跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.176) 您好!臺灣時間:2025/09/07 08:28
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:王輔仁
研究生(外文):Fu-Jen Wang
論文名稱:氣渦輪發電機廢熱再利用之熱力學與熱經濟分析
論文名稱(外文):Thermodynamic and Thermoeconomic Analyses for Exhaust-heat Recovery of Gas-turbine Generation Systems
指導教授:邱政勳邱政勳引用關係
指導教授(外文):Jenq-Shing Chiou
學位類別:博士
校院名稱:國立成功大學
系所名稱:機械工程學系碩博士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:125
中文關鍵詞:氣渦輪機廢熱回收熱經濟
外文關鍵詞:thermoeconomicgas turbineexhaust-heat recovery
相關次數:
  • 被引用被引用:1
  • 點閱點閱:681
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
台灣地區有許多單循環氣渦輪機發電機組,因具有15分鐘內快速啟動之特性,然而卻僅有約26%之低發電效率,所以原本僅作為夏季尖峰緊急發電之用。然而,由於電廠設立受環保意識等阻力而造成電力短缺,此單循環機組往往被迫於尖峰及半尖峰時段皆須運轉發電;而且,單循環氣渦輪機之發電量極易受外氣溫度之升高而衰退。因此,本研究之目的乃在評估如何利用原本要排放至大氣的廢熱來改善此單循環機組,使其成為更有效率及產出更高發電量之系統。
為了準確地評估每一種氣渦輪機改善方式的成效,吾人開發了一通用的電腦程式,程式之可靠度亦經由實際電廠資料(主機為GE 6B與GE 7B)得到驗證,由模擬的結果顯示,從各種已證實的改善技術中,具有再生器之汽注入式循環在提昇發電量與發電效率上效果最顯著,而且藉由熱經濟可用能成本分析也可得知此系統之改造亦最符合經濟投資效益。
針對台灣高濕的氣候,以及考慮實際改造的困難度,在本文也提出一整合汽注入與進氣冷卻之系統,廢熱回收鍋爐所產生之高壓汽可注入燃燒室來增加系統之發電量及效率,而所產生之低壓汽可用來驅動吸收式冷凍主機以冷卻氣渦輪機組之進氣口空氣,此整合系統不僅可有效提昇發電量60%並可減少NOx排放,在高外氣溫度下,其發電量也沒有衰退之問題,甚至能有效調整熱電配比,將廢熱利用發揮於極致。
In Taiwan, many existing simple-cycle gas turbine generation sets (GENSET) that were originally designated as peak load units can be started up in a very short time(say 15 minutes), but suffer from very low efficiency (around 26%). Unfortunately, the simple-cycle units are forced to operate entire summer daytime due to the power shortage in Taiwan. In addition, the power generation of gas turbine degrades significantly during summer peaking hours (when electricity is most needed) due to the hot ambient temperatures. The aim of this research is to evaluate the feasibility of retrofitting these simple-cycle units into more advanced cycle with higher power output and efficiency.
A computer code was developed to evaluate the performance improvement of different modifications for simple cycle GENSETs. The accuracy of our developed code was validated by simulating the actual GE Frame 6B and 7B simple-cycle GENSETs. The results from computer simulation indicated that the steam injection gas turbine (STIG) cycle with regenerator was found to be the most effective in boosting both the power output and thermal efficiency among many proven technologies. From thermoeconomic analysis, the retrofitting project with STIG and regeneration features also has the best rate of return.
In the consideration of local hot/humid weather and the complication of retrofitting, the integration of STIG and inlet air cooling (IAC) was also proposed in this study. This integrated system can boost 60% of power output under hot and humid weather condition and greatly depress the emission of NOx. The performance of this system is less sensitive to ambient temperature, and its heat-to-power ratio can be swiftly adjusted to meet the actual demand.
