跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.17) 您好!臺灣時間:2025/09/03 05:27
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:吳從華
研究生(外文):WU, TSUNG-HUA
論文名稱:運用分解式簡群演算法求解多目標動態武器-目標分配模型
論文名稱(外文):A Decomposition-Based Simplified Swarm Optimization for Multi-Objective Dynamic Weapon-Target Assignment Model
指導教授:賴智明
指導教授(外文):LAI, CHYH-MING
口試委員:孟昭宇劉達生
口試委員(外文):MENG, JAU-YULIU, TA-SHENG
口試日期:2019-04-23
學位類別:碩士
校院名稱:國防大學
系所名稱:資源管理及決策研究所
學門:商業及管理學門
學類:其他商業及管理學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:128
中文關鍵詞:多目標最佳化武器-目標分配進化式演算法簡群演算法
外文關鍵詞:multi-objective optimization problem (MOP)weapon-target assignment (WTA)evolutionary algorithmsimplified swarm optimization (SSO)
相關次數:
  • 被引用被引用:1
  • 點閱點閱:735
  • 評分評分:
  • 下載下載:62
  • 收藏至我的研究室書目清單書目收藏:0
國土防衛作戰時,我軍將聯合陸、海、空軍,運用多種武器系統編成多層火網逐步削弱敵軍進攻能量。有效的火力分配是部署多層攔截火網的成功關鍵,涉及軍事作業研究中典型的武器-目標分配 (WTA) 問題。
接戰中,武器更改射擊目標將引發有形的成本及無形的風險,武器-目標分配時應盡量避免,然而,減少武器的目標轉換將限制其作戰效果的發揮。本研究以各階段間武器-目標分配的差異程度視為武器目標轉換的成本,建構多目標武器-目標分配最佳化模型,同時考慮最小化來襲目標的總期望威脅值(武器作戰效果)與武器-目標在各階段配對的差異程度(目標轉換成本),並提出分解式多目標簡群演算法(命名為dMOSSO)對問題求解。
為了評估dMOSSO的演算效能及效率,本研究基於建構的模型,設計了27組武器-目標分配問題,由dMOSSO與其他4種常用的多目標進化式演算法進行求解並比較結果。依據計算資源的充裕程度,演算法的比較區分兩部份:充裕與有限的計算資源下的比較,前者以演算法足夠收斂的適應函數的評估次數作為停止條件,後者則以有限的演算時間作為停止條件。無論在何種計算資源下,dMOSSO在求解效能、搜尋非支配解的品質及效率均優於其他演算法。
When homeland defense begins, our armed forces utilize all available weapons which constitute a multilayer defense system counteracting and eliminating the incoming targets. Effective weapon assignment is the key to success for the multilayer defense system and involves the weapon-target assignment (WTA) problem which is a classical constrained combinatorial optimization problem arising the field of military operations research.
In a continuous fire engagement, a fire transferring is caused by direction and position changes of targets. It results in firing data corrections (tangible costs) and even the translocation of weapons (intangible risks). Thus, the fire transferring should be avoided as possible. However, the decrease of the fire transferring will impact shooting ability and operational effectiveness of weapons. Therefore, the WTA problem considered in this study is formulated into a multi-objective optimization problem which employs the minimum of the expected threat value of incoming targets and minimum of the costs of the fire transferring as two competing objective functions. In addition, a novel decomposition-based Multi-Objective Simplified Swarm Optimization, known as dMOSSO, is proposed for solving this problem.
To empirically evaluate the performance of the proposed method, experiments are conducted using twenty-seven randomly generated multi-objective WTA problems ranging from small to large scale, and the corresponding results are compared with four state-of-the-art methods. Numerical results show that dMOSSO outperforms its competitors on solving multi-objective WTA problems discussed in this study.
