of the material, there was corresponding texture and slip system. After comparison with other thesis, we discovered that when the phase of that alloy was transformed to HCP, the texture distribution is similar with Zine under pressurized. And confirmed the final phase of the alloy should be a uniform single phase. Finally, this research will investigate the phase transformation mechanism under high-pressure environment.
一. 前言 1
二. 文獻回顧 3
2.1. 高熵合金的發展 3
2.1.1. 緣起 3
2.1.2. 高熵合金的定義 4
2.1.3. 高熵合金的主要效應 5
2.2. FCC 晶體變形系統 13
2.2.1. FCC 晶體滑移系統 13
2.2.2. 部分差排 14
2.2.3. Lomer-Cottrell Barrier 16
2.2.4. 疊差 17
2.3. 疊差能 18
2.3.1. 疊差能 18
2.3.2. 高熵合金CoCrFeMnNi的疊差能隨溫度變化 19
2.3.3. FCC結構高熵合金的負疊差能 22
2.4. 高壓實驗 26
2.4.1. 高壓相變 26
2.4.2. 純金屬Co、Cr、Fe、Mn、Ni的高壓相變 27
2.4.3. 合金CoCrNi、CoCrFeNi、CoCrFeNiPd的高壓相變 28
2.4.4. 合金Cr6Fe21MnNi9的高壓相變 32
2.4.5. 合金CoCrFeMnNi的高壓相變 34
三. 實驗步驟 36
3.1. 實驗設計 36
3.2. 實驗流程 37
3.3. 合金成分設計 37
3.4. 電弧熔煉 40
3.5. 光學式顯微鏡微結構觀察 42
3.6. 同步輻射繞射分析 43
3.7. 高壓實驗 44
3.8. 低溫XRD實驗 45
四.實驗結果 46
4.1. 金相微結構結果 46
4.2. 晶體結構分析 49
4.3. 低溫實驗結果 54
4.4. 高壓實驗 58
4.5. 應變等高線圖 64
4.6. 不同壓力下展開的繞射環 71
4.7. 晶格常數與單位晶格體積分析 82
4.8. 高壓實驗與文獻結果比較 88
五. 分析與討論 90
5.1. 半高寬分析 90
5.2. 高壓相變的穩定性 93
5.3. 高熵合金CoCrFeMnNi高壓FCC至HCP相相變機制 95
六. 結論 101
七. 未來工作 103
八.參考文獻 104
九.附錄 107
9.1. curriculum vitae (CV) 107
9.2. 熱膨脹係數量測 109
9.3. 彈性-黏塑性自我一致模型 Elastic Visco-Plastic Self Consistent model (EVPSC) 112
9.4. 第一原理模擬結果 119
9.5. 參賽海報 122
9.6. EVPSC教學 126
1. Murty, B., J.-W. Yeh, and S. Ranganathan, High-entropy alloys. 2014: p. 1-7.
2. Otto, F., et al., The influences of temperature and microstructure on the tensile properties of a CoCrFeMnNi high-entropy alloy. Acta Materialia, 2013. 61(15): p. 5743-5755.
3. Huang, S., et al., Temperature dependent stacking fault energy of FeCrCoNiMn high entropy alloy. Scripta Materialia, 2015. 108: p. 44-47.
4. Zhang, Y., et al., The origin of negative stacking fault energies and nano-twin formation in face-centered cubic high entropy alloys. Scripta Materialia, 2017. 130: p. 96-99.
5. Zhang, F., et al., Polymorphism in a high-entropy alloy. Nature communications, 2017. 8: p. 15687.
6. 李軝, Ni 至 CoCrFeMnNi 等莫耳合金變形行為之比較探討. 2013: p. 3-4.
7. Yeh, J.W., et al., Nanostructured high‐entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Advanced Engineering Materials, 2004. 6(5): p. 299-303.
8. Hsiu, P., AlxCoCrFeMnNi (x= 0~ 1) 微結構與機械性質之研究. 清華大學材料科學工程學系學位論文, 2015: p. 5-6.
9. Gaskell, D.R., Introduction to the Thermodynamics of Materials. 2008: p. 152-155.
10. Ragone, D.V., Thermodynamics of Materials. 1994: Wiley: p. 23-24.
11. Jien-Wei, Y., Recent progress in high entropy alloys. Ann. Chim. Sci. Mat, 2006. 31(6): p. 633-648.
12. Murty, B., J.-W. Yeh, and S. Ranganathan, High-entropy alloys. 2014: p. 56-59.
13. Lu, C.-L., et al., Thermal expansion and enhanced heat transfer in high-entropy alloys. Journal of Applied Crystallography, 2013. 46(3): p. 736-739.
14. RA, S., Thermodynamics of solid, 2nd edn. Wiley, New York. 1972: p. 263–266.
15. Murty, B., J.-W. Yeh, and S. Ranganathan, High-entropy alloys. 2014: p. 59-62.
16. Liu, W., et al., Grain growth and the Hall–Petch relationship in a high-entropy FeCrNiCoMn alloy. Scripta Materialia, 2013. 68(7): p. 526-529.
17. Ranganathan, S., Alloyed pleasures: multimetallic cocktails. Current science, 2003. 85(5): p. 1404-1406.
18. Tong, C.-J., et al., Microstructure characterization of Al x CoCrCuFeNi high-entropy alloy system with multiprincipal elements. Metallurgical and Materials Transactions A, 2005. 36(4): p. 881-893.
