[1]J. M. Panchal, T. Vela and T. Robisch, ASM International, OH: Metals Park, 1990, pp.245-260.
[2]D. G. Morris, M. A. Muñoz-Morris and J. Chao, “Development of high strength, high ductility and high creep resistant iron aluminide,” Intermetallics, vol. 12, 2004, pp.821-826.
[3]T. Morinaga amd Y. Koto, Journal of Japan Institute of Light Metals, vol. 13, 1963, p. 61
[4]J. A. Mock, “Coatings keep metals alive at 2000 plus F temperatures,”Materials Engineering, vol. 69, No. 6, 1969, pp. 46-50.
[5]S. Kobayashi, T. Yakou, “Control of intermetallic compound layers at interface between steel and aluminum by diffusion-treatment,” Material Science and Engineering, vol. 338A, 2002, pp. 44-53.
[6]B. S. Kukharev and E. I. Sokolovskii, “The use of chemical heat treatment in industry,” Metal Science and Heat Treatment, vol. 29, No. 3, 1987, pp. 167-170.
[7]余煥騰, 陳適範, 唐自標, 金屬熱處理, 台北:六和出版社, 1998, 第六章
[8]Heat Treating, Surface Hardening of Steels, ASM handbook, vol. 4,1992
[9]A. G. Gray, Carburizing and Carbonitriding, Ohio: American Socirty for Metals, 1977, pp.179-186.
[10]K. Genel and M. Demirkol, “Effect of case depth on fatigue performance of AISI 8620 carburized steel,” International Journal of Fatigue, vol. 21, 1999, pp. 207-212.
[11]H. Jimenez, M. H. Staia and E. S. Puchi, “Mathematical modeling of a carburizing process of a SAE 8620H steel,” Surface of Coatings Technology, vol. 120-121, 1999, pp. 358-365.
[12]N. Okumura, “Vacuum carburizing using propane gas,” Journal of The Chinese Society for Metal Heat Treatment, vol. 72, 2002, pp. 35-42.
[13]N. Okumura and A. Iwase, “Vacuum carburizing using acetylene gas,” Journal of The Chinese Society for Metal Heat Treatment, vol.72, 2002, pp. 43-47.
[14]W. Grafen and B. E. denhofer, “Acetylene low-pressure carburizing-a novel and superior carburizing technology,” Heat Treatment of Metals, 1999, pp. 79-83.
[15]B. E. denhofer, “An overview of advances in atmosphere and vacuum heat treatment,” Heat Treatment of Metals, 1998, pp. 79-85.
[16]J. Kolbel and Nitriclscfildung bel Glimmnilrierung, Forschugsber lend nordrhein-west-falan, vol. 1555, 1965.
[17]R. C. Jongblond, Materials Science Forum, vol. 163-165, 1994, pp. 611-618.
[18]周淑金 王正全,「綠色表面處理-六價鉻替代技術的發展」,中華民國電子零件認證委員會,第五十卷,2006,第25-32頁。
[19]經濟部RoHS服務團宣導手冊,2005。
[20]C. G. McKamey, J. H. DeVan, P. F. Tortorelli and V. K. Sikka, “A review of recent developments in Fe3Al-based alloys,” Journal of Materials Research, vol. 6, No. 8, 1991, pp. 1779-1805.
[21]P. Tomaszewicz and G. R. Wallwork, “Iron-aluminium alloys: a review of their oxidation behaviour,” Reviews on High Temperature Materials, vol. 4, 1978, pp.75-105.
[22]T. Grobstein and J. Doychak, Oxidation of high-temperature intermetallics, P.A.: TMS, Warrendale, 1989, pp. 83-107.
[23]P. J. Smith and W. W. Smeltzer, “A method for long-term sulfidation of metal at low sulfur pressures and its application to sulfidation of an Fe-20 at.% Al alloy at 1023 K,” Oxidation of Metals, vol. 28, 1987, pp. 291-308.
[24]K. N. Strafford and P. K. Datta, “Design of sulphidation resistant alloys,” Materials Science and Technology, vol. 5, No. 8, 1989, pp.765-779.
[25]I. Baker and P. R. Munroe, “Mechanical properties of FeAl,” International Materials Reviews, vol. 42, 1997, pp.181-205.
[26]D. G. Morris and S. Gunther, “Strength and ductility of Fe-40Al alloy prepared by mechanical alloying,” Material Science and Engineering, vol. 208A, 1996, pp. 7-19.
[27]C. T. Liu, C. G. McKamey and E. H. Lee, “Environmental effects on room-temperature ductility and fracture in Fe3Al,” Scripta Metallurgica et Materialia, vol. 24, 1990, pp. 385-389.