目次
謝辭
摘要
Abstract
目次
表次
圖次
第一章 緒論
1.1 研究背景
1.2 研究動機與目的
1.3 研究範圍與限制
1.4 研究流程
第二章 文獻探討
2.1 武器-目標分配問題 (weapon-target assignment, WTA)
2.1.1 WTA定義與分類
2.1.2 SWTA文獻回顧
2.1.3 DWTA文獻回顧
2.1.4 多目標DWTA (MODWTA)
2.1.5 小結
2.2 多目標最佳化
2.2.1 多目標最佳化問題
2.2.2 多目標最佳化方法
2.2.3 多目標進化式演算法
2.2.4 基於分解的多目標進化式演算法
2.2.5 小結
2.3 簡群演算法 (Simplified Swarm Optimization, SSO)
2.3.1 更新原理
2.3.2 簡群演算法的發展及其應用
2.3.3 離散簡群演算法的改進策略
2.3.4 多目標簡群演算法(Multi-Objective Simplified Swarm Optimization, MOSSO)
2.3.5 小結
第三章 模型建構
3.1 假設及符號說明
3.2 模型建構原則
3.3 模型說明
第四章 研究方法建構
4.1 多目標最佳化架構
4.1.1 分解機制
4.1.2 更新機制
4.1.3 領導解機制
4.1.4 非支配解維持機制
4.2 演算法步驟
4.2.1 dMOSSO步驟
4.2.2 演算法流程圖
4.3 dMOSSO求解演示
4.3.1 問題範例
4.3.2 解編碼
4.3.3 計算適應函數值
4.3.4 更新群體
第五章 研究方法評估
5.1 實驗設計
5.1.1 績效指標
5.1.2 資料集產生說明
5.2 領導解機制選擇
5.2.1 機制比較
5.2.2 K近鄰敏感性分析
5.3 dMOSSO評估
5.3.1 充裕的計算資源下比較
5.3.2 有限的計算資源下比較
5.4 統計分析
5.5 多準則決策
第六章 結論與建議
6.1 研究貢獻
6.2 未來研究方向
參考文獻
英文文獻
英文文獻
Abbass, H. A., Sarker, R., & Newton, C. (2001). PDE: a Pareto-frontier differential evolution approach for multi-objective optimization problems. In Proceedings of the 2001 Congress on Evolutionary Computation (IEEE Cat. No. 01TH8546) (Vol. 2, pp. 971-978). IEEE.
Ahmed, B. S., Sahib, M. A., & Potrus, M. Y. (2014). Generating combinatorial test cases using Simplified Swarm Optimization (SSO) algorithm for automated GUI functional testing. Engineering Science and Technology, an International Journal, 17(4), 218-226.
Alberts, D. S., Garstka, J. J., & Stein, F. P. (2000). Network Centric Warfare: Developing and Leveraging Information Superiority. Assistant Secretary of Defense (C3I/Command Control Research Program) Washington DC.
Athans, M. (1987). Command and control (C2) theory: A challenge to control science. IEEE Transactions on automatic control, 32(4), 286-293.
Athans, M., & Hosein, P. A. (1990). Preferential defense strategies.
Azizipanah-Abarghooee, R. (2013). A new hybrid bacterial foraging and simplified swarm optimization algorithm for practical optimal dynamic load dispatch. International Journal of Electrical Power & Energy Systems, 49, 414-429.
Blasco, X., Herrero, J. M., Sanchis, J., & Martínez, M. (2008). A new graphical visualization of n-dimensional Pareto front for decision-making in multiobjective optimization. Information Sciences, 178(20), 3908-3924.
Cai, H., Liu, J., Chen, Y., & Wang, H. (2006). Survey of the research on dynamic weapon-target assignment problem. Journal of Systems Engineering and Electronics, 17(3), 559-565.
Chang, T. Q., Kong, D. P., Hao, N., Xu, K. H., & Yang, G. Z. (2018). Solving the dynamic weapon target assignment problem by an improved artificial bee colony algorithm with heuristic factor initialization. Applied Soft Computing, 70, 845-863.
