跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.172) 您好!臺灣時間:2025/09/10 06:41
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:白世銘
研究生(外文):Shih-ming Bai
論文名稱:利用模糊歸屬函數及模糊規則以評量學生學習成效及建立概念圖之新方法
論文名稱(外文):Evaluating Students' Learning Achievement and Constructing Concept Maps Based on Fuzzy Membership Functions and Fuzzy Rules
指導教授:陳錫明陳錫明引用關係
指導教授(外文):Shyi-ming Chen
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:資訊工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:英文
論文頁數:93
中文關鍵詞:概念圖教育評分系統模糊歸屬函數模糊歸則學生學習成效
外文關鍵詞:Concept MapsEducational Grading SystemsFuzzy Membership FunctionsFuzzy RulesStudents' Learning Achievement
相關次數:
  • 被引用被引用:2
  • 點閱點閱:186
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
近幾年來,有許多學者專家提出以模糊推論為基礎以作學生學習成效評估及建立概念圖的方法。在作學習成效評估時,我們必須考慮到評分者之間的差異性及評量題目本身的難度、複雜度與重要性。在找概念之間的關聯性時,我們必須參考評量結果中各概念間學習成效的相似性。在本論文中我們提出了三個新方法,以模糊歸屬函數作學生學習成效評估及建立概念圖,在第一個方法中,我們提出一個自動建立寬鬆的分數、嚴謹的分數以及一般的分數之間對應的模糊歸屬函數以用於學生學習成效評估的新方法。在第二個方法中,我們提出一個利用模糊歸屬函數與模糊規則以用於學生學習成效評估的新方法,它考慮題目的難度、複雜度與重要性,並能分辨同分學生之間的排名先後。在第三個方法中,我們提出一個利用評量結果配合模糊推論方法以自動建構出概念圖的新方法,我們使用模糊規則與模糊推論方法以自動建立出概念圖並求得概念之間的相關度。
In recent years, some methods have been presented for applying the fuzzy set theory in educational grading systems and dealing with the concept maps construction for providing the adaptive learning guidance to students. For dealing with the students' learning achievement evaluation, we must solve the subjective judging problem of teachers and consider the difficulty, importance and complexity of questions. For dealing with the concept maps construction for providing the adaptive learning guidance to students, we have to consider the similarity of the learning achievement between concepts. In this thesis, we propose three methods to evaluate students' learning achievement and to construct concept maps based on fuzzy membership functions. In the first method, we present a new method to automatically construct the grade membership functions of lenient-type grades, strict-type grades and normal-type grades, given by teachers, for students' evaluation. In the second method, we present a new method for dealing with students' learning achievement evaluation using fuzzy membership functions and fuzzy rules. It considers the difficulty, importance and complexity of questions for students' answerscripts evaluation. It provides a useful way to distinguish the ranking order of students with the same score. In the third method, we present a new method to automatically construct concept maps based on fuzzy rules and students' testing records. We apply fuzzy rules and fuzzy reasoning techniques to automatically construct concept maps and evaluate the relevance degrees between concepts.
