跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.17) 您好!臺灣時間:2025/09/03 09:27
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:詹仕名
研究生(外文):Shih-Ming Chan
論文名稱:鎳鉻鉬合金鋼表面鐵鋁合金硬化處理之研究
論文名稱(外文):Surface Hardening of Ni-Cr-Mo Alloy Steels by Aluminization.
指導教授:陳貞光
指導教授(外文):Jhewn-Kuang Chen
口試委員:張瑞東唐自標徐開鴻
口試委員(外文):Jui-Tung ChangTzu-Piao TangKai-Hung Hsu
口試日期:2008-06-25
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:材料科學與工程研究所
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:86
中文關鍵詞:鐵鋁基合金滲鋁粉體滲透法表面硬化固態擴散
外文關鍵詞:Fe-Al intermetallic compoundsaluminizationpack cementationcase hardeningsolid phase diffusion
相關次數:
  • 被引用被引用:1
  • 點閱點閱:645
  • 評分評分:
  • 下載下載:12
  • 收藏至我的研究室書目清單書目收藏:0
本研究利用中碳鎳鉻鉬合金鋼作為底材,在400°C∼700°C的低溫,進行2∼24小時的滲鋁還原反應,藉由化學反應與固態擴散的方式,針對鋼材表面進行改質,在鋼材表面生成高硬度、耐腐蝕及高溫抗氧化性佳之鐵鋁基合金,提昇鋼鐵表面機械與抗腐蝕性質。報告中探討滲鋁溫度及滲鋁時間等製程參數,對於擴散層相成分與厚度之影響,並評估其表面機械性質與耐腐蝕性改善之情形,以得到最佳化的製程控制參數與表面性質,期能控制硬化層厚度與機械性質,降低硬化處理之成本,應用於高強韌性能需求之場合。
實驗顯示,本研究最低處理溫度為400°C,成功的將滲鋁處理溫度降低至鋼鐵的退火溫度以下,使母材處理後仍擁有良好的韌性與強度。滲鋁溫度及滲鋁時間影響了擴散層厚度、相成分與機械性質,本研究之生成相的厚度介於15∼100um,所得之活化能為15.23 KJ╱mole,表面的鐵鋁鍍膜可以生成兩種不同相的擴散層,經由EDS與XRD分析,最外層之生成相為鐵鋁之介金屬化合物-Fe2Al5,中間層則為Fe3Al結構之合金層,其硬度可以達到Hv600以上,且有更佳之耐磨耗性。
Low-temperature formed Fe-/Al intermetallic compound by aluminizing on the surface of a Ni-Cr-Mo containing medium carbon steel was investigated. The processing temperatures were ranged between 400°C and 700°C. The diffusion time was varied from 2 to 24 hours. The structures, phases, and mechanical properties of the coating layers were studied. The thickness of coating layers were in the range of 15um~100um. The activation energy for formation of the coating layers was estimated 15.23 KJ/mole. The coating layers consist of two different phases. The Fe2Al5 phase was formed on the surface layer and the solid solution with Fe3Al structure was formed at the interface between surface Fe2Al5 layer and the substrate. The surface hardness is higher than Hv600 while keeping the substrate hardness at relatively high level.
