|
[1] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, ”Edge Computing: Vision and Challenges”, IEEE Internet of Things Journal, vol. 3, no. 5, pp. 637–646, 2016. [2] X. Liu, Z. Qin, and Y. Gao, ”Resource Allocation for Edge Computing in IoT Networks via Reinforcement Learning”, in Proceedings of 2019 IEEE International Conference on Communications (ICC 2019), Shanghai, China, pp. 1–6, May 2019. [3] P. Li, Y. Luo, K. Wang, and K. Yang, ”Energy Minimization and Offloading Number Maximization in Wireless Mobile Edge Computing”, in Proceedings of 2018 IEEE Global Communications Conference (GLOBECOM 2018), Abu Dhabi, UAE, pp. 1–6, Dec. 2018. [4] J. Lin, W. Yu, N. Zhang, X. Yang, H. Zhang, and W. Zhao, ”A Survey on Internet of Things: Architecture, Enabling Technologies, Security and Privacy, and Applications”, IEEE Internet of Things Journal, vol. 4, no. 5, pp. 1125–1142, 2017. [5] Q. Wang, S. Guo, Y. Wang, and Y. Yang, ”Incentive Mechanism for Edge Cloud Profit Maximization in Mobile Edge Computing”, in Proceedings of 2019 IEEE International Conference on Communications (ICC), pp. 1–6, May 2019. [6] J. A. Stankovic, ”Research Directions for the Internet of Things”, IEEE Internet of Things Journal, vol. 1, no. 1, pp. 3–9, 2014. [7] W. Yu, F. Liang, X. He, W. Hatcher, C. Lu, J. Lin, and X. Yang, ”A Survey on the Edge Computing for the Internet of Things”, IEEE Access, vol. 6, pp. 6900–6919, Nov. 2018. [8] F. Samie, L. Bauer, and J. Henkel, ”From Cloud Down to Things: An Overview of Machine Learning in Internet of Things”, IEEE Internet of Things Journal, vol. 6, no. 3, pp. 4921–4934, 2019. [9] M. Moradi, K. Sundaresan, E. Chai, S. Rangarajan, and Z. M. Mao, ”SkyCore: Moving Core to the Edge for Untethered and Reliable UAV-based LTE Networks”, in Proceedings of the 24th Annual International Conference on Mobile Computing and Networking (MOBICOM 2018), New York, NY, USA, pp. 35–49, Nov. 2018. [10] N. Mohan, T. Shreedhar, A. Zavodavoski, O. Waltari, J. Kangasharju, and S. K. Kaul, ”Redesigning MPTCP for Edge Clouds”, in Proceedings of the 24th Annual International Conference on Mobile Computing and Networking (MOBICOM 2018), New York, NY, USA, pp. 675–677, Nov. 2018. [11] A. Khan, F. Freitag, V. Vlassov, and P. Ha, ”Demo abstract: Towards IoT service deployments on edge community network microclouds”, in Proceedings of IEEE Conference on Computer Communications (INFOCOM 2018), Honolulu, HI, USA, pp. 1–2, April 2018. [12] W. Zhang, S. Li, L. Liu, Z. Jia, Y. Zhang, and D. Raychaudhuri, ”Hetero-Edge: Orchestration of Real-time Vision Applications on Heterogeneous Edge Clouds”, in Proceedings of IEEE Conference on Computer Communications (INFOCOM 2019), Paris, France, pp. 1270–1278, April 2019. [13] D. Wu, F. Wang, X. Cao, and J. Xu, ”Wireless Powered User Cooperative Computation in Mobile Edge Computing Systems”, in Proceedings of IEEE Global Communications Conference (GLOBECOM 2018), Abu Dhabi, UAE, pp. 1–7, Dec. 2018. [14] J. Hochstetler, R. Padidela, Q. Chen, Q. Yang, and S. Fu, ”Embedded Deep Learning for Vehicular Edge Computing”, in Proceedings of 2018 IEEE/ACM Symposium on Edge Computing (SEC 2018), Bellevue, WA, pp. 341–343, Oct. 2018. [15] D. Velasco-Montero, J. Fernndez-Berni, R. Carmona-Galn, and . Rodrguez-Vzquez, ”Optimum Selection of DNN Model and Framework for Edge Inference”, IEEE Access, vol. 6, pp. 51680–51692, Sep. 2018. [16] R. Rothe, R. Timofte, and L. Van Gool, ”Deep Expectation of Real and Apparent Age from a Single Image Without Facial Landmarks”, International Journal of Computer Vision, vol. 126, no. 2-4, pp. 144-157, 2018. [17] S. Zagoruyko and N. Komodakis, ”Wide Residual Networks”, arXiv preprint arXiv:1605.07146, 2016. [18] J. Tang and K. Wang, ”Personalized Top-N Sequential Recommendation via Convolutional Sequence Embedding”, arXiv preprint arXiv:1809.07426, 2018. [19] R. He, W. Kang, and J. McAuley, ”Translation-based Recommendation”, arXiv preprint arXiv:1707.02410, 2017. [20] B. Hidasi, A. Karatzoglou, L. Baltrunas, and D. Tikk, ”Session-based Recommendations with Recurrent Neural Networks”, arXiv preprint arXiv:1511.06939, 2016. [21] M. Quadrana, A. Karatzoglou, B. Hidasi, and P. Cremonesi, ”Personalizing Sessionbased Recommendations with Hierarchical Recurrent Neural Networks”, arXiv preprint arXiv:1706.04148, 2017. [22] D. Jannach and M. Ludewig, ”When Recurrent Neural Networks Meet the Neighborhood for Session-Based Recommendation”, in Proceedings of the Eleventh ACM Conference on Recommender Systems (RecSys 2017), New York, NY, USA, pp. 306–310, Aug. 2017. [23] “OpenVino.” https://software.intel.com/en-us/openvino-toolkit. [24] “yu4u/age-gender-estimation.” https://github.com/yu4u/age-gender-estimation.
|