跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.176) 您好!臺灣時間:2025/09/08 07:24
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:吳瑞翊
研究生(外文):Wu, Jui-Yi
論文名稱:基於光場技術下的近眼顯示器的視野校正方式以及解析度提升的方法
論文名稱(外文):Field Aberration Corrected Design and Resolution Enhanced Method for Near-eye Display Based on Light Field Technology
指導教授:黃乙白黃乙白引用關係
指導教授(外文):Huang, Yi-Pai
學位類別:博士
校院名稱:國立交通大學
系所名稱:電機學院博士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:108
語文別:英文
論文頁數:105
中文關鍵詞:光場自由曲面解析度提升近眼顯示器
外文關鍵詞:light fieldfree-formresolution enhancementnear-eye display
相關次數:
  • 被引用被引用:0
  • 點閱點閱:381
  • 評分評分:
  • 下載下載:25
  • 收藏至我的研究室書目清單書目收藏:0
隨著近年來近眼顯示器的技術蓬勃發展,人們漸漸的開始關注起不同種類的近眼顯示器,像是虛擬實境或擴增實境的商品,如PlayStation VR、HTC Vive和Microsoft HoloLens。然而,以目前使用雙眼視差技術的商品的客群意見回饋,發現這樣的硬體裝置並不能滿足消費者的需求,其中影響最為嚴重的兩項因素為頭戴式裝置的視覺幅衝突(VAC)以及龐大的硬體裝置,而導致無法久戴的狀況。為此,研究學者們正努力朝著AR 或VR應該要具備的性能,如廣大的視野、高解析度、正確的深度資料、視力矯正功能和微小化的硬體機構。光場技術是一種可以解決視覺幅衝突(VAC)以及微小化硬體光機的立體技術,但光場技術具有被限制的視野和低解析度的特性。本論文主要陳述如何解決被限制的視野以及提高解析度的方式。
在本論文中,我將提出光場的數學化模型建立、高精準度的光場演算法、視野覆蓋率100%完整且清晰的影像以及1.41倍解析度提升的裝置。其中,自由曲面的透鏡設計和場像差矯正的透鏡設計皆可以抑制像差對於大角度視野的影響,而使得有效視野從20°提升至46° (視野覆蓋率100%)。動態像素位移元件採用X-FOS平板以及石英平板造成斜向微小的像素位移量,進而在光場影像畫面中達到1.41倍等校解析力的提升。最後成品的展現可以達到45.9°×26.3°的視野以及15.9PPD提升的解析度。我相信本論文研究所採取的方法可以提升光場近眼顯示器的影像品質,並提升其在消費性市場上的競爭力。
As the developing technology of near-eye displays, people have known the various application for VR and AR, like Sony PlayStation VR, HTC Vive, Microsoft HoloLens. However, current NEDs using the stereoscopic method can not touch the heart for customers because of two serious disadvantages; one is visual fatigue caused by VAC, and the other one is bulky devices. Therefore, the ability of wide FOV, high resolution, correct depth cue, adaptive prescription, and small form factor are the target for the ideal NEDs for both AR and VR. The light field based near-eye display is a VAC free and small form factor 3D technology, but the limit FOV and low resolution. This dissertation aims to increase both FOV and resolution of LFNEDs, as the following contribution.
The mathematic form for system performance, high-acuity of light field rendering algorithm, full and clear image with entire FOV by optimized lenslets, and the resolution enhanced method with 1.41 times are disclosed in this dissertation. In detail, the free-form lens array and field aberration-corrected lens is proposed for suppressing the ray aberration at peripheral FOV, and the FOV is increased from 20° to 46° (100% of FOV). The proposed compact E-shifting device using the time-multiplexed method with X-FOS plate and quartz plate for a slightly shifting pixel can enhance the 1.41 times the light field image in the LFNED. The prototype reaches 45.9°× 26.3° FOV, 15.9 PPD with applied E-shifting device. I do believe that the proposed method would make better LFNED and increase the competitiveness for the market.