目錄

中文摘要 i
英文摘要 iii
誌謝 v
目錄 vi
表目錄 viii
圖目錄 ix
符號說明 xi

第一章 緒論 1
1-1 研究動機與目的 1
1-2 氣渦輪機性能提升的方法 5
1-3 文獻回顧 11
1-4 本文架構 16
第二章 氣渦輪機系統之熱力學理論分析 17
2-1 前言 17
2-2 熱力分析模式 19
2-2-1 理想布雷頓循環 19
2-2-2 平衡方程式 20
2-2-3 熱力性能參數 24
2-3 系統模擬 25
第三章 氣渦輪機系統改造之熱力性能提升分析 39
3-1 程式驗證與模擬分析 39
3-2 系統描述 41
3-3 系統改造之性能分析 44
第四章 利用吸收式冷凍對氣渦輪機進氣冷卻之性能提升 65
4-1 氣渦輪機進氣冷卻系統 65
4-2 吸收式冷凍進氣冷卻系統及汽注入系統之整合 69
4-3 整合系統分析模式 72
4-3-1 分析軟體之整合 72
4-3-2 系統之改造與界面整合 74
4-4 程式驗證與結果討論 79
第五章 氣渦輪機廢熱再利用系統之熱經濟分析 95
5-1 可用能與熱經濟分析 95
5-2 熱經濟理論 97
5-3 各元件的可用能成本分析 100
5-4 結果與討論 102
第六章 結論 111

參考文獻 113
附錄 122
ABSIM version 5.0. (1998) Modular simulation of absorption systems user’s guide and reference. Oak Ridge National Laboratory, Tennessee.
Agazzani, A. and Massardo A.F. (1997) “A tool for thermoeconomic analysis and optimization of gas, steam, and combined plants,” Journal of Engineering for Gas Turbines and Power, Vol. 119, pp.885-891.
Annerwall, K and Svelberg, G. (1991) “A study on modified gas turbine systems with steam injection or evaporative regeneration,” ASME COGEN-TURBO, IGTI, Vol. 6, pp. 1-7.
ASHRAE Handbook-Fundamental, (2001) American Society of Heating Refrigeration and Air-Conditioning Engineers.
Badran, O.O. (1999) “Gas-turbine performance improvements,” Applied Energy, Vol.64, pp. 263-273.
Bejan, A., Tsatsaronis G. and Moran, M. J. (1996) Thermal Design and Optimization, John Wiley & Sons, New York.
Bidini, G. and Bosio, A. (1989) “A second-law analysis of intercooled gas turbine combined cycles,” ASME COGEN-TURBO, IGTI, Vol. 4, pp. 281-287.
Bisio, G., (1998) “Thermodynamic analysis of the main devices for thermal energy upgrading,” Energy Conversion and Management, Vol. 39, pp. 229-242.
Bram, S. and De Ruyck, J. (1997) “Exergy analysis tools for ASPEN applied to evaporative cycle design,” Energy Conversion and Management, Vol.38 pp.1613-1624,
Bruno, J.C., Miquel, J. and Castells, F. (1999) “Modeling of ammonia absorption chillers integration in energy systems of process plants,” Applied Thermal Engineering Vol.19, pp.1297-1328.
Cerqueira, S.A.A.G. and Nebra, S.A. (1999) “Cost attribution methodologies in cogeneration systems,” Energy Conversion and Management, Vol.40, pp.1587-1597.
Cheng Power System, Inc. (2000) Technical Proposal of Advanced Cheng System for LM2500, Frame 6B, Frame 7B.
Cheng, D.Y. (1992) Advanced regenerative parallel compound dual fluid heat engine advanced Cheng cycle, U.S. Patent No. 5,170,622
Doldersum, A., (1998) “Exergy analysis proves viability of process modifications,” Energy Conversion and Management, Vol. 39, pp. 1781-1789.
El-Marsi, M. A. (1987) “Exergy analysis of combined cycle: Part 1 air-cooled Brayton cycle gas turbines,” Journal of Engineering for Gas Turbines and Power, Vol. 109, pp.228-236.
El-Sayed Y.M. (1999) “Revealing the cost-efficiency trends of the design concepts of energy-intensive system,” Energy Conversion & Management, Vol. 40, pp.1599-1615.