[28]N. S. Stoloff and C. T. Liu, “Environmental embrittlement of iron aluminides,” Intermetallics, vol. 2, 1994, pp. 75-87.
[29]U. Prakash, R. A. Buckley, H. Jones and C. M. Sellars, “Structure and properties of ordered intermetallics based on the Fe-Al system,” ISIJ International, vol. 31, No. 10, 1991, pp. 1113-1126.
[30]朱瑾,「鐵鋁基合金的開發與應用」,工業材料,第116期,1996,第67-75頁。[31]J. F. Nachman and W. J. Buehler, Application , Properties and Fabrication of Thermal Type Alloys, NAVORD Report 4237
[32]T. B. Massalski, Binary Alloy Phase Diagrams, 2nd ed., Metals Park: ASM International, vol. 147, 1990, pp.148.
[33]American Society of Metals, Metals Handbook, 10th Edition, ASM International, vol. 6, 1992.
[34]U.R.Kattner and B.P.Burton, Metalls Handbooks: Bulletin of Binary Phase Diagrams, ASM International, vol. 3, 1994, pp.2-44.
[35]V. R. Ryabov, Aluminizing of steel, New Delhi: Oxonian Press, 1985
[36]H. Mehrer, M. Eggersmann, A. Gude, M. Salamon and B. Sepiol, “ Diffusion in intermetallic phases of the Fe–Al and Fe–Si systems,” Materials Science and Engineering, vol. 239–240A, 1997, pp. 889–898.
[37]J. R. Knibloe, R. N. Wright, C. L. Trybus and V. K. Sikka, “Microstructure and mechanical properties of Fe3Al alloys with chromium,” Journal of Materiasl Science, vol. 28, No. 8, 1993, pp. 2040-2048.
[38]R. G. Baligidad and A. Radhakrishna, “Effect of alloying additions on structure and mechanical properties of high carbon Fe-16 wt.% Al alloy,” Material Science and Engineering, vol. 287A, 2000, pp. 17-24.
[39]N. S. Stoloff, “Iron aluminides: present status and future prospects,” Material Science and Engineering, vol. 258A, 1998, pp. 1-14.
[40]P. Tomaszewicz and G. R. Wallwork, “Observations of nodule growth during theoxidation of pure binary iron-aluminum alloys,” Oxidation of Metals, vol. 19, 1983, pp.165-185.
[41]J. L. Smialek, J. Doychak and D. J. Gaydosh, “Oxidation behavior of FeAl+Hf, Zr, B,” Oxidation of Metals, vol. 34, 1990, pp. 259-275.
[42]P. F. Tortorelli and J. H. DeVan, “Behavior of iron aluminides in oxidizing and oxidizing/sulfidizing environments,” Material Science and Engineering, vol. 153A, 1992, pp. 573-577.
[43]M. G. Mendiratta, S. K. Ehlers, D. K. Chatterjee and H. A. Lipsitt., “Tensile flow and fracture behavior of DO3 Fe-25 at. pct Al and Fe-31 at. pct Al alloys,” Metallurgical and Materials Transactions, vol. 18A, 1987, pp. 283–291.
[44]K. Suganuma, “Properties of Fe3Al matrix composites with Al2O3 particle dispersions,” Journal of Alloys and Compounds, vol. 197, 1993, pp.29-34.
[45]R. Subramanian and C. G. McKamey, “Iron aluminide - Al2O3 composites by in situ displacement reactions: processing and mechanical properties,” Material Science and Engineering, vol. 253A, 1998, pp.119-128.
[46]K. Sun and A. Li, “Sintering technology research of Fe3Al/Al2O3 ceramic composites,” Journal of Material Process Technology, 2001, pp.482-485.
[47]U. Burkhardt, Yu. Grin and M. Ellner, “Structure refinement of the iron-aluminium phase with the approximate composition Fe2Al5,” Acta Crystallographica, vol. 50B, 1994, pp.313–316.
[48]V. N. Yermenko, yar. Natantion, V. I. Dybkov, “The effect of dissolution on the growth of the Fe2Al5 interlayer in the solid iron-liquid aluminum system,” Journal of Materials Science, vol. 16, No. 9, 1981, pp. 1748-1756.
[49]D. K. Mukhopadhyay, C. Suryanarayana and F.H. Froes, “Synthesis of nanocrystalline Al5Fe2 by mechanical alloying,” Scripta Metallurgica et Materialia, vol. 31, No. 3, 1994, pp.333–338.
[50]J. Stringer, “Role of coatings in energy-producing system: an overview,” Materials Science and Engineering, vol. 87, 1986, pp. 1-10.
[51]R. Sivakumar and E. J. Rao, “An investigation of pack-aluminide coating on steel,” Oxidation of Metals, vol. 17, 1982, pp. 391-405.
