|
[1.1] A. Hirata, T. Kosugi, H. Takahashi, R. Yamaguchi, F. Nakajima, T. Furuta, H. to, H. Sugahara, Y. Sato, and T. Nagatsuma, “120-GHz-Band Millimeter-Wave Photonic Wireless Link for 10-Gb/s Data Transmission,” IEEE Trans. Microwave Theory Tech., vol. 54, pp. 1937-1944, May. 2006. [1.2] A. Hallal, S. Bouhier, and F. Bondu, “Synthesis of a 30-Hz linewidth wave tunable over 500 GHz,” IEEE Trans. Microw. Theory Tech., vol. 65, no. 4, pp. 1367–1371, Apr. 2017. [1.3] T. Nagatsuma et al., “1.55-μm photonic systems for microwave and millimeter-wave measurement,” IEEE Trans. Microw. Theory Tech., vol. 49, no. 10, pp. 1831–1839, Oct. 2001. [1.4] S. Preu, “Components towards a photonics aided THz vector network analyzer,” in Proc. 2016 Int. Conf. Opt. Fiber Commun., Anaheim, CA, USA, Mar. 2016, Paper no. W4K.4. [1.5] T. Ishibashi, N. Shimizu, S. Kodama, H. Ito, T. Nagatsuma, and T. Furuta, “Uni-traveling-carrier photodiodes,” Tech. Dig. Ultrafast Electron. Optoelectron., pp. 83–87, 1997. [1.6] T. Ishibashi, S. Kodama, N. Shimizu, and T. Furuta, “High-speed response of uni-traveling carrier photodiodes,” Jpn. J. Appl. Phys., vol. 36, pp. 6263–6268, 1997. [1.7] T.Furuta, H. Ito, and T. Ishibashi,“Photocurrent dynamics of unitraveling-carrier and conventional pin-photodiodes,” Proc. Inst. Phys. Conf. Ser., no. 166, pp. 419–422, 2000. [1.8] T. Ishibashi, “High speed heterostructure devices,” in Semiconductors and Semimetals. San Diego, CA: Academic, 1994, vol. 41, ch. 5, p. 333. [1.9] E. S. Harmon, M. L. Lovejoy, M. R. Melloch, M. S. Lundstrom, D. Ritter, and R. A. Hamm, “Minority-carrier mobility enhancement in p+ InGaAs lattice matched to InP,” Appl. Phys. Lett., vol. 63, pp. 636–638,1993. [1.10] K. Kato, S. Hata, K. Kawano, and A. Kozen, “Design of ultrawideband, high-sensitivity p-i-n photodetectors,” IEICE Trans. Electron., vol. E76-C, pp. 214–221, 1993. [1.11] H. Ito, T. Furuta, S. Kodama, and T. Ishibashi, “Zero-bias high-speed and high-output-voltage operation of cascade-twin uni-travelling-carrier photodiode,” Electron. Lett., vol. 36, pp. 2034–2036, Nov. 2000. [1.12] K. Kato, “Ultrawide-band/high-frequency photodetectors,” IEEE Trans. Microw. Theory Tech., vol. 47, no. 7, pp. 1265–1281, Jul. 1999. [1.13] H. Ito et al., “High-speed and high-output InP-InGaAs unitraveling-carrier photodiodes,” IEEE J. Sel. Topics Quantum Electron., vol. 10, no. 4, pp. 709–727, Jul./Aug. 2004. [1.14] T. Ishibashi,Y.Muramoto,T.Yoshimatsu, andH. Ito, “Uni-traveling-carrier photodiodes for terahertz applications,” IEEE J. Sel. Topics Quantum Electron., vol. 20, no. 6, Nov./Dec. 2014, Art. no. 3804210. [1.15] J.-W. Shi, F.-M. Kuo, and J. E. Bowers, “Design and analysis of ultra-high speed near-ballistic uni-traveling-carrier photodiodes under a 50 Ω load for high-power performance,” IEEE Photon. Technol. Lett., vol. 24, no. 7, pp. 533–535, Apr. 2012. [1.16] J.-M. Wun et al., “Photonic high-power CW THz-wave generation by using flip-chip packaged uni-traveling carrier photodiode and femtosecond optical pulse generator,” IEEE/OSA J. Lightw. Technol., vol. 34, no. 4, pp. 1387–1397, Feb. 2016. [1.17] E. Rouvalis, C. C. Renaud, D. G. Moodie, M. J. Robertson, and A. J. Seeds, “Traveling-wave uni-traveling carrier photodiodes for continuous wave THz generation,” Opt. Express, vol. 18, no. 11, pp. 11105–11110, May 2010. [1.18] Y. Muramoto, H. Fukano, and T. Furuta, “A Polarization-independent refracting-facet uni-traveling-carrier photodiode with high efficiency and large bandwidth,” IEEE/OSA J. Lightw. Technol., vol. 24, no. 10, pp. 3830–3834, Oct. 2006. [1.19] X. Xie et al., “High-power and high-speed heterogeneously integrated waveguide-coupled photodiodes on silicon-on-insulator,” IEEE/OSA J. Lightw. Technol., vol. 34, no. 1, pp. 73–78, Jan. 