摘 要 i
英文摘要 ii
誌 謝 iii
目 錄 iv
表 目 錄 vii
圖 目 錄 viii
第一章 緒 論 1
第二章 文獻回顧 3
2.1 表面處理技術 3
2.1.1 表面處理的目的 3
2.1.2 表面處理之重要性 4
2.1.3 表面處理技術之種類 4
2.2 滲碳原理與方法 5
2.2.1 固體滲碳法 6
2.2.2 液體滲碳法 8
2.2.3 氣體滲碳法 8
2.2.4 真空滲碳法 9
2.3 滲氮原理與方法 10
2.3.1 氣體氮化法 10
2.3.2 液體氮化法 11
2.3.3 離子氮化法 11
2.4 碳氮共滲原理與方法 12
2.4.1 氣體碳氮共滲 13
2.4.2 液體碳氮共滲 13
2.4.3 離子碳氮共滲 14
2.5 滲金屬原理與方法 15
2.5.1 滲鉻 15
2.5.2 滲鋅 19
2.6 鐵鋁基合金 20
2.6.1 鐵鋁基合金的簡介 20
2.6.2 鐵鋁介金屬化合物 21
2.6.3 鐵鋁介金屬化合物的腐蝕研究 25
2.7 鐵鋁基合金製程 25
2.7.1 熱浸滲鋁(hot dip aluminizing) 26
2.7.2 粉體滲透法(pack cementation) 26
2.8 磨耗理論 27
2.8.1 黏著磨耗( Adhesive Wear ) 28
2.8.2 磨料磨耗(Abrasive Wear) 29
2.8.3 表面疲勞( Surface Fatigue Wear) 31
2.8.4 磨潤化學磨耗(Tribochemical Reaction Wear) 32
2.8.5 磨耗行為及參數 33
第三章 實驗方法 36
3.1 實驗材料 36
3.2 實驗流程 36
3.2.1 滲鋁劑調配 38
3.2.2 前處理 38
3.2.3 粉體滲透法(Pack Cementation) 38
3.3 X-ray繞射分析 39
3.4 電子顯微鏡觀察 39
3.5 顯微組織結構觀察 40
3.6 硬度試驗 40
3.7 磨耗試驗 40
第四章 結果與討論 42
4.1 鐵鋁合金生成條件與鍍層觀察 42
4.2 鐵鋁合金生成相結構分析 49
4.3 擴散溫度對鍍層厚度之影響 52
4.4 擴散時間對鍍層厚度之影響 58
4.5 活化能與動力學計算 63
4.6 硬度試驗 65
4.7 磨耗試驗 67
第五章 結論 76
參考文獻 77
[1]J. M. Panchal, T. Vela and T. Robisch, ASM International, OH: Metals Park, 1990, pp.245-260.
[2]D. G. Morris, M. A. Muñoz-Morris and J. Chao, “Development of high strength, high ductility and high creep resistant iron aluminide,” Intermetallics, vol. 12, 2004, pp.821-826.
[3]T. Morinaga amd Y. Koto, Journal of Japan Institute of Light Metals, vol. 13, 1963, p. 61
[4]J. A. Mock, “Coatings keep metals alive at 2000 plus F temperatures,”Materials Engineering, vol. 69, No. 6, 1969, pp. 46-50.
[5]S. Kobayashi, T. Yakou, “Control of intermetallic compound layers at interface between steel and aluminum by diffusion-treatment,” Material Science and Engineering, vol. 338A, 2002, pp. 44-53.
[6]B. S. Kukharev and E. I. Sokolovskii, “The use of chemical heat treatment in industry,” Metal Science and Heat Treatment, vol. 29, No. 3, 1987, pp. 167-170.
[7]余煥騰, 陳適範, 唐自標, 金屬熱處理, 台北:六和出版社, 1998, 第六章
[8]Heat Treating, Surface Hardening of Steels, ASM handbook, vol. 4,1992
[9]A. G. Gray, Carburizing and Carbonitriding, Ohio: American Socirty for Metals, 1977, pp.179-186.
[10]K. Genel and M. Demirkol, “Effect of case depth on fatigue performance of AISI 8620 carburized steel,” International Journal of Fatigue, vol. 21, 1999, pp. 207-212.
[11]H. Jimenez, M. H. Staia and E. S. Puchi, “Mathematical modeling of a carburizing process of a SAE 8620H steel,” Surface of Coatings Technology, vol. 120-121, 1999, pp. 358-365.
[12]N. Okumura, “Vacuum carburizing using propane gas,” Journal of The Chinese Society for Metal Heat Treatment, vol. 72, 2002, pp. 35-42.
[13]N. Okumura and A. Iwase, “Vacuum carburizing using acetylene gas,” Journal of The Chinese Society for Metal Heat Treatment, vol.72, 2002, pp. 43-47.
[14]W. Grafen and B. E. denhofer, “Acetylene low-pressure carburizing-a novel and superior carburizing technology,” Heat Treatment of Metals, 1999, pp. 79-83.