Chen, J., Li, J., & Xin, B. (2017). DMOEA-εC: decomposition-based multi-objective evolutionary algorithm with the ε-constraint framework. IEEE Transactions on Evolutionary Computation, 21(5), 714-730.
Chen, J., Xin, B., Peng, Z. H., Dou, L. H., & Zhang, J. (2009). Evolutionary decision-makings for the dynamic weapon-target assignment problem. Science in China Series F: Information Sciences, 52(11), 2006.
Chu, J. Y., & Su, Y. P. (2012). The application of TOPSIS method in selecting fixed seismic shelter for evacuation in cities. Systems Engineering Procedia, 3, 391-397.
Chung, Y. Y., & Wahid, N. (2012). A hybrid network intrusion detection system using simplified swarm optimization (SSO). Applied Soft Computing, 12(9), 3014-3022.
Coello, C. A. C., & Lamont, G. B. (2004). Applications of multi-objective evolutionary algorithms (Vol. 1). World Scientific.
Coello, C. A. C., Lamont, G. B., & Van Veldhuizen, D. A. (2007). Evolutionary algorithms for solving multi-objective problems (Vol. 5, pp. 79-104). New York: Springer.
Coello, C. A. C., Pulido, G. T., & Lechuga, M. S. (2004). Handling multiple objectives with particle swarm optimization. IEEE Transactions on evolutionary computation, 8(3), 256-279.
Coello, C. C. (2000). Handling preferences in evolutionary multiobjective optimization: A survey. In Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No. 00TH8512) (Vol. 1, pp. 30-37). IEEE.
Coello, C. C. (2006). Evolutionary multi-objective optimization: a historical view of the field. IEEE computational intelligence magazine, 1(1), 28-36.
Cullenbine, C. A. (2000). A tabu search approach to the weapons assignment model (Doctoral dissertation, Air Force Institute of Technology).
Czyzżak, P., & Jaszkiewicz, A. (1998). Pareto simulated annealing—a metaheuristic technique for multiple‐objective combinatorial optimization. Journal of Multi‐Criteria Decision Analysis, 7(1), 34-47.
Dai, C., Wang, Y. P., & Ye, M. (2015). A new multi-objective particle swarm optimization algorithm based on decomposition. Information Sciences, 325, 541-557.
Deb, K., Agrawal, S., Pratap, A., & Meyarivan, T. (2000, September). A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: NSGA-II. In International conference on parallel problem solving from nature (pp. 849-858). Springer, Berlin, Heidelberg.
Deb, K., Pratap, A., Agarwal, S., & Meyarivan, T. (2002). A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE transactions on evolutionary computation, 6(2), 182-197.
Derrac, J., García, S., Molina, D., & Herrera, F. (2011). A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms. Swarm and evolutionary computation, 1(1), 3-18.
DoD, US. (2017). Military and Security Developments Involving the People’s Republic of China 2017. Annual Report to Congress.
Dong, N., & Dai, C. (2019). An improvement decomposition-based multi-objective evolutionary algorithm using multi-search strategy. Knowledge-Based Systems, 163, 572-580.
Eckler, A. R., & Burr, S. A. (1972). Mathematical models of target coverage and missile allocation. Military operations research society alexandria va.
Fonseca, C. M., & Fleming, P. J. (1993, June). Genetic Algorithms for Multiobjective Optimization: FormulationDiscussion and Generalization. In Icga (Vol. 93, No. July, pp. 416-423).
Goldberg, D. E., & Deb, K. (1991). A comparative analysis of selection schemes used in genetic algorithms. In Foundations of genetic algorithms (Vol. 1, pp. 69-93). Elsevier.
Guo, J.L., and Fu, P., 2010. Multi-Objective Optimization of Weapon-Target Assignment (WTA) Using NSGA-Ⅱ. Fire Control & Command Control, 35(3), 130-134.
Havens, M. E. (2002). Dynamic allocation of fires and sensors (Doctoral dissertation, Monterey, California. Naval Postgraduate School).
