跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.188) 您好!臺灣時間:2026/01/16 02:34
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳明聰
研究生(外文):Ming-Cong Chen
論文名稱:以NafionTM/PR包埋結構作為REFET參考場效電晶體感測層之研究
論文名稱(外文):The study of NafionTM/PR entrapment structure as REFET sensing film
指導教授:汪大暉
指導教授(外文):Tahui Wang
學位類別:碩士
校院名稱:國立交通大學
系所名稱:電機學院微電子奈米科技產業專班
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:96
語文別:英文
論文頁數:54
中文關鍵詞:場效電晶體離子感測電晶體靈敏度漂移
外文關鍵詞:FETISFETSensitivityDrift
相關次數:
  • 被引用被引用:0
  • 點閱點閱:199
  • 評分評分:
  • 下載下載:4
  • 收藏至我的研究室書目清單書目收藏:0
離子場效電晶體(Ion-sensitive Field Effect Transistor,ISFET)是由Bergveld 在1970年提出,因其元件的特性尺寸小,反應速度快、可承受外部應力,且相容於現今的CMOS製程相容性,所以在現今的感測元件開發中具有極大的潛力。在微小化的技術上,必須要整合一個固態參考電極在ISFET上,然而先天上固態電極的金屬/溶液接面電位不易穩定,使得研究方向朝向開發參考電極場效電晶體(Reference Electrode Field Effect Transistor,REFET)。 REFET本身是一個低靈敏度的ISFET,利用一差動放大量測電路來抑制未經處理之金屬固態電極造成的不穩定參考電位。
為得到一個低靈敏度的ISFET,本篇論文中以利用一質子交換膜NafionT包覆PR(FH6400)的結構來完成一個REFET,成功的降低了感測層對離子的感測能力,從未包覆前的57.5mv/pH降至8mv/pH。此外,本實驗還利用二氧化鋯(ZrO2)和二氧化矽(SiO2)兩種不同的感測層當基底,探討Nafion包埋PR結構降低了對氫離子感測靈敏度的機制與基底材料之間的關係。最後,再利用不同Nafion包埋PR條件來做pH1~pH13的靈敏度(sensitivity)和漂移(Drift)量測,並研究其元件特性的重現性及可靠度。
我們成功地以NafionTM包埋PR結構完成對氫離子感測靈敏度的降低,從實驗結果得到其感測靈敏度從未包覆前的57.5mv/pH降至8mv/pH。目前推論其靈敏度的降低主要來自Nafion所包埋的PR所致,與下層所疊的材料無直接的影響性,且在Nafion混合PR的結構所製作出REFET的感測層可維持在一個穩定且固定的電位且不受外部的離子所影響,由實驗值得到在四小時內的漂移(Drift)量相當穩定。
Ion-sensitive Field Effect Transistor, ISFET is proposed by Bergveld in 1970 since its feature of the component is small size, rapid response, strong robustness and be acceptable to the process of CMOS nowadays, it has the great potential on the development of nowaday’s sensitive component. It has to integrate a solid state reference electrode on the miniaturized technology. However, the metal of solid state reference/electrolyte is not to defined, so the direction of the research moves toward developing Reference Electrode Field Effect Transistor, REFET, which is a low sensitivity ISFET itself using a differential amplifier measuring the circuit to set off the unstable voltage caused by the metal solid state without handling.
For attaining a low sensitivity ISFET, this academic essay utilizes the structure of proton exchange membrane. Nafion entrap with PR (FH6400) to finish a REFET which successfully reduce the sensitivity to 8.3mV/pH. Moreover, this experiment use ZrO2 and SiO2 the two different sensing film as the base to discuss the relationship between the mechanism that the structure of Nafion entrap PR reduce the sensitivity to H+ ion and the base material. At the end, it also measures the sensitivity of pH1 to pH13 and Drift on the condition of different Nafion entraps PR and research the repeatability and reliance of the component’s feature.
We finish successfully the reduction of the sensitivity to H+ ion with the structure. Nafion entrap PR, and it get its sensitivity reduces from the 57.5mV/pH unentraped to 8.3mV/pH in the experiment result. Now it refer the reduction of sensitivity mainly to Nafion entrap PR and sensing layer beneath Nafion/PR membrane will affect the overall performance in sensitivity and drift. The sensing layer of REFET manufacture on the structure of Nafion mix PR could maintain a stable potential without the effect of the outer ion, the Drift quantity is very stable in four hours according to the experiment data.