[15]B. E. denhofer, “An overview of advances in atmosphere and vacuum heat treatment,” Heat Treatment of Metals, 1998, pp. 79-85.
[16]J. Kolbel and Nitriclscfildung bel Glimmnilrierung, Forschugsber lend nordrhein-west-falan, vol. 1555, 1965.
[17]R. C. Jongblond, Materials Science Forum, vol. 163-165, 1994, pp. 611-618.
[18]周淑金 王正全,「綠色表面處理-六價鉻替代技術的發展」,中華民國電子零件認證委員會,第五十卷,2006,第25-32頁。
[19]經濟部RoHS服務團宣導手冊,2005。
[20]C. G. McKamey, J. H. DeVan, P. F. Tortorelli and V. K. Sikka, “A review of recent developments in Fe3Al-based alloys,” Journal of Materials Research, vol. 6, No. 8, 1991, pp. 1779-1805.
[21]P. Tomaszewicz and G. R. Wallwork, “Iron-aluminium alloys: a review of their oxidation behaviour,” Reviews on High Temperature Materials, vol. 4, 1978, pp.75-105.
[22]T. Grobstein and J. Doychak, Oxidation of high-temperature intermetallics, P.A.: TMS, Warrendale, 1989, pp. 83-107.
[23]P. J. Smith and W. W. Smeltzer, “A method for long-term sulfidation of metal at low sulfur pressures and its application to sulfidation of an Fe-20 at.% Al alloy at 1023 K,” Oxidation of Metals, vol. 28, 1987, pp. 291-308.
[24]K. N. Strafford and P. K. Datta, “Design of sulphidation resistant alloys,” Materials Science and Technology, vol. 5, No. 8, 1989, pp.765-779.
[25]I. Baker and P. R. Munroe, “Mechanical properties of FeAl,” International Materials Reviews, vol. 42, 1997, pp.181-205.
[26]D. G. Morris and S. Gunther, “Strength and ductility of Fe-40Al alloy prepared by mechanical alloying,” Material Science and Engineering, vol. 208A, 1996, pp. 7-19.
[27]C. T. Liu, C. G. McKamey and E. H. Lee, “Environmental effects on room-temperature ductility and fracture in Fe3Al,” Scripta Metallurgica et Materialia, vol. 24, 1990, pp. 385-389.
[28]N. S. Stoloff and C. T. Liu, “Environmental embrittlement of iron aluminides,” Intermetallics, vol. 2, 1994, pp. 75-87.
[29]U. Prakash, R. A. Buckley, H. Jones and C. M. Sellars, “Structure and properties of ordered intermetallics based on the Fe-Al system,” ISIJ International, vol. 31, No. 10, 1991, pp. 1113-1126.
[30]朱瑾,「鐵鋁基合金的開發與應用」,工業材料,第116期,1996,第67-75頁。
[31]J. F. Nachman and W. J. Buehler, Application , Properties and Fabrication of Thermal Type Alloys, NAVORD Report 4237
[32]T. B. Massalski, Binary Alloy Phase Diagrams, 2nd ed., Metals Park: ASM International, vol. 147, 1990, pp.148.
[33]American Society of Metals, Metals Handbook, 10th Edition, ASM International, vol. 6, 1992.
[34]U.R.Kattner and B.P.Burton, Metalls Handbooks: Bulletin of Binary Phase Diagrams, ASM International, vol. 3, 1994, pp.2-44.
[35]V. R. Ryabov, Aluminizing of steel, New Delhi: Oxonian Press, 1985
[36]H. Mehrer, M. Eggersmann, A. Gude, M. Salamon and B. Sepiol, “ Diffusion in intermetallic phases of the Fe–Al and Fe–Si systems,” Materials Science and Engineering, vol. 239–240A, 1997, pp. 889–898.
[37]J. R. Knibloe, R. N. Wright, C. L. Trybus and V. K. Sikka, “Microstructure and mechanical properties of Fe3Al alloys with chromium,” Journal of Materiasl Science, vol. 28, No. 8, 1993, pp. 2040-2048.