2016. [1.20] Z. Li, H. Pan, H. Chen, A. Beling, and J. C. Campbell, “High-saturation current modified uni-traveling-carrier photodiode with cliff layer,” IEEE J. Quantum Electron., vol. 46, no. 5, pp. 626–632, May 2010. [1.21] C. C. Renaud, M. Robertson, D. Rogers, R. Firth, P. J. Cannard, R. Moore, and A. J. Seeds, “A high responsivity, broadband waveguide uni-traveling carrier photodiode,” Proc. SPIE 6194, 61940C–61940C–8 (2006). [1.22] J. Campbell, S. Demiguel, and N. Li, “High-speed photodetectors,” 31st European Conference on Optical Communication (Glasgow, Scotland, 2005), pp. 493–496 vol.3. [2.1] Y. Han and G. Li, “Coherent optical communication using polarization multiple-input-multiple-output,” Opt. Express 13(19), 7527–7534 (2005). [2.2] A. Leven, N. Kaneda, U.-V. Koch, and Y.-K. Chen, “Coherent receivers for practical optical communication Systems,” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, OSA Technical Digest Series (CD) (Optical Society of America, 2007), paper OThK4. [2.3]. H. Yagi, N. Inoue, R. Masuyama, T. Kikuchi, T. Katsuyama, Y. Tateiwa, K. Uesaka, Y. Yoneda, M. Takechi, and H. Shoji, “InP-Based p-i-n-Photodiode Array Integrated With 90◦ Hybrid Using Butt-Joint Regrowth for Compact 100 Gb/s Coherent Receiver,” IEEE J. Sel. Top. Quantum Electron. 20(6), 900107 (2014). [2.4] C. R. Doerr, L. Zhang, P. J. Winzer, N. Weimann, V. Houtsma, T.-C. Hu, N. J. Sauer, L. L. Buhl, D. T. Neilson, S. Chandrasekhar, and Y.-K. Chen, “Monolithic InP dual-polarization and dual-quadrature coherent receiver,” IEEE Photonics Technol. Lett. 23(11), 694–696 (2011). [2.5] C. R. Doerr, L. L. Buhl, Y. Baeyens, R. Aroca, S. Chandrasekhar, X. Liu, L. Chen, and Y.-K. Chen, “Packaged Monolithic Silicon 112 Gb/s Coherent Receiver,” IEEE Photonics Technol. Lett. 23(12), 762–764 (2011). [2.6] K. Murata, T. Saida, K. Sano, I. Ogawa, H. Fukuyama, R. Kasahara, Y. Muramoto, H. Nosaka, S. Tsunashima, T. Mizuno, H. Tanobe, K. Hattori, T. Yoshimatsu, H. Kawakami, and E. Yoshida, “100 Gbit/s PDM-QPSK Coherent Receiver with Wide Dynamic Range and Excellent Common-mode Rejection Ratio,” in Proc. ECOC’11 (2011), paper Tu.3.LeSaleve.1. [2.7] T. Richter, M. Kroh, J. Wang, A. Theurer, C. Zawadzki, Z. Zhang, N. Keil, A. G. Steffan, and C. Schubert, “Integrated Polarization-Diversity Coherent Receiver on Polymer PLC for QPSK and QAM signals,” in Proc. OFC’12 (2012), paper OW3G.1. [2.8] M. L. Nielsen, L. Molle, T. Richter, and C. Schubert, ” Feasibility Study of SOA-preamplified Coherent Reception for 112 Gb/s DP-QPSK Unamplified Link,”' in Proc. OFC’13 (2013), paper JTh2A.45 (2013). [2.9] P. Runge, G. Zhou, F. Ganzer, S. Seifert, S. Mutschall, and A. Seeger,“Polarisation Insensitive Coherent Receiver PIC for 100Gbaud communication,” in Proc. OFC’16 (2016), paper Tu2D.5. [2.10] K. N. Nguyen, P. J. Skahan, J. M. Garcia, E. Lively, H. N. Poulsen, D. M. Baney, and D. J. Blumenthal, “Monolithically integrated dual-quadrature receiver on InP with 30 nm tunable local oscillator,” Opt. Express 19(26), B716–B721 (2011). [2.11] S. B. Estrella, L. A. Johansson, M. L. Mašanovi’c, J. A. Thomas, and J. S. Barton, “Widely tunable compact monolithically integrated photonic coherent receiver,” IEEE Photonics Technol. Lett. 24(5), 365–367 (2012). [2.12] M. Lu, H.-C. Park, A. Sivananthan, J. S. Parker, E. Bloch, L. A. Johansson, M. J. W. Rodwell, and L. A. Coldren, “Monolithic integration of a high-speed widely tunable optical coherent receiver,” IEEE Photonics Technol. Lett. 25(11), 1077–1080 (2013). [2.13] C. Caillaud, G. Glastre, F. Lelarge, R. Brenot, S. Bellini, J.-F. Paret, O. Drisse, D. Carpentier, and M. Achouche, “Monolithic integration of a semiconductor optical amplifier and a high-speed photodiode with low polarization dependence loss,” IEEE Photonics Technol. Lett. 24(11), 897–899 (2012). [2.14] M. Anagnosti, C. Caillaud, J.