Hosein, P. A., & Athans, M. (1990). Some analytical results for the dynamic weapon-target allocation problem (No. LIDS-P-1944). Massachusetts inst of tech cambridge lab for information and decision systems.
Hosein, P. A., Walton, J. T., & Athans, M. (1988). Dynamic weapon-target assignment problems with vulnerable C2 nodes (No. LIDS-P-1786). Massachusetts Inst of Tech Cambridge Lab for Information and Decision Systems.
Huang, C. L. (2015). A particle-based simplified swarm optimization algorithm for reliability redundancy allocation problems. Reliability Engineering & System Safety, 142, 221-230.
Huang, C. L., Jiang, Y. Z., Yin, Y., Yeh, W. C., Chung, V. Y. Y., & Lai, C. M. (2018, July). Multi Objective Scheduling in Cloud Computing Using MOSSO. In 2018 IEEE Congress on Evolutionary Computation (CEC) (pp. 1-8). IEEE.
Huang, C. L., & Yeh, W. C. (2014, December). A new K-harmonic means based simplified swarm optimization for data mining. In 2014 IEEE Symposium on Swarm Intelligence (pp. 1-5). IEEE.
Ibrahim, A., Rahnamayan, S., Martin, M. V., & Deb, K. (2018). 3D-RadVis Antenna: Visualization and performance measure for many-objective optimization. Swarm and evolutionary computation, 39, 157-176.
Ishibuchi, H., Sakane, Y., Tsukamoto, N., & Nojima, Y. (2009, October). Evolutionary many-objective optimization by NSGA-II and MOEA/D with large populations. In 2009 IEEE International Conference on Systems, Man and Cybernetics (pp. 1758-1763). IEEE.
Jaiswal, N. K. (2012). Military operations research: Quantitative decision making (Vol. 5). Springer Science & Business Media.
Jiang, Y., Yeh, W. C., Lai, C. M., Liu, H. H., Yeh, C. H., Chung, Y. Y., & Lin, J. S. (2016, July). Integrated use of soft computing and clustering for capacitated clustering single-facility location problem with one-time delivery. In 2016 IEEE Congress on Evolutionary Computation (CEC) (pp. 2701-2705). IEEE.
Jorgensen, C. C., & Strub, M. H. (1979). Analysis of Manual Threat Evaluation and Weapons Assignment (TEWA) in the AN/TSQ-73 Air Defense System (No. ARI-TR-419). Army research inst for the behavioral and social sciences alexandria va.
Karasakal, O. (2008). Air defense missile-target allocation models for a naval task group. Computers & Operations Research, 35(6), 1759-1770.
Ke, L., Zhang, Q., & Battiti, R. (2013). MOEA/D-ACO: A multiobjective evolutionary algorithm using decomposition and antcolony. IEEE transactions on cybernetics, 43(6), 1845-1859.
Khosla, D. (2001, August). Hybrid genetic approach for the dynamic weapon-target allocation problem. In Battlespace Digitization and Network-Centric Warfare (Vol. 4396, pp. 244-260). International Society for Optics and Photonics.
Knowles, J. D., & Corne, D. W. (2000). Approximating the nondominated front using the Pareto archived evolution strategy. Evolutionary computation, 8(2), 149-172.
Konak, A., Coit, D. W., & Smith, A. E. (2006). Multi-objective optimization using genetic algorithms: A tutorial. Reliability Engineering & System Safety, 91(9), 992-1007.
Kukkonen, S., & Deb, K. (2006). A fast and effective method for pruning of non-dominated solutions in many-objective problems. In Parallel Problem Solving from Nature-PPSN IX (pp. 553-562). Springer, Berlin, Heidelberg.
Kwon, O. J., Lee, K. S., Kang, D. H., & Park, S. S. (2007). A branch‐and‐price algorithm for a targeting problem. Naval Research Logistics (NRL), 54(7), 732-741.