[38]R. G. Baligidad and A. Radhakrishna, “Effect of alloying additions on structure and mechanical properties of high carbon Fe-16 wt.% Al alloy,” Material Science and Engineering, vol. 287A, 2000, pp. 17-24.
[39]N. S. Stoloff, “Iron aluminides: present status and future prospects,” Material Science and Engineering, vol. 258A, 1998, pp. 1-14.
[40]P. Tomaszewicz and G. R. Wallwork, “Observations of nodule growth during theoxidation of pure binary iron-aluminum alloys,” Oxidation of Metals, vol. 19, 1983, pp.165-185.
[41]J. L. Smialek, J. Doychak and D. J. Gaydosh, “Oxidation behavior of FeAl+Hf, Zr, B,” Oxidation of Metals, vol. 34, 1990, pp. 259-275.
[42]P. F. Tortorelli and J. H. DeVan, “Behavior of iron aluminides in oxidizing and oxidizing/sulfidizing environments,” Material Science and Engineering, vol. 153A, 1992, pp. 573-577.
[43]M. G. Mendiratta, S. K. Ehlers, D. K. Chatterjee and H. A. Lipsitt., “Tensile flow and fracture behavior of DO3 Fe-25 at. pct Al and Fe-31 at. pct Al alloys,” Metallurgical and Materials Transactions, vol. 18A, 1987, pp. 283–291.
[44]K. Suganuma, “Properties of Fe3Al matrix composites with Al2O3 particle dispersions,” Journal of Alloys and Compounds, vol. 197, 1993, pp.29-34.
[45]R. Subramanian and C. G. McKamey, “Iron aluminide - Al2O3 composites by in situ displacement reactions: processing and mechanical properties,” Material Science and Engineering, vol. 253A, 1998, pp.119-128.
[46]K. Sun and A. Li, “Sintering technology research of Fe3Al/Al2O3 ceramic composites,” Journal of Material Process Technology, 2001, pp.482-485.
[47]U. Burkhardt, Yu. Grin and M. Ellner, “Structure refinement of the iron-aluminium phase with the approximate composition Fe2Al5,” Acta Crystallographica, vol. 50B, 1994, pp.313–316.
[48]V. N. Yermenko, yar. Natantion, V. I. Dybkov, “The effect of dissolution on the growth of the Fe2Al5 interlayer in the solid iron-liquid aluminum system,” Journal of Materials Science, vol. 16, No. 9, 1981, pp. 1748-1756.
[49]D. K. Mukhopadhyay, C. Suryanarayana and F.H. Froes, “Synthesis of nanocrystalline Al5Fe2 by mechanical alloying,” Scripta Metallurgica et Materialia, vol. 31, No. 3, 1994, pp.333–338.
[50]J. Stringer, “Role of coatings in energy-producing system: an overview,” Materials Science and Engineering, vol. 87, 1986, pp. 1-10.
[51]R. Sivakumar and E. J. Rao, “An investigation of pack-aluminide coating on steel,” Oxidation of Metals, vol. 17, 1982, pp. 391-405.
[52]T. H. Wang and L. L. Seigle, “The kinetics of pack aluminization of iron from Al-Fe alloy packs,” Material Science and Engineering, vol. 108A, 1989, pp. 253-263.
[53]S. W. Banovic, J. N. DuPont and A. R. Marder, “Growth of nodular corrosion products on Fe–Al alloys in various high-temperature gaseous environments,” Oxidation of Metals, vol. 54, 2000, pp. 339-371.
[54]P. F. Tortorelli and K. Natesan, “Critical factors affecting the high-temperature corrosion performance of iron aluminides,” Material Science and Engineering, vol. 258A, 1998, pp. 115-125.
[55]K. Natesan, “Corrosion performance of iron aluminides in mixed-oxidant environments,” Material Science and Engineering, vol. 258A, 1998, pp. 126-134.
[56]B. A. Pint, P. F. Tortorelli and I. G. Wright, “Long-term oxidation performance of ingot-produced Fe3Al alloys,” Materials at High Temperatures, vol. 16, No. 1, 1999, pp. 1-13.
[57]J. P. Larpin, M. Lambertin and J. C. Colson, Materials and Coating to Resist High Temperature Corrosion, 1985, p. 12.