Facchini, B., Fiaschi, D. and Manfrida, G. (2000) “Exergy analysis of combined cycles using latest gas turbine,” Journal of Engineering for Gas Turbines and Power, Vol. 122, pp.233-238.
Feng, X., Zhu, X. X., and Zheng, J. P. (1996) “Practical exergy method for system analysis,” Proceeding the Intersociety Energy Conversion Engineering Conference, Vol. 3, pp.2068-2071.
Fraize, W. E. and Kinney, C. (1979) “Effects of steam injection on the performance of gas turbine power cycles,” Journal of Engineering for Gas Turbines and Power, Vol. 101, pp.217-227.
Frangopoulus, C. A. (1994) “Application of the thermoeconomic functional approach to the CGMA problem,” Energy, Vol.19,pp.323-342.
Gallo, W.L.R. (1997) “A comparison between the hat cycle and other gas-turbine based cycles: efficiency, specific power and water consumption,” Energy Conversion and Management, pp.1595-1604.
Grossman, G., Wilk, M. and DeVault, R.C. (1994) “Simulation and performance analysis of triple-effect absorption cycles,” ASHRAE Transactions, Vol. 100, pp. 452-462.
Guarinello, F., Cerequeira, S. A. A. G. and Nebra, S. A. (2000) “Thermoemonomic evaluation of a gas turbine cogeneration system,” Energy Conversion and Management, Vol. 41, pp.1191-1200.
Habib, M. A. (1994) “First and second-law analysis of steam turbine cogeneration systems,” Journal of Engineering for Gas Turbines and Power, Vol. 116, pp.15-19.
Hadik, A. A. El (1990) “The impact of atmospheric conditions on gas turbine performance,” Journal of Engineering for Gas Turbines and Power, Vol. 112, pp.590-596.
Harvey, S. and Abdallah, H. (2001) “Thermodynamic analysis of chemically recuperated gas turbines,” International Journal of Thermal Science, Vol. 40, pp. 372-384.
Harvey, S. and Kane, N. (1997) “Analysis of a reheat gas turbine cycle with chemical recuperation using Aspen,” Energy Conversion and Management, Vol. 38, pp. 1671-1679.
Heppenstall, T. (1998) “Advanced gas turbine cycles for power generation a critical review,” Applied Thermal Engineering, Vol.18, pp.837-846.
Horlock, J. H. (1992) Combined Power Plants, Pergamon, New York.
Horlock, J. H., Young, J. B. and Manfrida, G. (2000) “Exergy analysis of modern fossil-fuel power plants,” Journal of Engineering for Gas Turbines and Power, Vol. 122, pp. 1-7.
Huang, F. F. (1989) “A methodology for overall performance evaluation of combined gas-steam power plants based on energy as well as exergy consideration,” ASME COGEN-TURBO, IGTI, Vol. 4, pp.447-454.
Huang, F. F. (1990) “Performance evaluation of selected combustion gas turbine cogeneration systems based on first and second-law analysis,” Journal of Engineering for Gas Turbines and Power, Vol. 112, pp.117-121.
Hufford, P. E. (1991) “Absorption chillers maximize cogeneration value,” ASHRAE Transactions, pp.428-433.
Irvine, T. F. and Liley, P. E. (1984) Steam and Gas Tables with Computer Equations, Academic, Orlando.
Kim, S.M., Oh, S.D., Kwon, Y.H. and Kwak, H.Y. (1997) “Exergoeconomic analysis of thermal systems,” Energy, Vol. 23, pp. 393-406.
Kim, T.S. Song, C.H. Ro, S.T. and Kauh, S.K. (2000) “Influence of ambient condition on thermodynamic performance of the humid air turbine cycle,” Energy. Vol.25, pp.313-324.
Kotas, T. J. (1985) The Exergy Method of Thermal Plant Analysis, Butterworths, London.
Krause, A., Tsatasronis, G. and Sauthoff, M. (1999) “On the cost optimization of a district heating facility using a steam-injected gas turbine cycle,” Energy Conversion & Management, Vol. 40, pp. 1617-1626.