-F. Paret, F. Pommereau, G. Glastre, F. Blache, and M. Achouche, “Record Gain x Bandwidth (6.1 THz) Monolithically Integrated SOA-UTC Photoreceiver for 100 Gbit/s Applications,” J. Lightwave Technol. 33(6), 1186–1190 (2015). [2.15] G. Santini, C. Caillaud, J.-F. Paret, F. Pommereau, K. Mekhazni, C. Calo, and M. Achouche “High responsivity coherent photonic receiver integrating an SOA, a 90° hybrid, and high speed UTC photodiodes” Optics Express, Vol. 25, Issue 21, pp. 25719-25724 (2017) [2.16] Frederic van Dijk, Gaël Kervella, Marco Lamponi, Mourad Chtioui, François Lelarge, Eric Vinet,Yannick Robert, Martyn J. Fice, Cyril C. Renaud, Alvaro Jimenez, and Guillermo Carpintero,“Integrated InP Heterodyne Millimeter Wave Transmitter,”in IEEE PHOTONICS TECHNOLOGY LETTERS, vol. 26, NO. 10, MAY 15, 2014 [2.17] Ho-Jin Song, Member, IEEE, Katsuhiro Ajito, Member, IEEE, Yoshifumi Muramoto, Atsushi Wakatsuki, Tadao Nagatsuma, Senior Member, IEEE, and Naoya Kukutsu, Member, IEEE, “Uni-Travelling-Carrier Photodiode Module Generating 300 GHz Power Greater Than 1 mW,”in IEEE Microwave and Wireless Components Lett., vol. 22, pp.363-365 NO. 7, July 2012 [2.18] J.-W. Shi, F.-M. Kuo, and J. E. Bowers, “Design and analysis of ultrahigh-speed near-ballistic uni-traveling-carrier photodiodes under a 50 load for high-power performance,” IEEE Photon. Technol. Lett., vol. 24, no. 7, pp. 533–535, Apr. 1, 2012. [2.19] A. S. Cross, Q. Zhou, A. Beling, Y. Fu, and J. C. Campbell, “Highpower flip-chip mounted photodiode array,” Opt. Exp., vol. 21, no. 8, pp. 9967–9973, Apr. 2013. [2.20] J.-W. Shi, J.-M.Wun, F.-W. Lin, and J. E. Bowers, “Ultra-fast (325 GHz) near-ballistic uni-traveling-carrier photodiodes with high sub-THz output power under a 50 load,” in Proc. IEEE Photon. Soc. Meeting, Bellevue, WA, USA, Sep. 2013, pp. 354–355, paper WA2.3. [2.21] M. Y. Frankel, S. Gupta, J. Valdmanis, and G. A. Mourou, “Terahertz attenuation and dispersion characteristics of coplanar transmission lines,” IEEE Trans. Microw. Theory Techn., vol. 39, no. 6, pp. 910–916, Jun. 1991. [2.22] J.-M. Wun, C.-H. Lai, N.-W. Chen, J. E. Bowers, and J.-W. Shi, “Flip-chip bonding packaged THz photodiode with broadband high-power performance,” IEEE Photon. Technol. Lett., vol. 26, no. 24, pp. 2462–2464, Dec. 2014. In this chapter, we demonstrated two novel collector design to further improve the high-power performance of the UTC-PD. Detailed dynamic analysis of the device package at different photocurrents and reverse bias voltages suggests that non-equilibrium electron transport plays an important role in determining the maximum output power in the THz regime. In our summy, for new structure N-UTC-PD, it still has superiorly high bandwidth (~315GHz) performance, but the new structure also leads to degradation of output power(-3dBm@280GHz); for NBUTC-PD, it has better output power (-1.8dBm) and bandwidth (~325GHz), but it must need better heat dissipation to avoid thermal failure. References [3.1] X. Li, S. Demiguel, N. Li, J. C. Campbell, D. L. Tulchinsky, and K. J. Williams, “Backside illuminated high saturation current partially depleted absorber,” Electron. Lett., vol. 39, pp. 1466–1467, 2003. [3.2] J.-W. Shi, Y.-S. Wu, C.-Y. Wu, P.-H. Chiu, and C.