Abstract in Chinese.................................................... i
Abstract in English.................................................... ii
Acknowledgements........................................................ iii
Contents................................................................ iv
List of Figures and Tables.............................................. vi
Chapter 1 Introduction.................................................. 1
1.1 Motivation.......................................................... 1
1.2 Related Literature.................................................. 2
1.3 Organization of This Thesis......................................... 3
Chapter 2 Fuzzy Set Theory and Educational Grading System............... 4
2.1 Basic Concepts of Fuzzy Sets........................................ 4
2.2 A review of Cheng-and-Yang's method for education
grading systems.......................................................... 9
2.3 A review of Weon-and-Kim's method for educational
grading systems.......................................................... 11
2.4 Summary............................................................. 19
Chapter 3 Two-Phase Concept Map Construction Algorithm.................. 20
3.1 Two-Phase Concept Map Construction Algorithm........................ 20
3.2 Summary............................................................. 22
Chapter 4 Automatically Constructing Grade Membership Functions
for Students' Evaluation for Fuzzy Grading Systems...................... 24
4.1 A Method for Constructing the Grade Membership Functions
of Teachers for Fuzzy Grading Systems.................................... 24
4.2 An Example.......................................................... 28
4.3 Summary............................................................. 35
Chapter 5 Evaluating Students' Learning Achievement Using
Fuzzy Membership Functions and Fuzzy Rules............................... 36
5.1 A New Method for Evaluating Students' Learning Achievement
Using Fuzzy Membership Functions and Fuzzy Rules......................... 36
5.2 An Example.......................................................... 58
5.3 Summary............................................................. 64
Chapter 6 Automatically Constructing Concept Maps Based On Fuzzy Rules
for Adaptive Learning Systems............................................. 65
6.1 Automatically Constructing Concept Maps Based on Fuzzy Rules
for Adaptive Learning Systems............................................. 65
6.2 An Example........................................................... 74
6.3 Summary.............................................................. 80
Chapter 7 Conclusions.................................................... 81
7.1 Contributions of This Thesis......................................... 81
7.2 Future Research...................................................... 82
References................................................................ 83
[1] J. Appleby, P. Samuels, and T. T. Jones, "Diagnosis–A knowledge-based diagnostic test of basic mathematical skills," Computers & Education, vol. 28, no. 2, pp. 113-131, 1997.
[2] S. M. Bai and S. M. Chen, "Automatically constructing grade membership functions for students' evaluation for fuzzy grading systems," Proceedings of the 6th International Symposium on Soft Computing for Industry, Budapest, Hungary, 2006.
[3] S. M. Bai and S. M. Chen, "A new method for students' learning achievement evaluation using fuzzy membership functions," Proceedings of the 11th Conference of Artificial Intelligence and Applications, Kaohsiung, Taiwan, Republic of China, pp. 177-184, 2006.
[4] S. M. Bai and S. M. Chen, "A new approach for automatically constructing concept maps based on fuzzy rules," Proceedings of the Twentieth International Conference on Industrial, Engineering & Other Applications of Applied Intelligent Systems, Kyoto, Japan, pp. 155-165, 2007.
[5] S. M. Bai and S. M. Chen, "Evaluating students' learning achievement using fuzzy membership functions and fuzzy rules," Expert Systems with Applications, vol. 34, no. 1, pp. 399-410, 2008.
[6] S. M. Bai and S. M. Chen, "Automatically constructing concept maps based on fuzzy rules for adaptive learning systems," Expert Systems with Applications, 2008.
[7] R. Biswas, "An application of fuzzy sets in students' evaluation," Fuzzy Sets and Systems, vol. 74, no. 2, pp. 187-194, 1995.
[8] V. Carchiolo, A. Longheu, and M. Malgeri, "Adaptive formative paths in a web-based learning environment," Educational Technology and Society, vol. 5, no. 4, pp. 64-75, 2002.
[9] D. F. Chang and C. M. Sun, "Fuzzy assessment of learning performance of junior high school students," Proceedings of the 1993 First National Symposium on Fuzzy Theory and Applications, Hsinchu, Taiwan, Republic of China, pp. 10-15, 1993.
[10] C. H. Cheng and K. L. Yang, "Using fuzzy sets in education grading system," Journal of Chinese Fuzzy Systems Association, vol. 4, no. 1, pp. 81-89, 1998.
[11] S. M. Chen and C. H. Lee, "New methods for students' evaluating using fuzzy sets," Fuzzy Sets and Systems, vol. 104, no. 2, pp. 209-218, 1999.
[12] T. T. Chiang and C. M. Lin,"Application of fuzzy theory to teaching assessment," Proceedings of the 1994 Second National Conference on Fuzzy Theory and Applications, Taipei, Taiwan, Republic of China, pp.92-97, 1994.