Lai, C. M. (2018). Multi-objective simplified swarm optimization with weighting scheme for gene selection. Applied Soft Computing, 65, 58-68.
Lai, C. M. (2019). Integrating simplified swarm optimization with AHP for solving capacitated military logistic depot location problem. Applied Soft Computing.
Lai, C.M., & Yeh, W.C. (2016). Two-stage simplified swarm optimization for the redundancy allocation problem in a multi-state bridge system. Reliability Engineering & System Safety, 156, 148-158.
Lai, C. M., Yeh, W. C., & Chang, C. Y. (2016). Gene selection using information gain and improved simplified swarm optimization. Neurocomputing, 218, 331-338.
Lai, C.M., Yeh, W.C., & Huang, Y.C. (2017). Entropic simplified swarm optimization for the task assignment problem. Applied Soft Computing, 58, 115-127.
Leboucher, C., Shin, H. S., Siarry, P., Chelouah, R., Le Ménec, S., & Tsourdos, A. (2013). A two-step optimisation method for dynamic weapon target assignment problem. In Recent Advances on Meta-Heuristics and Their Application to Real Scenarios. IntechOpen.
Lee, Z. J., Lee, C. Y., & Su, S. F. (2002). An immunity-based ant colony optimization algorithm for solving weapon–target assignment problem. Applied Soft Computing, 2(1), 39-47.
Li, H., & Zhang, Q. F. (2009). Multiobjective optimization problems with complicated Pareto sets, MOEA/D and NSGA-II. IEEE transactions on evolutionary computation, 13(2), 284-302.
Li, H. R., & Miao, Y. (2000). WTA with the maximum kill probability based on simulated annealing algorithms. In Proc. Conf. Spec. Committee C2 Comput. Electron. Technol. Acad. Committee China (pp. 436-440).
Li, J., Chen, J., & Xin, B. (2015, July). Efficiently solving multi-objective dynamic weapon-target assignment problems by NSGA-II. In 2015 34th Chinese Control Conference (CCC) (pp. 2556-2561). IEEE.
Li, J., Chen, J., Xin, B., & Chen, L. (2017, June). Efficient multi-objective evolutionary algorithms for solving the multi-stage weapon target assignment problem: A comparison study. In 2017 IEEE Congress on Evolutionary Computation (CEC) (pp. 435-442). IEEE.
Li, J., Chen, J., Xin, B., & Dou, L. (2015, May). Solving multi-objective multi-stage weapon target assignment problem via adaptive NSGA-II and adaptive MOEA/D: A comparison study. In 2015 IEEE Congress on Evolutionary Computation (CEC) (pp. 3132-3139). IEEE.
Li, J., Chen, J., Xin, B., Dou, L., & Peng, Z. (2016, July). Solving the uncertain multi-objective multi-stage weapon target assignment problem via MOEA/D-AWA. In 2016 IEEE Congress on Evolutionary Computation (CEC) (pp. 4934-4941). IEEE.
Li, X. X., Wang, K. S., Liu, L. W., Xin, J., Yang, H. R., & Gao, C. Y. (2011). Application of the entropy weight and TOPSIS method in safety evaluation of coal mines. Procedia Engineering, 26, 2085-2091.
Lin, P. J., Cheng, S. Y., Yeh, W. C., Chen, Z. C., & Wu, L. J. (2017). Parameters extraction of solar cell models using a modified simplified swarm optimization algorithm. Solar Energy, 144, 594-603.
Lin, Q., Zhu, Q., Huang, P., Chen, J., Ming, Z., & Yu, J. (2015). A novel hybrid multi-objective immune algorithm with adaptive differential evolution. Computers & Operations Research, 62, 95-111.
Lu, C., Li, X. Y., Gao, L., Liao, W., & Yi, J. (2017). An effective multi-objective discrete virus optimization algorithm for flexible job-shop scheduling problem with controllable processing times. Computers & Industrial Engineering, 104, 156-174.