摘  要 i
Abstract ii
誌  謝 iii
Contents iv
List of Tables vii
Figure Captions viii
List of Used Abbreviation and Symbols xii
Chapter 1 Introduction 1
1.1 Preface 1
1.2 Near-eye Display (NED) 2
1.2.1 Vergence-accommodation Conflict (VAC) 3
1.2.2 Optical Properties 5
1.3 Light Field Technology 5
1.4 Motivations and Objectives 6
1.5 Organization of This Dissertation 7
Chapter 2 Prior Arts for Light Field Near-eye Display 8
2.1 Integral Image Style 8
2.1.1 Near-eye Light Field Display in 2013 (MLA Based LFNED) 10
2.1.2 Slim Near-eye Display in 2015 (PLA Based LFNED) 11
2.1.3 Pin-light Display in 2014 (PLS Based LFNED) 13
2.2 Other Style 14
2.2.1 Multi-layer Near-eye Display 14
2.2.2 Focus-tunable Near-eye Display 16
2.3 Discussion of Prior Arts 17
Chapter 3 Properties of Light Field Near-eye Display 19
3.1 Field of View 20
3.2 Resolution 21
3.3 Depth of Field 22
3.4 NED System Performance Analysis 24
3.5 Light Field Ray Tracing Algorithm 29
3.5.1 Flow of Proposed LFNED Tracing Algorithm 30
3.5.2 Proposed Ray Tracing Method 33
3.6 Image Formation Modeling and Analysis Tool 35
Chapter 4 Field Correction Design for LFNED 36
4.1 Problem of Field of View 37
4.2 Free-form Optical Design 38
4.2.1 Lens Array Modeling in Zemax Studio 38
4.2.2 Free-form Surface Optimization 40
4.3 Light Field Virtual Image Simulation 44
4.4 Field Aberration-corrected Lens Design 47
4.5 Analysis for Two Design 50
4.6 Prototype 51
4.7 Summary 54
Chapter 5 Compact Resolution Enhanced Device for LFNED 55
5.1 Introduction of Wobulation 55
5.1.1 Spatial Multiplexed Method on HMD 56
5.1.2 Time Multiplexed Method on HMD 57
5.1.3 Objective 59
5.2 Proposed Compact E-shifting Device [67] 60
5.3 Analysis of Resolution Enhancement 63
5.4 Algorithm 65
5.5 Experimental Results 67
5.5.1 Measurement of E-shifting Amount 67
5.5.2 Resolution Enhancement on Flat Panel Display 69
5.5.3 Resolution Enhancement on Proposed LFNED 70
5.6 Summary 73
Chapter 6 Discussion 74
6.1 Software 74
6.2 Hardware 76
6.3 Remaining Problem 78
Chapter 7 Conclusions and Future Research 81
7.1 Conclusions 81
7.2 Future Research 83
7.2.1 FOV for Large Panel 83
7.2.2 Resolution for Human Visual Acuity 86
7.2.3 E-shifting Algorithm Optimization 88
Reference 91
Curriculum Vitae 97
1. Bernard Kress, Ehsan Saeedi, and Vincent Brac-de-la-Perriere, "The segmentation of the HMD market: Optics for smart glasses, smart eyewear, AR and VR headsets", Photonics Applications for Aviation, Aerospace, Commercial, and Harsh Environments V: International Society for Optics and Photonics, 2014.
2. Dean Evans. "The future of VR: from virutal reality goggles to UHD VR glasses." 2016; Available from: https://sapphirenation.net/future-of-vr/.
3. Sagar R Chavan, "Augmented Reality vs. Virtual Reality: Differences and Similarities." 2014.
4. Kelsey Reobarts. "Differences between Virtual Reality and Augmented Reality." 2018; Available from: http://www.differencebetween.net/technology/differences-between-virtual-reality-and-augmented-reality/.
5. Ricardo Diaz. "Augmented Reality Versus virtual Reality: The Battle Is Real." 2016; Available from: http://www.differencebetween.net/technology/differences-between-virtual-reality-and-augmented-reality/.
6. Aviv Frommer, "11‐3: Invited Paper: Lumus Optical Technology for AR", SID Symposium Digest of Technical Papers: Wiley Online Library, 2017.
7. Seungjae Lee, Byounghyo Lee, Jaebum Cho, Changwon Jang, Jonghyun Kim, and Byoungho Lee, "Analysis and implementation of hologram lenses for see-through head-mounted display." IEEE Photonics Technology Letters. 29(1): p. 82-85, 2016.