[58]K. N. Strafford and R. Manifold, “Effects of aluminum alloying additions on the sulfidation behavior of iron,” Oxidation of Metals, vol. 5, 1972, pp.85-112.
[59]P. J. Smith, P. R. S. Jackson and W.W. Smeltzer, “Sulfidation behavior of an Fe-10 atomic % Al alloy in Ar-S//2 AND H//2-H//2S atmospheres at 1023 K,” Proceedings-The Electrochemical Society, vol. 86, No.9 , 1986, pp.19-36.
[60]P. C. Patanik and W. W. Smeltzer, “Sulfidation properties of Fe-Al alloys at 1173 K in H2S-H2 atmospheres,” Oxidation of Metals, vol. 23, 1985, pp. 53-75.
[61]P. C. Patanik and W. W. Smeltzer, “Sulfidation properties of Fe-Al alloys (6-28 at% Al) at 1173 K in sulfur vapor at PS2 equals 1. 45 multiplied by 10-3 Pa,” Journal of the Electrochemical Society, vol. 132, 1985, pp. 1226-1232.
[62]R. W. Richards, R. D. Jones, P. D. Clements and H. Clarke, “Metallurgy of continuous hot dip aluminising,” International Materials Reviews, vol. 22, 1925, pp.139 -142.
[63]I. D. Maruin, Rev. Metall., vol. 22, 1930, pp.89-90.
[64]M. Agiew and O. L. Viwr, Journal of the Institute of Metals, vol. 44, 1930, pp.89-92.
[65]C. C. Lee, E. S. Machlin and H. Rathore, “Roles of Ti-intermetallic compound layers on the electromigration resistance of Al-Cu interconnecting stripes,” Journal of Applied Physics, vol. 71, No. 12, 1992 , pp.5877-5887.
[66]E. Gebhardt and W. Obrowski, “Reaktionen von festem Eisen mit Schmelzen aus Aluminium und Aluminiumlegierungen,” Z. Metallkde, vol. 44, 1953, pp. 154-160.
[67]G. Eggeler, W. Auer and H. Kaeshe, “On the influence of silicon on the growth of the alloy layer during hot dip aluminizing,” Journal of Materials Science, vol. 21, No. 9, 1986, pp. 3348-3352.
[68]A. Bahadur and O. N. Mohnty, “Structural studies of hot dip aluminized coating on mild steel,” Materials Transactions, JIM, vol. 32, No. 11, 1991, pp. 1053-1061.
[69]M. V. Akdeniz, A. O. Mekhrabov and T. Yilmaz, “The role of Si addition on the interfacial interaction in Fe-Al diffusion layer,” Scripta Metallurgica et Materialia, vol. 31, No. 12, 1994, pp. 1723-1728.
[70]A. Bahadur and O. N. Mohanty, “Aluminum diffusion coating on medium carbon steel,” Materials Transactions, JIM, vol. 36, No. 9, 1995, pp. 1170-1176.
[71]M. V. Akdeniz and A. O. Mekhrabov, “The effect of substitutional impurities on the evolution of Fe-Al diffusion layer,” Acta Materialia, vol. 46, No. 4, 1998, pp. 1185-1992.
[72]K. Bouche, F. Barbier and A. Coulet, “Intermetallic compound layer growth between solid iron and molten aluminum,” Material Science and Engineering, vol. 249A, 1998, pp. 167-175.
[73]H. R. Shahverdi, M. R. Ghomashchi, S. Shabestari, and J. Hejazi, “Kinetics of interfacial reaction between solid iron and molten aluminium,” Journal of Materials Science, vol. 37, 2002, pp. 1061-1066.
[74]T. S. Piper and G. Wilkinson, “Iron alkyl and aryl compounds,” Die Naturwissenschaften, vol. 43, 1956, pp. 15-16.
[75]K. Schubert, U. Rossler, M. Kluge, K. Anderko and L. Harle, “Kristallographische Ergebnisse an Phasen mit Durchdringungsbindung,” Die Naturwissenschaften, vol. 40, 1953, pp. 437-442.