Lu, H., Zhang, H., Zhang, X., & Han, R. (2006, June). An improved genetic algorithm for target assignment, optimization of naval fleet air defense. In 2006 6th World Congress on Intelligent Control and Automation (Vol. 1, pp. 3401-3405). IEEE.
Malhotra, A., & Jain, R. (2001). Genetic algorithm for optimal weapon allocation in multilayer defence scenario. Defence science journal, 51(3), 285.
Mansour, I. B., Basseur, M., & Saubion, F. (2018). A multi-population algorithm for multi-objective knapsack problem. Applied Soft Computing, 70, 814-825.
Matlin, S. (1970). A review of the literature on the missile-allocation problem. Operations Research, 18(2), 334-373.
Mavrotas, G. (2009). Effective implementation of the ε-constraint method in multi-objective mathematical programming problems. Applied mathematics and computation, 213(2), 455-465.
Miettinen, K. (2012). Nonlinear multiobjective optimization (Vol. 12). Springer Science & Business Media.
Mishra, B. S. P., Kim, E., Bang, G. C., Dehuri, S., & Cho, S. B. (2015). Weapon target assignment problem: multi-objective formulation, optimisation using MOPSO and TOPSIS. International Journal of Intelligent Defence Support Systems, 5(3), 226-252.
Moscato, P. (1989). On evolution, search, optimization, genetic algorithms and martial arts: Towards memetic algorithms. Caltech concurrent computation program, C3P Report, 826, 1989.
Murphey, R. A. (2000). Target-based weapon target assignment problems. In Nonlinear Assignment Problems (pp. 39-53). Springer, Boston, MA.
Peng, G., Fang, Y. W., Chen, S. H., Peng, W. S., & Yang, D. D. (2016, October). A hybrid multi-objective discrete particle swarm optimization algorithm for cooperative air combat DWTA. In International Conference on Bio-Inspired Computing: Theories and Applications (pp. 114-119). Springer, Singapore.
Peng, W., Zhang, Q., & Li, H. (2009). Comparison between MOEA/D and NSGA-II on the multi-objective travelling salesman problem. In Multi-objective memetic algorithms (pp. 309-324). Springer, Berlin, Heidelberg.
Pohekar, S. D., & Ramachandran, M. (2004). Application of multi-criteria decision making to sustainable energy planning—a review. Renewable and sustainable energy reviews, 8(4), 365-381.
Qi, Y. T., Ma, X. L., Liu, F., Jiao, L. C., Sun, J. Y., & Wu, J. S. (2014). MOEA/D with adaptive weight adjustment. Evolutionary computation, 22(2), 231-264.
Qi, Y. T., Hou, Z. T., Li, H., Huang, J. B., & Li, X. D. (2015). A decomposition based memetic algorithm for multi-objective vehicle routing problem with time windows. Computers & Operations Research, 62, 61-77.
Qin, J., & Wu, X. (2017, July). Fire distribution of the ship-to-air missiles in the warship formation based on the market auction mechanism. In 2017 36th Chinese Control Conference (CCC) (pp. 10155-10159). IEEE.
rey Horn, J., Nafpliotis, N., & Goldberg, D. E. (1994, June). A niched Pareto genetic algorithm for multiobjective optimization. In Proceedings of the first IEEE conference on evolutionary computation, IEEE world congress on computational intelligence (Vol. 1, pp. 82-87).
Roux, J. N., & Van Vuuren, J. H. (2007). Threat evaluation and weapon assignment decision support: A review of the state of the art. ORiON, 23(2), 151-187.
Schaffer, J. D. (1985). Multiple objective optimization with vector evaluated genetic algorithms. In Proceedings of the First International Conference on Genetic Algorithms and Their Applications, 1985. Lawrence Erlbaum Associates. Inc., Publishers.
Shih, H. S., Shyur, H. J., & Lee, E. S. (2007). An extension of TOPSIS for group decision making. Mathematical and Computer Modelling, 45(7-8), 801-813.