8. Wanmin Wu, Kathrin Berkner, Ivana Tošić, and Nikhil Balram, "Personal Near-to-Eye Light-Field Displays." Information Display, Frontline Technology, 2014.
9. David M Hoffman, Ahna R Girshick, Kurt Akeley, and Martin S Banks, "Vergence–accommodation conflicts hinder visual performance and cause visual fatigue." Journal of vision. 8(3): p. 33-33, 2008.
10. William H Ittelson and Adelbert Ames Jr, "Accommodation, convergence, and their relation to apparent distance." The Journal of Psychology. 30(1): p. 43-62, 1950.
11. Nobuyuki Hiruma and Tadahiko Fukuda, "Accommodation response to binocular stereoscopic TV images and their viewing conditions." SMPTE journal. 102(12): p. 1137-1140, 1993.
12. Nick Holliman, "3D display systems." to appear: p. 0-7503, 2005.
13. Stephan Reichelt, Ralf Häussler, Gerald Fütterer, and Norbert Leister, "Depth cues in human visual perception and their realization in 3D displays", Proc. SPIE, 2010.
14. Jason Geng, "Three-dimensional display technologies." Advances in optics and photonics. 5(4): p. 456-535, 2013.
15. Ian P Howard and Brian J Rogers, "Binocular vision and stereopsis." 1995: Oxford University Press, USA.
16. Gunter K Von Noorden, "Binocular vision & ocular motility." 1990.
17. Ivan E Sutherland, "A head-mounted three dimensional display", Proceedings of the December 9-11, 1968, fall joint computer conference, part I: ACM, 1968.
18. Ian P Howard and Brian J Rogers, "Seeing in depth, Vol. 2: Depth perception." 2002: University of Toronto Press.
19. Sowmya Ravikumar, Kurt Akeley, and Martin S Banks, "Creating effective focus cues in multi-plane 3D displays." Optics express. 19(21): p. 20940-20952, 2011.
20. Nikhil Balram, "Light Field Imaging and Display Systems." 2017.
21. Cong Chen, Huan Deng, Qiong‐Hua Wang, and Yu‐Tong Song, "Measurement and analysis on the accommodation responses to real‐mode, virtual‐mode, and focused‐mode integral imaging display." Journal of the Society for Information Display,
22. Huan Deng, Qiong‐Hua Wang, Cheng‐Gao Luo, Chun‐Ling Liu, and Chen Li, "Accommodation and convergence in integral imaging 3D display." Journal of the Society for Information Display. 22(3): p. 158-162, 2014.
23. Ki-Hong Choi, Junkyu Yim, Young Min Kim, and Sung-Wook Min, "Measurement of accommodation response of human eye to integral floating display." Applied optics. 54(26): p. 7925-7932, 2015.
24. Gabriel Lippmann, "Epreuves reversibles donnant la sensation du relief." J. Phys. Theor. Appl. 7(1): p. 821-825, 1908.
25. Adrian Stern and Bahram Javidi, "Three-dimensional image sensing, visualization, and processing using integral imaging." Proceedings of the IEEE. 94(3): p. 591-607, 2006.
26. RaÚl Martinez-Cuenca, Genaro Saavedra, Manuel Martinez-Corral, and Bahram Javidi, "Progress in 3-D multiperspective display by integral imaging." Proceedings of the IEEE. 97(6): p. 1067-1077, 2009.
27. Jung-Yong Son, Vladmir V Saveljev, Yong-Jin Choi, Ji-Eun Bahn, Sung-Kyu Kim, and Hyun-Hee Choi, "Parameters for designing autostereoscopic imaging systems based on lenticular, parallax barrier, and integral photography plates." Optical Engineering. 42(11): p. 3326-3334, 2003.
28. Douglas Lanman and David Luebke, "Near-eye light field displays." ACM Transactions on Graphics (TOG). 32(6): p. 220, 2013.
29. Hekun Huang and Hong Hua, "High-performance integral-imaging-based light field augmented reality display using freeform optics." Optics express. 26(13): p. 17578-17590, 2018.
30. Hekun Huang and Hong Hua, "High-performance integral-imaging-based light field augmented reality display", Digital Optics for Immersive Displays: International Society for Optics and Photonics, 2018.