[13] J. R. Echauz and G. J. Vachtsevanos, "Fuzzy grading system," IEEE Transactions on Education, vol. 38, no. 2, pp.158-165, 1995.
[14] H. Gamboa, "Designing intelligent tutoring systems: A Bayesian approach," Proceedings of the 3rd International Conference on Enterprise Information Systems, Setubal, Portugal, pp. 452-458, 2001.
[15] G. J. Hwang, "A conceptual map model for developing intelligent tutoring systems," Computers & Education, vol. 40, no. 3, pp. 217-235, 2003.
[16] G. J. Hwang, C. L. Hsiao, and C. R. Tseng, "A computer-assisted approach to diagnosing student learning problem in science course," Journal of Information Science & Engineering, vol. 19, no. 2, pp. 229-248, 2003.
[17] C. S. Hsu, S. F. Tu, and G. J. Hwang, "A concept inheritance method for learning diagnosis of a network based testing and evaluation system," Proceedings of the 7th International Conference on Computer-Assisted Instructions, pp. 602-609, 1998.
[18] C. K. Law, "Using fuzzy numbers in education grading system," Fuzzy Sets and Systems, vol. 83, no. 3, pp. 311-323, 1996.
[19] J. Ma and D. Zhou, "Fuzzy set approach to the assessment of student-centered learning," IEEE Transactions on Education, vol. 43, no. 2, pp. 237-241, 2000.
[20] J. D. Novak, "Learning, creating, and using knowledge: Concept maps as facilitative tools in schools and corporations," Lawrence Erlbaum Associates, 1998.
[21] W. J. Popham, "Classroom assessment: what teachers need to know," Pearson Allyn & Bacon, pp. 222-227, 1999.
[22] K. A. Rasmani and Q. Shen, "Data-driven fuzzy rule generation and its application for student academic performance evaluation," Applied Intelligence, vol. 25, no. 3, pp. 305-319, 2006.
[23] P. C. Sue, J. F. Weng, J. M. Su, and S. S. Tseng, "A new approach for constructing the concept map," Proceedings of the 2004 IEEE International Conference on Advanced Learning Technologies, pp. 76-80, 2004.
[24] C. J. Tsai, S. S. Tseng, and C. Y. Lin, "A two-phase fuzzy mining and learning algorithm for adaptive learning environment," Proceedings of the International Conference on Computational Science, Lecture Notes in Computer Science (LNCS 2074), California, U. S. A., vol. 2, pp. 429-438, 2001.
[25] H. Y. Wang and S. M. Chen, "New methods for evaluating the answerscripts of students using fuzzy sets," Proceedings of the 19th International Conference on Industrical, Engineering & Other Applications of Applied Intelligent Systems, Annecy, France, pp. 432-441, 2006.
[26] H. Y. Wang and S. M. Chen, "New methods for evaluating students' answerscripts using fuzzy numbers associated with degrees of confidence," Proceedings of the 2006 IEEE International Conference on Fuzzy Systems, Vancouver, BC, Canada, pp. 5492-5497, 2006.
[27] S. Weon and J. Kim, "Learning achievement evaluation strategy using fuzzy membership function," Proceedings of the Frontiers in Education Conference, vol. 1, pp. 19-24, 2001.
[28] E. Wilson, C. L. Karr, and L. M. Freeman, "Flexible, adaptive, automatic fuzzy-based grade assigning system," Proceedings of the 1998 North American Fuzzy Information Processing Society (NAFIPS) Conference, pp. 334-338, 1998.
[29] M. H. Wu, Research on Applying Fuzzy Set Theory and Item Response Theory to Evaluate Learning Performance, Master Thesis, Department of Information Management, Chaoyang University of Technology, Wufeng, Taichung County, Republic of China, 2003.
[30] D. F. Watson, Contouring: A Guide to The Analysis and Display of Spatial Data. Australia, Pergamon Press, Australia, 1992.
[31] L. A. Zadeh, "Fuzzy sets," Information and Control, vol. 8, pp. 338-353, 1965.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top