Srinivas, N., & Deb, K. (1994). Muiltiobjective optimization using nondominated sorting in genetic algorithms. Evolutionary computation, 2(3), 221-248.
Syukran, M., Afizi, M., Yuk, Y. C., Yeh, W. C., Wahid, N., Zaidi, A., & Mujahid, A. (2011). Image classification technique using modified particle swarm optimization. Modern Applied Science, 5(5), 150-164.
Tamaki, H., Kita, H., & Kobayashi, S. (1996, May). Multi-objective optimization by genetic algorithms: A review. In Proceedings of IEEE international conference on evolutionary computation (pp. 517-522). IEEE.
Tian, Y., Cheng, R., Zhang, X., & Jin, Y. (2017). PlatEMO: A MATLAB platform for evolutionary multi-objective optimization [educational forum]. IEEE Computational Intelligence Magazine, 12(4), 73-87.
Tzeng, G. H., & Huang, J. J. (2011). Multiple attribute decision making: methods and applications. Chapman and Hall/CRC.
Van Veldhuizen, D. A., & Lamont, G. B. (2000). Multiobjective evolutionary algorithms: Analyzing the state-of-the-art. Evolutionary computation, 8(2), 125-147.
von Lücken, C., Barán, B., & Brizuela, C. (2014). A survey on multi-objective evolutionary algorithms for many-objective problems. Computational Optimization and Applications, 58(3), 707-756.
Wacholder, E. (1989). A neural network-based optimization algorithm for the static weapon-target assignment problem. ORSA Journal on computing, 1(4), 232-246.
Wang, J., Luo, P., Zhou, J., & Lan, X. (2017, July). Optimizing Weapon Target Assignment in Air to Ground Strike Based on Adaptive Immune Genetic Algorithm. In 2017 4th International Conference on Information Science and Control Engineering (ICISCE) (pp. 520-526). IEEE.
Wang, T. C., & Chang, T. H. (2007). Application of TOPSIS in evaluating initial training aircraft under a fuzzy environment. Expert Systems with Applications, 33(4), 870-880.
While, L., Hingston, P., Barone, L., & Huband, S. (2006). A faster algorithm for calculating hypervolume. IEEE transactions on evolutionary computation, 10(1), 29-38.
Xin, B., & Chen, J. (2012). An estimation of distribution algorithm with efficient constructive repair/improvement operator for the dynamic weapon-target assignment. In Proceedings of the 31st Chinese Control Conference (pp. 2346-2351). IEEE.
Xin, B., Chen, J., Peng, Z. H., Dou, L. H., & Zhang, J. (2011). An efficient rule-based constructive heuristic to solve dynamic weapon-target assignment problem. IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems and Humans, 41(3), 598-606.
Xin, B., Chen, J., Zhang, J., Dou, L. H., & Peng, Z. H. (2010). Efficient decision makings for dynamic weapon-target assignment by virtual permutation and tabu search heuristics. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 40(6), 649-662.
Yang, D. D., Jiao, L. C., Gong, M. G., & Feng, J. (2010). Adaptive ranks clone and k‐nearest neighbor list–based immune multi‐objective optimization. Computational Intelligence, 26(4), 359-385.
Yeh, W.C. (2013). New parameter-free simplified swarm optimization for artificial neural network training and its application in the prediction of time series. IEEE Transactions on Neural Networks and Learning Systems, 24(4), 661-665.
Yeh, W.C., Lai, C.M., & Chang, K.H. (2016). A novel hybrid clustering approach based on K-harmonic means using robust design. Neurocomputing, 173, 1720-1732.
Yeh, W. C. (2009). A two-stage discrete particle swarm optimization for the problem of multiple multi-level redundancy allocation in series systems. Expert Systems with Applications, 36(5), 9192-9200.
Yeh, W. C. (2012a). Novel swarm optimization for mining classification rules on thyroid gland data. Information Sciences, 197, 65-76.