Contents
Abstract
(in Chinese)
-------------------------------------------------------------------------
i
Abstract
(in English)
-------------------------------------------------------------------------
ii
Contents ------------------------------------------------------------------------- iv
Table Captions ------------------------------------------------------------------------- v
Figure Captions ------------------------------------------------------------------------- vi

Chapter 1 Introduction
1.1 What is ISFET? ----------------------------------------------------- 1
1.2 Application of various kind of electrodes in ISFET------------ 2
1.2.1 The glass electrode-------------------------------------------------- 2
1.2.2 The solid-state reference electrodes ------------------------------ 4
1.3 Motivation of this work--------------------------------------------- 4
1.4 References------------------------------------------------------------- 5
Chapter 2 Theory Description
2.1 The concept of pH--------------------------------------------------- 7
2.2 Theory of ISFET---------------------------------------------------- 7
2.2.1 Operation of ISFET------------------------------------------------- 8
2.2.2 The oxide/electrolyte interface------------------------------------ 9
2.3 Drift------------------------------------------------------------------- 13
2.3.1 Dispersive Transport------------------------------------------------ 14
2.3.2 Expression for Drift------------------------------------------------- 15
2.3.2 Drift------------------------------------------------------------------- 18
2.4 References------------------------------------------------------------- 17
Chapter 3 Experiment and Measurement
3.1 Introduction---------------------------------------------------------- 20
3.2 The steps illustration------------------------------------------------ 21
3.3 Measurement system------------------------------------------------ 22
3.3.1 Current-Voltage (I-V) measurement set-up---------------------- 22
3.3.2 Current-Voltage (I-V) measurement set-up with Drift--------- 28
3.4 References ---------------------------------------------------------- 23
Chapter 4 Results and Discussions 24
4.1 Introduction ---------------------------------------------------------- 24
4.2 Comparison of different structure’s feature -------------------- 24
4.3 The comparison of PR-mix-Nafion deposition on different structure-------------------------------------------------------------- 25
4.4 The comparison id different PR-mix-Nafion proportion’s feature --------------------------------------------------------------- 26
4.5 The comparison of different proportion’s durability and repeatability -------------------------------------------------------- 26
4.6 Conclusion ----------------------------------------------------------- 27
4.7 Reference ------------------------------------------------------------ 27
Chapter 5 Future Work ---------------------------------------------------- 29
[1.1] P. Bergvled,”Development of an ion-sensitive solid-state device for neurophysiological measurement”, IEEE Trans. On Bio-Med. Eng. (1970) 70-71
[1.2] K. M. Chang, K. Y. Chao, T. W. Chou, and C. T. Chang, “Characteristics of Zirconium Oxide Gate Ion-sensitive Field-Effect Transistors” Japanese Journal of Applied Physics Vol. 46 No.7A pp.4334-4338, 2007.
[1.3] H. K. Liao, J. C. Chou, W. Y. Chung, T. P., and S. K. Hsiung, ”Study on the interface trap density of the Si3N4/SiO2 gate ISFET” Proceeding of the Third East Asian Conference on chemical Sensor, Seoul, South Korea, pp.394-400, November 1997.
[1.4] S. Jamasb, S. Collins, and R. L. Smith, “A physically-based model for drit in Al2O3-gate pH ISFET’s”, Tech. Digest, 9th Int. Conf. Solid-State Sensors and Actuators (Transducers’97), Chicago, IL, 15-19, pp.1379-1382, June, 1997.
[1.5] P. Gimmel, B. Gompf, D. Schmeiosser, H. D. Weimhofer, W. Gopel, and M. Klein, “Ta2O5 gate of pH sensitive device comparative spectroscopic and electrical studies”, Sensors and Actuators B vol. 17 pp. 195-202, 1989.
[1.6] Y. Q. Miao, J. R. Chen and K. M. Fang, “New technology for the detection of pH”, J. Biochem. Biophys. Methods, vol. 63, pp. 1-9, 2005.
[1.7] P. Bergveld, “ISFET, Theory and Practice”, in IEEE Sensor Conference, Toronto, Oct. 2003.
[1.8] P. Bergveld, “Thirty years of ISFETOLOGY What happened in the past 30 years and what happen in the next 30 years”, Sensors and Actuators B, vol. 88, pp. 1-20, 2003.