Lamfon, N.J., Najjar, Y.S.H. and Akyurt, M., (1998) “Modeling and simulation of combined gas turbine engine and heat pipe system for waste heat recovery and utilization,” Energy Conversion and Management, Vol. 39, pp. 81-86,
Larson, E. D., Williams R. H. (1987) “Steam-injection gas turbine,” Journal of Engineering for Gas Turbines and Power, Vol. 109, pp. 55-63.
Lee, S. C. and Wagner, R. M. (1994) “Second-law efficiency analysis of gas-turbine engine for cogeneration,” ASME COGEN-TURBO, IGTI, Vol. 9, pp.163-168.
Lior, N., (1997) “Advanced energy conversion to power,” Energy Conversion and Management, Vol. 38, pp. 941-955.
Lucia, M. De, Lanfranchi, C., Boggio, V. (1996) “Bemnefits of compressor inlet air cooling for gas turbine cogeneration plants,” Journal of Engineering for Gas Turbines and Power, Vol. 118, pp. 598-603.
Manfrida, G. and Bosio, A. (1988) “Comparative exergy analysis of STIG and combined-cycle gas turbine,” Proceeding Intersociety Energy Conversion Engineering Conference, Vol. 1, pp.391-397.
Marrero, I.O., Lefsaker, A.M., Razani, A. and Kim, K.J., (2002) “Second law analysis and optimization of a combined triple power cycle,” Energy Conversion and Management, Vol. 42, pp. 557-573.
Massardo, S.A. and Scialo, M. (2000) “Thermoeconomic analysis of gas turbine based cycles,” Journal of Engineering for Gas Turbine and Power, Vol.122, pp.664-671.
McDonald, C.F. and Wilson, D.G. (1996) “The utilization of recuperated and regenerated engine cycles for high-efficiency gas turbines in the 21st century”, Applied Thermal Engineering, Vol.16, pp.635-653.
Mitsubishi Inc. (2000) Catalogue of absorption chiller for standard rating.
Mohanty B. and Paloso, G. (1995) “Enhancing gas turbine performance by intake air cooling using an absorption chiller,” Heat Recovery System & CHP, Vol. 15, pp.41-50.
Mone, C.D., Chau, D.S. and Phelan, P.E., (2001) “Economic feasibility of combined heat and power and absorption refrigeration with commercially available gas turbines,” Energy Conversion and Management, Vol. 42, pp.1559-1573.
Moran, M. J. and Sciubba, E. (1994) “Exergy analysis principles and practice,” Journal of Engineering for Gas Turbines and Power, Vol. 116, pp. 285-290.
Mostafavi, M., Alaktiwi, A. and Agnew, B. (1998) “Thermodynamic analysis of combined open-cycle-twin-shaft gas turbine (Brayton cycle) and exhaust gas operated absorption refrigeration unit,” Applied Thermal Engineering, Vol. 18, pp.847-856.
Najjar, Y. S. H. (1996) ”Enhancement of performance of gas turbine engines by inlet air cooling and cogeneration system ,“ Applied Thermal Engineering, Vol. 16, pp. 163-173.
Najjar, Y.S.H. (2000) “Gas turbine cogeneration system: a review of some novel cycle,” Applied Thermal Engineering, Vol. 20, pp. 179-197.
Najjar, Y.S.H. (2001) “Efficient use of energy by utilizing gas turbine combined systems,” Applied Thermal Engineering, Vol. 21, pp.407-438.
Oh, S.D., Pang, H.S., Kim, S.M. and Kwak, H.Y. (1996) “Exergy Analysis for a gas turbine cogeneration system,” Journal of Engineering for Gas Turbines and Power, Vol. 118, pp. 782-791.
Ondryas, I.S., Wilson, D.A., Kawamoto, M. and Haub, G.L. (1991) “options in gas turbine power augmentation using inlet air chilling,” Journal of Engineering for Gas Turbine and Power, Vol. 113, pp. 203-211.