31. Hong Hua and Bahram Javidi, "A 3D integral imaging optical see-through head-mounted display." Optics express. 22(11): p. 13484-13491, 2014.
32. Kaan Akşit, Jan Kautz, and David Luebke, "Slim near-eye display using pinhole aperture arrays." Applied optics. 54(11): p. 3422-3427, 2015.
33. Andrew Maimone, Douglas Lanman, Kishore Rathinavel, Kurtis Keller, David Luebke, and Henry Fuchs, "Pinlight displays: wide field of view augmented reality eyeglasses using defocused point light sources", ACM SIGGRAPH 2014 Emerging Technologies: ACM, 2014.
34. "LetinAR : Pin-mirror AR Display." Available from: https://letinar.com/technology/.
35. Fu-Chung Huang, David Luebke, and Gordon Wetzstein, "The light field stereoscope." ACM SIGGRAPH Emerging Technologies. 24, 2015.
36. Andrew Maimone and Henry Fuchs, "Computational augmented reality eyeglasses", 2013 IEEE International Symposium on Mixed and Augmented Reality (ISMAR): IEEE, 2013.
37. Robert Konrad, Emily A Cooper, and Gordon Wetzstein, "Novel optical configurations for virtual reality: evaluating user preference and performance with focus-tunable and monovision near-eye displays", Proceedings of the 2016 CHI conference on human factors in computing systems: ACM, 2016.
38. Hung-Shan Chen, Yu-Jen Wang, Po-Ju Chen, and Yi-Hsin Lin, "Electrically adjustable location of a projected image in augmented reality via a liquid-crystal lens." Optics Express. 23(22): p. 28154-28162, 2015.
39. Sheng Liu, Dewen Cheng, and Hong Hua, "An optical see-through head mounted display with addressable focal planes", 2008 7th IEEE/ACM International Symposium on Mixed and Augmented Reality: IEEE, 2008.
40. Robert Konrad, Nitish Padmanaban, Keenan Molner, Emily A Cooper, and Gordon Wetzstein, "Accommodation-invariant computational near-eye displays." ACM Transactions on Graphics (TOG). 36(4): p. 88, 2017.
41. Nitish Padmanaban, Robert Konrad, and Gordon Wetzstein, "Autofocals: gaze-contingent eyeglasses for presbyopes", ACM SIGGRAPH 2018 Emerging Technologies: ACM, 2018.
42. David Dunn, Cary Tippets, Kent Torell, Petr Kellnhofer, Kaan Akşit, Piotr Didyk, Karol Myszkowski, David Luebke, and Henry Fuchs, "Wide field of view varifocal near-eye display using see-through deformable membrane mirrors." IEEE Transactions on Visualization and Computer Graphics. 23(4): p. 1322-1331, 2017.
43. Xinda Hu and Hong Hua, "48.1: Distinguished Student Paper: A Depth‐Fused Multi‐Focal‐Plane Display Prototype Enabling Focus Cues in Stereoscopic Displays", SID Symposium Digest of Technical Papers: Wiley Online Library, 2011.
44. Xinda Hu and Hong Hua, "Design and assessment of a depth-fused multi-focal-plane display prototype." Journal of Display Technology. 10(4): p. 308-316, 2014.
45. Xinda Hu and Hong Hua, "High-resolution optical see-through multi-focal-plane head-mounted display using freeform optics." Optics express. 22(11): p. 13896-13903, 2014.
46. H Hoshino, F Okano, H Isono, and I Yuyama, "Analysis of resolution limitation of integral photography." JOSA A. 15(8): p. 2059-2065, 1998.
47. Douglas Lanman and David Luebke, "Supplementary Material: Near-Eye Light Field Displays."
48. Gang Li, Ki-Chul Kwon, Gwan-Ho Shin, Ji-Seong Jeong, Kwan-Hee Yoo, and Nam Kim, "Simplified integral imaging pickup method for real objects using a depth camera." Journal of the Optical Society of Korea. 16(4): p. 381-385, 2012.
49. Bin Wang and Kenneth J Ciuffreda, "Depth-of-focus of the human eye in the near retinal periphery." Vision Research. 44(11): p. 1115-1125, 2004.