-C. Hong, “Highspeed, high-responsivity, and high- power performance of near-ballistic uni-traveling-carrier photodiode at 1.55-μm wavelength,” IEEE Photon. Tech. Lett., vol. 17, no. 9, pp. 1929–31, Sep. 2005. [3.3] A. Dyson, I. D. Henning, and M. J. Adams, “Comparison of type I and type II heterojunction unitravelling carrier photodiodes for terahertz generation,” IEEE J. Sel. Topics Quantum Electron., vol. 14, no. 2, pp. 277–283, Mar./Apr. 2008. [3.4] I. D. Henning, M. J. Adams, Y. Sun, D. G. Moodie, D. C. Rogers, P. J. Cannard, S. “Jeevan” Dosanjh, M. Skuse, and R. J. Firth, “Broadband antenna-integrated, edge-coupled photomixers for tuneable terahertz sources,” IEEE J. Quantum Electron., vol. 46, no. 10, pp. 1498–1505, Oct. 2010. [3.5] E. Rouvalis, C. C. Renaud, D. G. Moodie, M. J. Robertson, and A. J. Seeds, “Traveling-wave uni-traveling carrier photodiodes for continuous wave THz generation,” Opt. Exp., vol. 18, pp. 11105–11110, 2010. [3.6] E. Rouvalis, C. C. Renaud, D. G. Moodie, M. J. Robertson, and A. J. Seeds, “Continuous wave terahertz generation from ultra-fast InP-based photodiodes,” IEEE Trans. Microw. Theory Tech., vol. 60, no. 3, pp. 509– 517, Mar. 2012. [3.7] M. J. Fice, E. Rouvalis, L. Ponnampalam, C. C. Renaud, and A. J. Seeds, “Telecommunications technology-based terahertz sources,” Electron. Lett., vol. 460, pp. 28–31, 2010. [3.8] A. Beck, G. Ducournau, M. Zaknoune, E. Peytavit, T. Akalin, J. F. Lampin, F. Mollot, F. Hindle, C. Yangand, and G. Mouret, “High-efficiency unitravelling-carrier photomixer at 1.55 μm and spectroscopy application up to 1.4 THz,” Electron. Lett., vol. 44, no. 22, pp. 1320–1321, 2008. [3.9] J.-W. Shi, F.-M. Kuo, and M.-Z. Chou, “A linear cascade near-ballistic uni-traveling-carrier photodiodes with extremely high saturation-current bandwidth product (6825mA-GHz, 75mA/91GHz) under a 50Ω Load,” in Proc. Opt. Fiber Commun. Collocated Nat. Fiber Opt. Eng. Conf. , 2010, pp. 1–3. [3.10] A. Wakatsuki, T. Furuta, Y. Muramoto, T. Yoshimatsu, and H. Ito, “Highpower and broadband sub-terahertz wave generation using a j-band photomixer module with rectangular-waveguide output port,” in Proc. 33rd Int. Conf. Millimeter Terahertz Waves, Pasadena, CA, USA, Sep. 2008, pp. 1–2. [3.11] T. Nagatsuma, H.-J. Song, Y. Fujimoto, K. Miyake, A. Hirata, K. Ajito, A. Wakatsuki, T. Furuta, N. Kukutsu, and Y. Kado, “Giga-bit wireless link using 300–400 GHz bands,” in Proc. Tech. Dig. IEEE Int. Topical Meeting Microw. Photon., 2009, pp. 1–4. [3.12] J.-W. Shi, F.-M.Kuo, C.-J.Wu, C. L. Chang, C.Y. Liu, C.-Y.Chen, and J.-I. Chyi, “Extremely high saturation current-bandwidth product performance of a near-ballistic uni-traveling-carrier photodiode with a flip-chip bonding structure,” IEEE J. Quantum Electron., vol. 46, no. 1, pp. 80–86, Jan. 2010. [3.13] J.-W. Shi, F.-M. Kuo, and J. E. Bowers, “Design and analysis of ultra-high speed near-ballistic uni-traveling-carrier photodiodes under a 50 Ω load for high-power performance,” IEEE Photon. Technol. Lett., vol. 24, no. 7, pp. 533–535, Apr. 2012. [3.14] J.-M. Wun, C.-H. Lai, N.-W. Chen, J. E. Bowers, and J.-W. Shi, “Flip chip bonding packaged THz photodiode with broadband high-power performance,” IEEE Photon. Technol. Lett., vol. 26, no. 24, pp. 2462–2464, Dec. 2014. [3.15] K. Kato, “Ultrawide-band/high-frequency photodetectors,” IEEE Trans. Microw. Theory Technol., vol. 47, no. 7, pp. 1265–1281, Jul. 1999. [3.16] M. Levinshtein, S. Rumyantsev, and M. Shur, Handbook Series on Semiconductor Parameters. Singapore: World Scientific, 1996. [3.17] J.-M. Wun, H.-Y. Liu, C.-H. Lai, Y.-S. Chen, S.-D. Yang, C.-L. Pan, J. E. Bowers, C.-B. Huang, and J.-W. Shi, “Photonic high-power 160 GHz signal generation by using ultra-fast photodiode and a high-repetition-rate femtosecond optical pulse train generator,” IEEE J. Sel. Topics Quantum Electron., vol. 20, no. 6, p. 3803507, Nov./Dec. 2014. [3.18] T. Ishibashi,Y. Muramoto,T.Yoshimatsu, andH. Ito, “Unitraveling-carrier photodiodes for terahertz applications,” IEEE J. Sel. Topics Quantum Electron., vol. 20, no. 6, p. 3804210, Nov./Dec. 2014. [3.19] Y.-S. Wu, J.-W. Shi, and P.