[52]T. H. Wang and L. L. Seigle, “The kinetics of pack aluminization of iron from Al-Fe alloy packs,” Material Science and Engineering, vol. 108A, 1989, pp. 253-263.
[53]S. W. Banovic, J. N. DuPont and A. R. Marder, “Growth of nodular corrosion products on Fe–Al alloys in various high-temperature gaseous environments,” Oxidation of Metals, vol. 54, 2000, pp. 339-371.
[54]P. F. Tortorelli and K. Natesan, “Critical factors affecting the high-temperature corrosion performance of iron aluminides,” Material Science and Engineering, vol. 258A, 1998, pp. 115-125.
[55]K. Natesan, “Corrosion performance of iron aluminides in mixed-oxidant environments,” Material Science and Engineering, vol. 258A, 1998, pp. 126-134.
[56]B. A. Pint, P. F. Tortorelli and I. G. Wright, “Long-term oxidation performance of ingot-produced Fe3Al alloys,” Materials at High Temperatures, vol. 16, No. 1, 1999, pp. 1-13.
[57]J. P. Larpin, M. Lambertin and J. C. Colson, Materials and Coating to Resist High Temperature Corrosion, 1985, p. 12.
[58]K. N. Strafford and R. Manifold, “Effects of aluminum alloying additions on the sulfidation behavior of iron,” Oxidation of Metals, vol. 5, 1972, pp.85-112.
[59]P. J. Smith, P. R. S. Jackson and W.W. Smeltzer, “Sulfidation behavior of an Fe-10 atomic % Al alloy in Ar-S//2 AND H//2-H//2S atmospheres at 1023 K,” Proceedings-The Electrochemical Society, vol. 86, No.9 , 1986, pp.19-36.
[60]P. C. Patanik and W. W. Smeltzer, “Sulfidation properties of Fe-Al alloys at 1173 K in H2S-H2 atmospheres,” Oxidation of Metals, vol. 23, 1985, pp. 53-75.
[61]P. C. Patanik and W. W. Smeltzer, “Sulfidation properties of Fe-Al alloys (6-28 at% Al) at 1173 K in sulfur vapor at PS2 equals 1. 45 multiplied by 10-3 Pa,” Journal of the Electrochemical Society, vol. 132, 1985, pp. 1226-1232.
[62]R. W. Richards, R. D. Jones, P. D. Clements and H. Clarke, “Metallurgy of continuous hot dip aluminising,” International Materials Reviews, vol. 22, 1925, pp.139 -142.
[63]I. D. Maruin, Rev. Metall., vol. 22, 1930, pp.89-90.
[64]M. Agiew and O. L. Viwr, Journal of the Institute of Metals, vol. 44, 1930, pp.89-92.
[65]C. C. Lee, E. S. Machlin and H. Rathore, “Roles of Ti-intermetallic compound layers on the electromigration resistance of Al-Cu interconnecting stripes,” Journal of Applied Physics, vol. 71, No. 12, 1992 , pp.5877-5887.
[66]E. Gebhardt and W. Obrowski, “Reaktionen von festem Eisen mit Schmelzen aus Aluminium und Aluminiumlegierungen,” Z. Metallkde, vol. 44, 1953, pp. 154-160.
[67]G. Eggeler, W. Auer and H. Kaeshe, “On the influence of silicon on the growth of the alloy layer during hot dip aluminizing,” Journal of Materials Science, vol. 21, No. 9, 1986, pp. 3348-3352.
[68]A. Bahadur and O. N. Mohnty, “Structural studies of hot dip aluminized coating on mild steel,” Materials Transactions, JIM, vol. 32, No. 11, 1991, pp. 1053-1061.
[69]M. V. Akdeniz, A. O. Mekhrabov and T. Yilmaz, “The role of Si addition on the interfacial interaction in Fe-Al diffusion layer,” Scripta Metallurgica et Materialia, vol. 31, No. 12, 1994, pp. 1723-1728.
[70]A. Bahadur and O. N. Mohanty, “Aluminum diffusion coating on medium carbon steel,” Materials Transactions, JIM, vol. 36, No. 9, 1995, pp. 1170-1176.
[71]M. V. Akdeniz and A. O. Mekhrabov, “The effect of substitutional impurities on the evolution of Fe-Al diffusion layer,” Acta Materialia, vol. 46, No. 4, 1998, pp. 1185-1992.
[72]K. Bouche, F. Barbier and A. Coulet, “Intermetallic compound layer growth between solid iron and molten aluminum,” Material Science and Engineering, vol. 249A, 1998, pp. 167-175.