50. Kenneth N Ogle and J Theodore Schwartz, "Depth of focus of the human eye." JOSA. 49(3): p. 273-280, 1959.
51. Sheng Liu and Hong Hua, "A systematic method for designing depth-fused multi-focal plane three-dimensional displays." Optics express. 18(11): p. 11562-11573, 2010.
52. Zong Qin, Ping‐Yen Chou, Jui‐Yi Wu, Yu‐Ting Chen, Cheng‐Ting Huang, Nikhil Balram, and Yi‐Pai Huang, "Image formation modeling and analysis of near‐eye light field displays." Journal of the Society for Information Display,
53. Xinzhu Sang, Xin Gao, Xunbo Yu, Shujun Xing, Yuanhang Li, and Yongle Wu, "Interactive floating full-parallax digital three-dimensional light-field display based on wavefront recomposing." Optics express. 26(7): p. 8883-8889, 2018.
54. Will Allen and Robert Ulichney, "47.4: Invited paper: Wobulation: Doubling the addressed resolution of projection displays", SID Symposium Digest of Technical Papers: Wiley Online Library, 2005.
55. Niranjan Damera-Venkata and Nelson L Chang, "Realizing super-resolution with superimposed projection", Computer Vision and Pattern Recognition, 2007. CVPR'07. IEEE Conference on: IEEE, 2007.
56. Floraine Berthouzoz and Raanan Fattal, "Resolution enhancement by vibrating displays." ACM Transactions on Graphics (TOG). 31(2): p. 15, 2012.
57. Joshua Napoli, Sourav R Dey, Sandy Stutsman, Oliver S Cossairt, Thomas J Purtell II, Samuel L Hill, and Gregg E Favalora, "Imaging artifact precompensation for spatially multiplexed 3-D displays", Stereoscopic Displays and Applications XIX: International Society for Optics and Photonics, 2008.
58. Hsin-Hsueh Lee, Po-Yuan Hsieh, Wen-Chen Chu, Genaro Saavedra, Manuel Martinez-Corral, and Yi-Pai Huang, "Resolution Enhanced 3D Light Field Microscope with Liquid Crystal Wedge." International Display Workshops in conjunction with Asia Display (IDW/AD) Fukuoka, Japan,: p. 3DSAp2/3Dp2-5, 2016.
59. Felix Heide, Douglas Lanman, Dikpal Reddy, Jan Kautz, Kari Pulli, and David Luebke, "Cascaded displays: spatiotemporal superresolution using offset pixel layers." ACM Transactions on Graphics (TOG). 33(4): p. 60, 2014.
60. Douglas Lanman. "Cascaded Displays: Spatiotemporal Superresolution using Offset Pixel Layers." 2014; Available from: https://www.youtube.com/watch?v=0XwaARRMbSA.
61. "Cascaded displays: spatiotemporal surperresolution using offset pixels..(SIGGRAPH 2014 Presentation)." Research in Science and Technology 2017; Available from: https://www.youtube.com/watch?v=blWNzLNWbeE.
62. Xuyang Wang, Yangdong Deng, Guiju Zhang, and Zhihua Wang, "Apparent resolution enhancement for near-eye light field display", SIGGRAPH Asia 2015 Mobile Graphics and Interactive Applications: ACM, 2015.
63. Floraine Berthouzoz and Raanan Fattal, "Apparent resolution enhancement for motion videos", Proceedings of the ACM Symposium on Applied Perception: ACM, 2012.
64. Piotr Didyk, Elmar Eisemann, Tobias Ritschel, Karol Myszkowski, and Hans-Peter Seidel, "Apparent display resolution enhancement for moving images", ACM Transactions on Graphics (TOG): ACM, 2010.
65. Yun-Han Lee, Tao Zhan, and Shin-Tson Wu, "Enhancing the resolution of a near-eye display with a Pancharatnam–Berry phase deflector." Optics letters. 42(22): p. 4732-4735, 2017.
66. Joshua Napoli, Sourav R Dey, Sandy Stutsman, Oliver S Cossairt, Thomas J Purtell, Samuel L Hill, and Gregg E Favalora, "Imaging artifact precompensation for spatially multiplexed 3-D displays", Stereoscopic Displays and Applications XIX: International Society for Optics and Photonics, 2008.