19. Senkov, O., et al., Refractory high-entropy alloys. Intermetallics, 2010. 18(9): p. 1758-1765.
20. Senkov, O., et al., Mechanical properties of Nb 25 Mo 25 Ta 25 W 25 and V 20 Nb 20 Mo 20 Ta 20 W 20 refractory high entropy alloys. Intermetallics, 2011. 19(5): p. 698-706.
21. Dieter, G.E. and D.J. Bacon, Mechanical metallurgy. 1986: p. 155-159.
22. Hull, D. and D. Bacon, Introduction to dislocations, international series on materials science and technology, vol. 37. 1984, Pergamon Press London. p. 94-96.
23. Hull, D. and D. Bacon, Introduction to dislocations, international series on materials science and technology, vol. 37. 1984, Pergamon Press London. p. 10-11.
24. Dieter, G.E. and D.J. Bacon, Mechanical metallurgy. 1986: p. 135-137.
25. Reed, R.C., The Superalloys: Fundamentals and Applications. 2006: p. 56-59.
26. Shekar, N.C. and K.G. Rajan, Kinetics of pressure induced structural phase transitions-A review. Bulletin of Materials Science, 2001. 24(1): p. 1-22.
27. McMahon, M.I. and R.J. Nelmes, High-pressure structures and phase transformations in elemental metals. Chemical Society Reviews, 2006. 35(10): p. 943-963.
28. Zhang, F., et al., Pressure-induced fcc to hcp phase transition in Ni-based high entropy solid solution alloys. Applied Physics Letters, 2017. 110(1): p. 011902.
29. Lei, L., et al., Structural and magnetic transition in stainless steel Fe-21Cr-6Ni-9Mn up to 250 GPa. Chinese Physics B, 2015. 24(6): p. 066103.
30. 李軝, Ni 至 CoCrFeMnNi 等莫耳合金變形行為之比較探討. 2013: p. 44-45.
31. 許火順, 從粉末繞射解析未知物之晶體結構. 2004: p. 1-3.
32. 鍾宜臻, Co-Ni-Fe-Cr-Mn (Al) 合金系列 X 光繞射強度, 硬度, 熱傳導及熱膨脹之研究. 清華大學材料科學工程學系學位論文, 2007: p. 1-105.
33. Rietveld, H., A profile refinement method for nuclear and magnetic structures. Journal of Applied Crystallography, 1969. 2(2): p. 65-71.
34. 鍾宜臻, Co-Ni-Fe-Cr-Mn (Al) 合金系列 X 光繞射強度, 硬度, 熱傳導及熱膨脹之研究. 2007: p. 45-47.
35. Balogh, L., G. Ribárik, and T. Ungár, Stacking faults and twin boundaries in fcc crystals determined by x-ray diffraction profile analysis. Journal of applied physics, 2006. 100(2): p. 023512.
36. Kanitpanyacharoen, W., et al., Significance of mechanical twinning in hexagonal metals at high pressure. Acta Materialia, 2012. 60(1): p. 430-442.
37. Crystallography Course Docs Cambridge Material Science Dept. 2014: p. 15-17.
38. Zhang, F.X., et al., X-ray absorption investigation of local structural disorder in Ni1-xFex (x= 0.10, 0.20, 0.35, and 0.50) alloys. Journal of Applied Physics, 2017. 121(16): p. 165105.
39. Sergueev, I., et al., Hyperfine splitting and room-temperature ferromagnetism of Ni at multimegabar pressure. Physical review letters, 2013. 111(15): p. 157601.
40. Jamieson, J.C. and A. Lawson, X‐Ray Diffraction Studies in the 100 Kilobar Pressure Range. Journal of Applied Physics, 1962. 33(3): p. 776-780.
41. Takahashi, T. and W.A. Bassett, High-pressure polymorph of iron. Science, 1964. 145(3631): p. 483-486.
42. Yoo, C., et al., New β (fcc)-cobalt to 210 GPa. Physical review letters, 2000. 84(18): p. 4132.
43. Ming, L.c. and M.H. Manghnani, Isothermal compression of bcc transition metals to 100 kbar. Journal of Applied Physics, 1978. 49(1): p. 208-212.
44. Fujihisa, H. and K. Takemura, Stability and the equation of state of α-manganese under ultrahigh pressure. Physical Review B, 1995. 52(18): p. 13257.
45. 李軝, Ni 至 CoCrFeMnNi 等莫耳合金變形行為之比較探討. 2013: p. 80-81.
46. Li, R., et al., Stacking fault energy of face-centered cubic metals: thermodynamic and ab initio approaches. Journal of Physics: Condensed Matter, 2016. 28(39): p. 395001.
47. Lin, K.-L., et al., Structural properties of pressure-induced structural phase transition of Si-doped GaAs by angular-dispersive X-ray diffraction. Applied Physics A, 2016. 122(2): p. 1-6.
48. Zuo, J., J. Spence, and M. O'keeffe, Bonding in GaAs. Physical review letters, 1988. 61(3): p. 353.
49. Cordero, B., et al., Covalent radii revisited. Dalton Transactions, 2008(21): p. 2832-2838.
50. Murty, B., J.-W. Yeh, and S. Ranganathan, High-entropy alloys. 2014: p. 82-89.
51. Moon, J., et al., Deformation-induced phase transformation of Co 20 Cr 26 Fe 20 Mn 20 Ni 14 high-entropy alloy during high-pressure torsion at 77 K. Materials Letters, 2017.
52. Porter, D.A., K.E. Easterling, and M. Sherif, Phase Transformations in Metals and Alloys. 2009: p. 163-168.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