[73]H. R. Shahverdi, M. R. Ghomashchi, S. Shabestari, and J. Hejazi, “Kinetics of interfacial reaction between solid iron and molten aluminium,” Journal of Materials Science, vol. 37, 2002, pp. 1061-1066.
[74]T. S. Piper and G. Wilkinson, “Iron alkyl and aryl compounds,” Die Naturwissenschaften, vol. 43, 1956, pp. 15-16.
[75]K. Schubert, U. Rossler, M. Kluge, K. Anderko and L. Harle, “Kristallographische Ergebnisse an Phasen mit Durchdringungsbindung,” Die Naturwissenschaften, vol. 40, 1953, pp. 437-442.
[76]T. Heumann and S. Dittrich, “Structure character of the FeAl intermetallics compound in hot dip aluminizing process,” Z. Metallkd., vol. 50, 1959, pp.617-623.
[77]S. C. Kung and R. A. Rapp, “Kinetic study of aluminization of iron by using the pack cementation technique,” Journal of the Electrochemical Society, vol. 135, No. 3, 1988, pp. 731-741.
[78]A D. Romig and M .A. Dayananda, Diffusion Analysis and Applications, PA: TMS, Warrendale, 1989, pp. 337-360.
[79]H. M. Soliman, K. E. Mohamed, M. E. Abd El-Azim and F. H. Hammad, “Oxidation resistance of the aluminide coating formed on carbon steels,” Journal of Material Science and Technology, vol. 13, No. 5, 1997, pp. 383-388.
[80]L. Levin, A. Ginzburge, L. Klinger, T. Werber, A. Katsman and P. Schaaf, “Controlled formation of surface layers by pack aluminization,” Surface of Coatings Technology, vol.106, 1998, pp. 209-213.
[81]American Society of Metals, Metals handbook, 9th ed, American Society of Metals, vol. 5, 1982, p.333.
[82]P. J. Ennis, A. Zielinska-Lipiec, O.Wachter, and A. Czyrska-Filemonowicz, “Microstructural stability and creep rupture strength of the martensitic steel P92 for advanced power plant,” Acta Materialia, vol. 45, No. 12, 1997, pp. 4901-4907.
[83]S. Saroja, P. Parameswaran, M. Vijayalakshmi and V. S. Raghunathan, “Prediction of microstructural states in Cr-Mo steels using phase evolution diagrams,” Acta Materialia, vol. 43, No. 8, 1995, pp. 2985-3000.
[84]ASTM G40-82, Annual book of ASTM standards, vol. 03, 1984, pp.239.
[85]E. Rabinowicz, Friction and wear of materials, New York: John Wiley & Sons, 1995, pp.128-132.
[86]K. G. Budinski, Surface engineering for wear resistance, Prentice Hall, 1988, pp.16-18.
[87]J. F. Archard, “Single contacts and multiple encounters,” Journal of Applied Physics, vol. 24, 1961, pp. 1420-1425.
[88]K. H. Z. Gahr, Microstructure and wear of materials, New York: Elsevier Science, 1987, pp.84-108, pp.351-495.
[89]A. P. Sannino and H. J. Rack, “Dry sliding wear of discontinuously reinforced aluminum composites: review and discussion,” Wear, vol.189, 1995, pp.1-19.
[90]ASTM, Standard Test Method for Microindentation Hardness of Materials, Designation: E384 - 08a.
[91]Z. D. Xiang and P. K. Datta, “Kinetics of Low-Temprature Pack Aluminide Coating Formation on Alloy Steels”, Metallurgical and Materials Transactions, vol. 37A, 2006, pp. 3359~3365.
[92]M. Niinomi and Y. Ueda, “On the alloy layers formed by the reaction between ferrous alloys and molten aluminium,” Transactions of Japan Institute of Metals, vol. 23, No. 11, 1982, pp.709-717.
[93]L. H. Su, Y. W. Yen, C. C. Lin and S. W. Chen, “Interfacial Reaction in Molten Sn/Cu and Molten In/Cu Couples,” Metallurgical and Materials Transactions, vol. 28B, No. 5, 1997, pp. 927~934.
[94]J. W. Yoon and S. B. Jung, “Interfacial Reaction between Sn-0.4Cu Solder and Cu Substrate during Reflow Reaction,” Journal of Alloys and Compounds, vol. 396, No. 1, 2005, pp. 122~127.
[95]P.J. Blau, Friction Science and Technology, NewYork: Marcel Dekker, Inc., 1996.
[96]E. W. Deeg, “New Algorithms for Calculating Hertzian Stress, Deformations, and Contact Zone Parameters,” AMP Journal of Technology, vol.2, 1992, pp.14-24.
[97]蔡錫鐃, 材料實驗 = Experiments in materials science eng, 台北:新文京開發, 2004, 第十二章