67. Jui‐Yi Wu, Ping‐Yen Chou, Kuei‐En Peng, Yi‐Pai Huang, Hsin‐Hsiang Lo, Chuan‐Chung Chang, and Fu‐Ming Chuang, "Resolution enhanced light field near eye display using e‐shifting method with birefringent plate." Journal of the Society for Information Display. 26(5): p. 269-279, 2018.
68. LCTEC. "Sample Specification of X-FOS(G2)/X-FOS(G2)-AR." Available from: http://www.lc-tec.se/wp-content/uploads/2016/10/X-FOSG2_X-FOSG2-AR-specification-1602.pdf.
69. Donghak Shin and Bahram Javidi, "Three-dimensional integral imaging with improved visualization using subpixel optical ray sensing." Optics letters. 37(11): p. 2130-2132, 2012.
70. Zong Qin, Ping-Yen Chou, Jui-Yi Wu, Cheng-Ting Huang, and Yi-Pai Huang, "Resolution-enhanced light field displays by recombining subpixels across elemental images." Optics letters. 44(10): p. 2438-2441, 2019.
71. Boaz Jessie Jackin, Lode Jorissen, Ryutaro Oi, Jui Yi Wu, Koki Wakunami, Makoto Okui, Yasuyuki Ichihashi, Philippe Bekaert, Yi Pai Huang, and Kenji Yamamoto, "Digitally designed holographic optical element for light field displays." Optics letters. 43(15): p. 3738-3741, 2018.
72. Michael Stengel, Steve Grogorick, Martin Eisemann, Elmar Eisemann, and Marcus A Magnor, "An Affordable Solution for Binocular Eye Tracking and Calibration in Head-mounted Displays", Proceedings of the 23rd ACM international conference on Multimedia: ACM, 2015.
73. Rik Pieters and Michel Wedel, "A review of eye-tracking research in marketing." in Review of marketing research. 2017, Routledge. p. 143-167.
74. Thomas C Kübler, Katrin Sippel, Wolfgang Fuhl, Guilherme Schievelbein, Johanna Aufreiter, Raphael Rosenberg, Wolfgang Rosenstiel, and Enkelejda Kasneci, "Analysis of eye movements with Eyetrace", International Joint Conference on Biomedical Engineering Systems and Technologies: Springer, 2015.
75. Myungjin Cho and Bahram Javidi, "Computational reconstruction of three-dimensional integral imaging by rearrangement of elemental image pixels." Journal of display technology. 5(2): p. 61-65, 2009.
76. Lode Jorissen, Boaz Jessie Jackin, Ryutaro Oi, Koki Wakunami, Makoto Okui, Yasuyuki Ichihashi, Gauthier Lafruit, Kenji Yamamoto, and Philippe Bekaert, "Homography based identification for automatic and robust calibration of projection integral imaging displays." Applied optics. 58(4): p. 1200-1209, 2019.
77. Shizheng Wang, Kien Seng Ong, Phil Surman, Junsong Yuan, Yuanjin Zheng, and Xiao Wei Sun, "Quality of experience measurement for light field 3D displays on multilayer LCDs." Journal of the Society for Information Display. 24(12): p. 726-740, 2016.
78. PA Surman, S Wang, J Yuan, and Y Zheng, "Spatial and angular resolution measurement of a tensor light field display", 2017 Progress in Electromagnetics Research Symposium-Fall (PIERS-FALL): IEEE, 2017.
79. Péter Tamás Kovács, Atanas Boev, Robert Bregović, and Atanas Gotchev, "Quality measurements of 3D light-field displays", Proc. Eighth International Workshop on Video Processing and Quality Metrics for Consumer Electronics (VPQM), 2014.
80. Péter Tamás Kovács, Kristóf Lackner, Attila Barsi, Ákos Balázs, Atanas Boev, Robert Bregović, and Atanas Gotchev, "Measurement of perceived spatial resolution in 3D light-field displays", 2014 IEEE International Conference on Image Processing (ICIP): IEEE, 2014.
81. Bernd Richter, Philipp Wartenberg, and Uwe Vogel, "Microdisplays for Smart Eyewear: OLED‐on‐silicon technology is the key for displays with high performance and low power consumption." Optik & Photonik. 13(1): p. 44-47, 2018.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top