-H. Chiu, “Analytical modeling of a high performance near-ballistic uni-traveling-carrier photodiode at a 1.55 μm wavelength,” IEEE Photon. Technol. Lett., vol. 18, no. 8, pp. 938–940, Apr. 2006. [3.20] T. Ishibashi, “Nonequilibrium electron transport in HBTs,” IEEE Trans. Electron Devices, vol. 48, no. 11, pp. 2595–2604, Nov. 2001. [3.21] A. Hirata, T. Furuta, H. Ito, and T. Nagatsuma, “10-Gb/s millimeter-wave signal generation using photodiode bias modulation,” J. Lightw. Technol., vol. 24, no.4, pp. 1725–1731, Apr. 2006. [3.22] H. Ito, T. Furuta, F. Nakajima, K.Yoshino, and T. Ishibashi, “Photonic generation of continuous THz wave using uni-traveling-carrier photodiode,” J. Lightw. Technol., vol. 23, no. 12, pp. 4016–4021, Dec. 2005. [3.23] H. Ito, S.Kodama,Y.Muramoto, T. Furuta, T. Nagatsuma, and T. Ishibashi, “High-speed and high-output InP-InGaAs unitraveling-carrier photodiodes,” IEEE J. Sel. Topics Quantum Electron., vol. 10, no. 4, pp. 709–727, Jul./Aug. 2004. [3.24] M. Chtioui, F. Lelarge, A. Enard, F. Pommereau, D. Carpentier, A. Marceaux, F. V. Dijk, and M. Achouche, “High responsivity and high power UTC and MUTC GaInAs-InP photodiodes,” IEEE Photon. Technol. Lett., vol. 24, no. 4, pp. 318–320, Feb. 2012. [3.25] H. Ito, T. Furuta, S. Kodama, N.Watanabe, and T. Ishibashi, “Inp/InGaAs uni-travelling-carrier photodiode with 310GHz bandwidth,” Electron. Lett., vol. 36, no. 21, pp. 1809–1810, Oct. 2000. [3.26] G. Ducournau, P. Szriftgiser, A. Beck, D. Bacquet, F. Pavanello, E. Peytavit, M.Zaknoune, T. Akalin, and J.-F. Lampin, “Ultrawide-bandwidth single-channel 0.4-THz wireless link combining broadband quasi-optic photomixer and coherent detection,” IEEE Trans. Terahertz Sci. Technol., vol. 4, no. 3 pp. 328–337, May, 2014. [3.27] H.-J. Song, K. Ajito, Y. Muramoto, A. Wakatsuki, T. Nagatsuma, and N. Kukutsu, “Uni-travelling-carrier photodiode module generating 300 GHz power greater than 1 mW,” IEEE Microwave. Wireless Components Lett., vol. 22, no. 7, pp. 363–365, Jul. 2012. [4.1] F.-M.Kuo, J.-W. Shi, H.-C. Chiang, H.-P. Chuang, H.-K. Chiou, C.-L. Pan, N.-W. Chen, H.-J. Tsai, and C.-B. Huang, “Spectral power enhancement in a 100-GHz photonic millimeter-wave generator enabled by spectral line-by-line pulse shaping,” IEEE Photon. J., vol. 2, no. 5, pp. 719–727, Oct. 2010. [4.2] H.-P. Chuang and C.-B. Huang, “Generation and delivery of 1-ps optical pulses with ultrahigh repetition-rates over 25-km single mode fiber by a spectral line-by-line pulse shaper,” Opt. Exp., vol. 18, pp. 24003–24011, 2010. [4.3] J.-M. Wun, H.-Y. Liu, C.-H. Lai, Y.-S. Chen, S.-D. Yang, C.-L. Pan, J. E. Bowers, C.-B. Huang, and J.-W. Shi, “Photonic high-power 160 GHz signal generation by using ultra-fast photodiode and a high-repetition-rate femtosecond optical pulse train generator,” IEEE J. Sel. Topics Quantum Electron., vol. 20, no. 6, p. 3803507, Nov./Dec. 2014. [4.4] J.-M. Wun, H.-Y. Liu, Y.-L. Zeng, C.-B. Huang, C.-L. Pan, and J.-W. Shi, “High-power THz-wave generation by using ultra-fast (315 GHz) uni-traveling carrier photodiode with novel collector design and photonic femtosecond pulse generator,” presented at the Optical Fiber Communications Conference. and Exhibition, Los Angeles, CA, USA, Mar. 2015, Paper M3C.6. [4.5] A. Hirata, M. Harada, and T. Nagatsuma, “120-GHz wireless link using photonic techniques for generation, modulation, and emission of millimeter-wave signals,” J. Lightwave. Technol., vol. 21, no. 10, pp. 2145–2157, Oct. 2003. [4.6] A. Hirata, M. Harada, and T. Nagatsuma, “120-GHz wireless link using photonic techniques for generation, modulation, and emission of millimeter-wave signals,” J. of Lightw. Technol., vol. 21, pp. 2145–2153, 2003. [4.7] Huang, C.-B. ; Shi, J.-W. ; Kuo, F.-M. ; Chuang, H.