Yeh, W. C. (2012b). Optimization of the disassembly sequencing problem on the basis of self-adaptive simplified swarm optimization. IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems and Humans, 42(1), 250-261.
Yeh, W. C. (2013). New parameter-free simplified swarm optimization for artificial neural network training and its application in the prediction of time series. IEEE Transactions on Neural Networks and Learning Systems, 24(4), 661-665.
Yeh, W. C. (2014). Orthogonal simplified swarm optimization for the series–parallel redundancy allocation problem with a mix of components. Knowledge-Based Systems, 64, 1-12.
Yeh, W. C., Chang, W. W., & Chiu, C. W. (2011). A simplified swarm optimization for discovering the classification rule using microarray data of breast cancer. International Journal of Innovative Computing, Information and Control, 7(5), 2235-2246.
Yeh, W. C., Chang, W. W., & Chung, Y. Y. (2009). A new hybrid approach for mining breast cancer pattern using discrete particle swarm optimization and statistical method. Expert Systems with Applications, 36(4), 8204-8211.
Yeh, W. C., & Lai, C. M. (2015). Accelerated simplified swarm optimization with exploitation search scheme for data clustering. PloS one, 10(9), e0137246.
Yeh, W. C., Lai, C. M., Ting, H. Y., Jiang, Y., & Huang, H. P. (2017, July). Solving single row facility layout problem with simplified swarm optimization. In 2017 13th International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery (ICNC-FSKD) (pp. 267-270). IEEE.
Yeh, W. C., Lin, C. M., & Wei, S. C. (2012). Disassembly Sequencing Problems with StochasticProcessing Time using Simplified Swarm Optimization. International Journal of Innovation, Management and Technology, 3(3), 226.
Yeh, W. C., Yeh, Y. M., Chang, P. C., Ke, Y. C., & Chung, V. (2014). Forecasting wind power in the Mai Liao Wind Farm based on the multi-layer perceptron artificial neural network model with improved simplified swarm optimization. International Journal of Electrical Power & Energy Systems, 55, 741-748.
Yu, X., Chen, W. N., Gu, T., Zhang, H., Yuan, H., Kwong, S., & Zhang, J. (2018). Set-based discrete particle swarm optimization based on decomposition for permutation-based multiobjective combinatorial optimization problems. IEEE transactions on cybernetics, 48(7), 2139-2153.
Zeng, X., Zhu, Y., Nan, L., Hu, K., Niu, B., & He, X. (2006, June). Solving weapon-target assignment problem using discrete particle swarm optimization. In 2006 6th World Congress on Intelligent Control and Automation (Vol. 1, pp. 3562-3565). IEEE.
Zhan, Z. H., Li, J., Cao, J., Zhang, J., Chung, H. S. H., & Shi, Y. H. (2013). Multiple populations for multiple objectives: A coevolutionary technique for solving multiobjective optimization problems. IEEE Transactions on Cybernetics, 43(2), 445-463.
Zhang, Q., & Li, H. (2007). MOEA/D: A multiobjective evolutionary algorithm based on decomposition. IEEE Transactions on evolutionary computation, 11(6), 712-731.
Zhang, Q. F., Liu, W. D., Tsang, E., & Virginas, B. (2010). Expensive multiobjective optimization by MOEA/D with Gaussian process model. IEEE transactions on evolutionary computation, 14(3), 456-474.
Zhang, Y., Yang, R. N., Zuo, J. L., & Jing, X. N. (2015). Improved MOEA/D for dynamic weapon-target assignment problem. Journal of Harbin Institute of Technology, 22(6), 121-128.
Zitzler, E., Laumanns, M., & Thiele, L. (2001). SPEA2: Improving the strength Pareto evolutionary algorithm. TIK-report, 103.
Zitzler, E., & Thiele, L. (1999). Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach. IEEE transactions on evolutionary computation, 3(4), 257-271.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top