Pak, P.S. and Suzuki Y. (1997) “Exergetic evaluation of gas turbine cogeneration system for district heating and cooling,” International Journal of Energy Research, Vol. 21, pp. 209-220.
Pak, P.S. and Suzuki, Y. (1989) “Low NOx emission characteristics of refuse-recovered low BTU gases as fuel for high efficiency gas turbines,” International Journal of Energy Research, Vol. 13, pp. 53-61.
Pak, P.S. and Suzuki, Y. (1990) “Thermodynamical, economical and environmental evaluation of high efficiency gas turbine cogeneration systems,” International Journal of Energy Research, Vol. 14, pp. 821-832.
Pak, P.S. and Suzuki, Y. (1997) “Exergetic evaluation of methods for improving power generation efficiency of a gas turbine cogeneration system,” International Journal of Energy Research, Vol. 21, pp.737-747.
Penning, F. M. and Lange, H. C. (1996) “Steam-injection: analysis of a typical application,” Applied Thermal Engineering, Vol. 16, pp. 115-125.
Pilavachi, P.A. (2000) “Power generation with gas turbine systems and combined heat and power,” Applied Thermal Engineering, Vol. 20, pp. 1421-1429.
Rice, I.G. (1995) “Steam-injected gas turbine analysis: steam rates,” Journal of Engineering for Gas Turbines and Power, Vol. 117, pp. 347-353.
Saad M.A. and Cheng, D.Y. (1997) “The new LM2500 Cheng Cycle for power generation and cogeneration,” Energy Conversion and Management, Vol. 38, pp. 1637-1646.
Saad, M.A. and Cheng, D.Y. (1992) “Cheng cycle II - recent advancements in gas turbine steam injection,” Florence World Energy Research Symposium, Italy.
Sarabchi, K. (1992) “Parametric analysis of gas turbine cogeneration plant from first and second-law viewpoint,” ASME COGEN-TURBO, IGTI, Vol. 7, pp.485-491
Stewart, W.E. (1999) “Designing for combustion turbine inlet air cooling,” ASHRAE Transactions, Vol. 105, pp. 165-173.
Stewart, W.E. (1999) Design Guide : Combustion Turbine Inlet Air Cooling System, American Society of Heating Refrigeration and Air-Conditioning Engineers.
Sundbom T.A. and Ebeling, J.A. (1994) “Increasing capacity sales with inlet air cooling,” ASME COGEN-TURBO, IGTI, Vol. 9, pp.39-44.
Szargut, J., Morris, D. R. and Steward, F. R. (1988) Exergy Analysis of Thermal, Chemical and Metallurgical Processes, Hemisphere, New York.
Talbi, M.M. and Agnew, B. (2000) “Exergy analysis: an absorption refrigerator using lithium bromide and water as the work fluids,” Applied Thermal Engineering, Vol. 20, pp. 619-630.
Tsatsaronis, G. and Moran, M. J. (1997) “Exergy-aided cost minimization,” Energy Conversion and Management, Vol. 38, pp.1535-1542.
Tsatsaronis, G. and Pisa, J. (1994) “Exergoeconomic evaluation and optimization of energy system – application to the CGMA problem,” Energy, Vol. 19, pp.287-321.
Tuzson, J. (1992) “Status of steam-injected gas turbine,” Journal of Engineering for Gas Turbines and Power, Vol. 114, pp. 682-686.
Valero, A., Lozano M.A., Serra, L., Tsatsaronis, G., Pisa, J., Frangopoulos, C. and Spakovsky, M.R.V. (1994) “CGAM problem: definition and conventional solution,” Energy, Vol. 19, pp. 279-286.
Van Wylen, G.J. Sonntag, R.E. and Borgnakke, C. (1994) “Fundamentals of Classical Thermodynamics”, John Wiley & Sons, New York.
Zhang, Z. and Pate, M.B. (1988) “A methodology for implementing a psychrometric chart in a computer graphics system,” ASHRAE Transactions, Vol. 94, pp.2069-2078.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top