-P. ; Ci-Ling Pan, “Green and High-Power Photonic Millimeter-Wave (MMW) Generator for Remote Generation at 124-GHz”, Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference (OFC/NFOEC), Los Angeles, CA, USA, Mar. 2011, Paper OThG6 [4.8] Y.-S. Wu, J.-W. Shi, and P.-H. Chiu, “Analytical modeling of a high performance near-ballistic uni-traveling-carrier photodiode at a 1.55 μm wavelength,” IEEE Photon. Technol. Lett., vol. 18, no. 8, pp. 938–940, Apr. 2006. [4.9] T. Ishibashi, “Nonequilibrium electron transport in HBTs,” IEEE Trans. Electron Devices, vol. 48, no. 11, pp. 2595–2604, Nov. 2001. [4.10] A. Hirata, T. Furuta, H. Ito, and T. Nagatsuma, “10-Gb/s millimeter-wave signal generation using photodiode bias modulation,” J. Lightw. Technol., vol. 24, no.4, pp. 1725–1731, Apr. 2006. [4.11] C.-B. Huang and Y. Lai,“Loss-less pulse intensity repetition-rate multiplication using optical all-pass filtering,” IEEE Photon. Technol. Lett., vol. 12, no. 2, pp. 167–169, Feb. 2000. [4.12] T. Ishibashi,Y. Muramoto,T.Yoshimatsu, andH. Ito, “Uni-traveling-carrier photodiodes for terahertz applications,” IEEE J. Sel. Topics Quantum Electron., vol. 20, no. 6, p. 3804210, Nov./Dec. 2014. [4.13] H. Ito, T. Furuta, S. Kodama, N.Watanabe, and T. Ishibashi, “Inp/InGaAs uni-travelling-carrier photodiode with 310GHz bandwidth,” Electron. Lett., vol. 36, no. 21, pp. 1809–1810, Oct. 2000. [4.14] H. Ito, T. Furuta, F. Nakajima, K.Yoshino, and T. Ishibashi, “Photonic generation of continuous THz wave using uni-traveling-carrier photodiode,” J. Lightw. Technol., vol. 23, no. 12, pp. 4016–4021, Dec. 2005. [4.15] J.-M. Wun, C.-H. Lai, N.-W. Chen, J. E. Bowers, and J.-W. Shi, “Flip-chip bonding packaged THz photodiode with broadband high-power performance,” IEEE Photon. Technol. Lett., vol. 26, no. 24, pp. 2462–2464, Dec. 2014. [4.16] F.-M. Kuo, C.-B. Huang, J.-W. Shi, N.-W. Chen, H.-P. Chuang, J. E. Bowers, and C.-L. Pan, “Remotely up-converted 20 Gbit/s error-free wireless on-off-keying data transmission at W-band using an ultra-wideband photonic transmitter-mixer,” IEEE Photon. J., vol. 3, no. 2, pp. 209–219, Apr. 2011. [4.17] N.-W. Chen, J.-W. Shi, F.-M. Kuo, J. Hesler, T. W. Crowe, and J. E. Bowers, “25 Gbits/sec error-free wireless link between ultra-fast W-band photonic transmitter-mixer and envelop detector,” Opt. Exp., vol. 20, no. 19, pp. 21223–21234, Sep. 2012. [5.1] G. Cook, D. Pomerantz, K. Rohrbach, B. Johnson, and J. Smyth, Clicking Clean: A Guide to Building the Green Internet. Washington, DC, USA: Greenpeace Inc., 2015, ch. 1. [5.2] B. Kellogg, V. Talla, S. Gollakota, and J. R. Smith, “PassiveWi-Fi: Bringing low power to Wi-Fi transmissions,” in Proc. Symp. Netw. Syst. Des. Implementation, Santa Clara, CA, USA, Mar. 2016, pp. 151–164. [5.3] P. Moser, P.Wolf, G. Larisch, H. Li, J. A. Lott, and D. Bimberg, “Energy efficient oxide-confined high-speed VCSELs for optical interconnects,” Proc. SPIE, vol. 9001, pp. 900103-1–900103-8, Feb. 2014. [5.4] M. A. Taubenblatt, “Optical Interconnects for high-performance computing,” IEEE/OSA J. Lightw. Technol., vol. 30, no. 4, pp. 448–458, Feb. 2012. [5.5] H. Chen A. Beling, H. Pan, and J. C. Campbell, “A method to estimate the junction temperature of photodetectors operating at high photocurrent,” IEEE J. Quantum Electron., vol. 45, no. 12, pp. 1537–1541, Dec. 2009. [5.6] D. M. Kuchta et al., “A 50 Gb/s NRZ modulated 850 nm VCSEL transmitter operating error free to 90 °C,” IEEE/OSA J. Lightw. Technol., vol. 33, no. 4, pp. 802–810, Feb. 2015. [5.7] T. Umezawa, K. Akahane, N. Yamamoto, A. Kanno, K. Inagaki, and T. Kawanishi, “Zero-bias operational ultra-broadband UTC-PD above 110 GHz for high symbol rate PD-array in high-density photonic integration,” in Proc. Opt. Fiber Commun. Conf. Exhib., 2015, Los Angeles, CA, USA, Mar. 2015, Paper