[76]T. Heumann and S. Dittrich, “Structure character of the FeAl intermetallics compound in hot dip aluminizing process,” Z. Metallkd., vol. 50, 1959, pp.617-623.
[77]S. C. Kung and R. A. Rapp, “Kinetic study of aluminization of iron by using the pack cementation technique,” Journal of the Electrochemical Society, vol. 135, No. 3, 1988, pp. 731-741.
[78]A D. Romig and M .A. Dayananda, Diffusion Analysis and Applications, PA: TMS, Warrendale, 1989, pp. 337-360.
[79]H. M. Soliman, K. E. Mohamed, M. E. Abd El-Azim and F. H. Hammad, “Oxidation resistance of the aluminide coating formed on carbon steels,” Journal of Material Science and Technology, vol. 13, No. 5, 1997, pp. 383-388.
[80]L. Levin, A. Ginzburge, L. Klinger, T. Werber, A. Katsman and P. Schaaf, “Controlled formation of surface layers by pack aluminization,” Surface of Coatings Technology, vol.106, 1998, pp. 209-213.
[81]American Society of Metals, Metals handbook, 9th ed, American Society of Metals, vol. 5, 1982, p.333.
[82]P. J. Ennis, A. Zielinska-Lipiec, O.Wachter, and A. Czyrska-Filemonowicz, “Microstructural stability and creep rupture strength of the martensitic steel P92 for advanced power plant,” Acta Materialia, vol. 45, No. 12, 1997, pp. 4901-4907.
[83]S. Saroja, P. Parameswaran, M. Vijayalakshmi and V. S. Raghunathan, “Prediction of microstructural states in Cr-Mo steels using phase evolution diagrams,” Acta Materialia, vol. 43, No. 8, 1995, pp. 2985-3000.
[84]ASTM G40-82, Annual book of ASTM standards, vol. 03, 1984, pp.239.
[85]E. Rabinowicz, Friction and wear of materials, New York: John Wiley & Sons, 1995, pp.128-132.
[86]K. G. Budinski, Surface engineering for wear resistance, Prentice Hall, 1988, pp.16-18.
[87]J. F. Archard, “Single contacts and multiple encounters,” Journal of Applied Physics, vol. 24, 1961, pp. 1420-1425.
[88]K. H. Z. Gahr, Microstructure and wear of materials, New York: Elsevier Science, 1987, pp.84-108, pp.351-495.
[89]A. P. Sannino and H. J. Rack, “Dry sliding wear of discontinuously reinforced aluminum composites: review and discussion,” Wear, vol.189, 1995, pp.1-19.
[90]ASTM, Standard Test Method for Microindentation Hardness of Materials, Designation: E384 - 08a.
[91]Z. D. Xiang and P. K. Datta, “Kinetics of Low-Temprature Pack Aluminide Coating Formation on Alloy Steels”, Metallurgical and Materials Transactions, vol. 37A, 2006, pp. 3359~3365.
[92]M. Niinomi and Y. Ueda, “On the alloy layers formed by the reaction between ferrous alloys and molten aluminium,” Transactions of Japan Institute of Metals, vol. 23, No. 11, 1982, pp.709-717.
[93]L. H. Su, Y. W. Yen, C. C. Lin and S. W. Chen, “Interfacial Reaction in Molten Sn/Cu and Molten In/Cu Couples,” Metallurgical and Materials Transactions, vol. 28B, No. 5, 1997, pp. 927~934.
[94]J. W. Yoon and S. B. Jung, “Interfacial Reaction between Sn-0.4Cu Solder and Cu Substrate during Reflow Reaction,” Journal of Alloys and Compounds, vol. 396, No. 1, 2005, pp. 122~127.
[95]P.J. Blau, Friction Science and Technology, NewYork: Marcel Dekker, Inc., 1996.
[96]E. W. Deeg, “New Algorithms for Calculating Hertzian Stress, Deformations, and Contact Zone Parameters,” AMP Journal of Technology, vol.2, 1992, pp.14-24.
[97]蔡錫鐃, 材料實驗 = Experiments in materials science eng, 台北:新文京開發, 2004, 第十二章
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top