[2.1] P. Bergveld, “ISFET, Theory and Practice”, in IEEE Sensor Conference, Toronto, Oct. 2003.
[2.2] Y. Q. Miao, J. R. Chen and K. M. Fang, “New technology for the detection of pH”, J. Biochem. Biophys. Methods, vol. 63, pp. 1-9, 2005.
[2.3] P. Bergveld, “Thirty years of ISFETOLOGY What happened in the past 30 years and what happen in the next 30 years”, Sensors and Actuators B, vol. 88, pp. 1-20, 2003.
[2.4] R.E.G. van Hal et al. , “A general model to describe the electrostatic potential at electrolyte oxide interface”, Advance in Colloid and Interface Science, vol.69, pp.31-62, 1996.
[2.5] D.E. Yates, S. Levine and T.W. Healy, “Site-binding model of the electrical double layer at oxide/water interface. J. chem. Soc. Faraday Trans. I, 70 (1974) pp.1807-1818.
[2.6] Miao Yuqing , Guan Jianguo, Chen Jianrong, “Ion sensitive field transducer-based biosensors”, Biotechnology Advances, vol. 21, pp.527-534, 2003.
[2.7] W. M. Siu and R. S. C. Cobbold. ”Basic Properties of the Electrolyte-SiO2-Si System: Physical and Theoretical Aspects, ”IEEE Trans. Electron Device, ED vol. 26, pp. 1805-1815, 1979.
[2.8] H.K. Liao, et al. ”Study on pHpzc and surface potential of tin oxide gate ISFET”, Materials Chemistry and Physics, vol. 59, pp.6-11, 1999
[2.9] 吳浩青, 李永舫, ”電化學動力學”, 科技圖書公司, 2001年2月
[10] Tadayuki Matsuo, Masayoshi Esashi, ”Methods of ISFET Fabrication”, Sensors and Actuators, vol. 1, pp.77-96, 1981.
[2.11] Imants R. Lauks, Jay N. Zemel, “The Si3N4/Si Ion-Sensitive Semiconductor Electrode ”, IEEE Transactions on Electron Devices, vol. ED-26, no.12, pp. 1959- 1964, Dec., 1979.
[2.12] J.C. Chou, C.Y. Weng, “Sensitivity and hysteresis effect in AL2O3 gate pH- ISFET ”, Materials Chemistry and Physics, vol. 71, pp.120-124, 2001.
[2.13] H.K.Liao et al.,” Study of amorphous tin oxide thin films for ISFET applications”, Sensors and Actuators B, vol.50, pp.104-109, 1998.
[2.14] Luc Bousse and P. Bergveld, The role of buried OH sites in the response mechanism of inorganic-gate pH-sensitive ISFETs, Sens. Actuators 6 (1984) 67-78.
[2.15] S. Jamasb, S. D. Collins, R. L. Smith, ”A Physical Model for Threshold Voltage Instability in Si3N4-Gate H+-Sensitive FET’S ( pH ISFET’s )”, IEEE Transactions on Electron Devices, vol. 45, no. 6, pp.1239-1245, Jun, 1998.
[2.16] G. Pfister, H. Scher, ” Time-dependent electrical transport in amorphous solid: As2Se3”, Physical Review B, vol. 15, no. 4, pp.2062-2082, Feb., 1977.

[3.1] Paik-Kyun Shin,”The pH-sensing and light-induced drift properties of titanium dioxide thin films deposited by MOCVD”, Applied Surface Science, vol. 214, pp.214-221, 2000.

[4.1] John Payne ”Nafion® - Perfluorosulfonate Ionomer”, April, 2005
from http://www.psrc.usm.edu/mauritz/nafion.html
[4.2] R.E.G. van Hal et al. , “A general model to describe the electrostatic potential at electrolyte oxide interface”, Advance in Colloid and Interface Science, vol.69, pp.31-62, 1996
[4.3] 吳浩青, 李永舫, ”電化學動力學”, 科技圖書公司, 2001年2月
[4.4] K. M. Chang, K. Y. Chao, T. W. Chou, and C. T. Chang, ”Characteristics of Zirconium Oxide Gate Ion-sensitive Field-Effect Transistors” Japanese Journal of Applied Physics Vol. 46 No. 7A pp. 4334-4338 2007.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