M3C.7. [5.8] H. Ito, S.Kodama,Y.Muramoto, T. Furuta, T. Nagatsuma, and T. Ishibashi, “High-speed and high-output InP-InGaAs unitraveling-carrier photodiodes,” IEEE J. Sel. Topics Quantum Electron., vol. 10, no. 4, pp. 709–727, Jul./Aug. 2004. [5.9] T. Ishibashi,Y.Muramoto,T.Yoshimatsu, andH. Ito, “Unitraveling-carrier photodiodes for terahertz applications,” IEEE J. Sel. Topics Quantum Electron., vol. 20, no. 6, pp. 3804210, Nov./Dec. 2014. [5.10] T. Umezawa et al., “11-Gbps 16-QAM OFDM radio over fiber demonstration using 100 GHz high-efficiency photoreceiver based on photonic power supply,” in Proc. Optoelectron. Commun. Conf./Int. Conf. Photon. Switching 2016, Niigata, Japan, Jul. 2016, Paper ThD3-3. [5.11] J.-W. Shi et al., “GaAs/In0.5 Ga0.5 P laser power converter with undercut mesa for simultaneous high-speed data detection and dc electrical power generation,” IEEE Electron Device Lett., vol. 33, no. 4, pp. 561–563, Apr. 2012. [5.12] J.-M. Wun, J.-W. Shi, C.-Y. Tsai, and Y.-M. Hsin, “Undercut GaAs/In0.5 Ga0.5 P high-speed laser power converter for simultaneous 10 Gbit/sec data detection and efficient dc electrical power generation,” in Proc. 2012 Int. Conf. Solid State Devices Mater., Kyoto, Japan, 2012, Paper A-6-5. [5.13] J.-W. Shi, F.-M. Kuo, C.-S. Yang, S.-S. Lo, and C.-L. Pan, “Dynamic analysis of cascade laser power converters for simultaneous high-speed data detection and optical-to-electrical dc power generation,” IEEE Trans. Electron Device, vol. 58, no. 7, pp. 2049–2056, Jul. 2011. [5.14] L. Zheng et al., “Demonstration of high-speed staggered lineup GaAsSb– InP unitraveling carrier photodiodes,” IEEE Photon. Technol. Lett., vol. 17, no. 3, pp. 651–653, Mar. 2005. [5.15] J.-M. Wun, Y.-L. Zeng, and J.-W. Shi, “GaAs0.5 Sb0.5 /InP UTC-PD with graded-bandgap collector for zero-bias operation at sub-THz regime,” in Proc. Opt. Fiber Commun. Conf. 2016, Anaheim, CA, USA, Mar. 2016, Paper Tu2D.4. [5.16] J.-M. Wun et al., “Photonic high-power CW THz-wave generation by using flip-chip packaged uni-traveling carrier photodiode and femtosecond optical pulse generator,” IEEE/OSA J. Lightw. Technol., vol. 34, no. 4, pp. 1387–1397, Feb. 2016. [5.17] J.-M. Wun, C.-H. Lai, N.-W. Chen, J. E. Bowers, and J.-W. Shi, “Flip chip bonding packaged THz photodiode with broadband high-power performance,” IEEE Photon. Technol. Lett., vol. 26, no. 24, pp. 2462–2464, Dec. 2014. [5.18] J.-W. Shi, C.-Y. Wu, Y.-S. Wu, P.-H. Chiu, and C.-C. Hong, “Highspeed, high-responsivity, and high-power performance of near- ballistic uni-traveling-carrier photodiode at 1.55μm wavelength,” IEEE Photon. Technol. Lett., vol. 17, no. 9, pp. 1929–1931, Sep. 2005. [5.19] R. Sidhu et al., “2.4 μm cutoff wavelength avalanche photodiode on InP substrate,” Electron. Lett., vol. 42, no. 3, pp. 181–182, 2006. [5.20] J.-M. Wun, R.-L. Chao, Y.-W. Wang, Y.-H. Chen, and J.-W. Shi, “Type-II GaAs0.5Sb0.5/InP uni-traveling carrier photodiodes with sub-THz bandwidth and high-power performance under zero-bias operation,” IEEE/OSA J. Lightw. Technol., vol. 35, no. 4, pp. 711–716, Feb. 2017. [5.21] J.-M. Wun et al., “Photonic high-power CW THz-wave generation by using flip-chip packaged uni-traveling carrier photodiode and femtosecond optical pulse generator,” IEEE/OSA J. Lightw. Technol., vol. 34, no. 4, pp. 1387–1397, Feb. 2016. [5.22] Z. Li, H. Pan, H. Chen, A. Beling, and J. C. Campbell, “High-saturation current modified uni-traveling-carrier photodiode with cliff layer,” IEEE J. Quantum Electron., vol. 46, no. 5, pp. 626–632, May 2010. [5.23] J.-W. Shi, F.-M. Kuo, and J. E. Bowers, “Design and analysis of ultra-high speed near-ballistic uni-traveling-carrier photodiodes under a 50 Ω load for high-power performance,” IEEE Photon. Technol. Lett., vol. 24, no. 7, pp. 533–535, Apr. 2012. [5.24] T. Ishibashi,Y.Muramoto,T.Yoshimatsu, andH. Ito, “Unitraveling-carrier photodiodes for terahertz applications,” IEEE J. Sel. Topics Quantum Electron., vol. 20, no. 6, Nov./Dec. 2014, Art. no. 3804210. [5.25] H. Ito et al., “High-speed and high-output InP-InGaAs uni-traveling carrier photodiodes,” IEEE J. Sel. Topics Quantum Electron., vol. 10, no. 4, pp. 709–727, Jul./Aug. 2004. [5.26] H. Ito, T. Furuta, S. Kodama, N. Watanabe, and T. Ishibashi “Inp/InGaAs uni-travelling-carrier photodiode with 310GHz bandwidth,” Electron. Lett., vol. 36, pp. 1809–1810, Oct. 2000. [5.27] J.-W. Shi, K.-L. Chi, C.-Y. Li, and J.-M. Wun, “Dynamic analysis of high-efficiency InP based photodiode for 40 Gbit/sec optical interconnect across a wide optical window (0.85 to 1.55 μm),” IEEE/OSA J. Lightw. Technol., vol. 33, no. 4, pp. 921–927, Feb. 2015. [5.28] J.-W. Shi and C.-W. Liu, “Design and analysis of separate-absorption transport- charge-multiplication traveling-wave avalanche photodetectors,” IEEE/OSA J. Lightw. Technol., vol. 22, no. 6, pp. 1583–1590, Jun. 2004. [5.29] K. Kato, “Ultrawide-band/high-frequency photodetectors,” IEEE Trans. Microw. Theory Tech., vol. 47, no. 7, pp. 1265–1281, Jul. 1999. [5.30] T. Ishibashi, “Nonequilibrium electron transport in HBTs,” IEEE Trans. Electron Devices, vol. 48, no. 11, pp. 2595–2604, Nov. 2001. [5.31] S. Koenig et al., “Wireless sub-THz communication system with high data rate,” Nature Photon., vol. 7, pp. 977–981, Dec. 2013. [5.32] J.-W. Shi, C.-B. Huang, and C.-L. Pan, “Millimeter-wave photonic wireless links f or very-high data rate communication,” NPG Asia Mater., vol. 3, no. 2, pp. 41–48, Apr. 2011. [5.33] H.-J. Song and T. Nagatsuma, “Present and future terahertz communications,” IEEE Trans. THz Sci. Technol., vol. 1, no. 1, pp. 256–263, Sep. 2011. [5.34] F.-M. Kuo et al., “Remotely up-converted 20 Gbit/s error-free wireless on off- keying data transmission atW-band using an ultra-wideband photonic transmitter-mixer,” IEEE Photon. J., vol. 3, no. 2, pp. 209–219, Apr. 2011. [5.35] A. Hirata, T. Furuta, H. Ito, and T. Nagatsuma, “10-Gb/s millimeter-wave signal generation using photodiode bias modulation,” IEEE/OSA J. Lightw. Technol., vol. 24, no. 4, pp. 1725–1731, Apr. 2006. [5.36] N.-W. Chen, J.-W. Shi, F.-M. Kuo, J. Hesler, T. W. Crowe, and J. E. Bowers, “25 Gbits/sec error-freewireless link between Ultra-Fast W-Band photonic transmitter-mixer and envelop detector,” Opt. Express, vol. 20, no. 19, pp. 21223–21234, Sep. 2012. [6.1] A. Wakatsuki, T. Furuta, Y. Muramoto, T. Yoshimatsu, and H. Ito, “High-power and Broadband Sub-Terahertz Wave Generation Using a J-band Photomixer Module with Rectangular-waveguide Output Port,” Tech. Dig. 2008 Infrared, Millimeter and Terahertz Waves (IRMMW-THz 2008), pp. M4K2 1199, Sep., 2008. [6.2] T. Ishibashi, Y. Muramoto, T. Yoshimatsu, and H. Ito, “Unitraveling-Carrier Photodiodes for Terahertz Applications,” IEEE J. of Sel. Topics in Quantum Electronics, vol. 20, pp. 3804210, Nov./Dec., 2014. [6.3] C. C. Renaud, M. Natrella, C. Graham, J. Seddon, F. V. Dijk, and A. J. Seeds “Antenna Integrated THz Uni-Traveling Carrier Photodiodes,” to be published in IEEE J. of Sel. Topics in Quantum Electronics, vol. 24, no. 2, March, /April, 2018. [6.4] H. Ito and T. Ishibashi, “Photonic Terahertz-Wave Generation Using Slot-Antenna-Integrated Uni-Traveling-Carrier Photodiodes,” IEEE J. of Sel. Topics in Quantum Electronics, vol. 23, pp. 3800907, July/August, 2017. [6.5] J. Wells, “Faster Than Fiber: The Future of Multi-Gb/s Wireless,” IEEE Microwave Magazine. vol. 10, pp. 104-112, May, 2009. [6.6] J.-M. Wun, Y.-W. Wang, and J.-W. Shi, “Ultra-Fast Uni-Traveling Carrier Photodiodes with GaAs0.5Sb0.5/In0.53Ga0.47As Type-II Hybrid Absorbers for High-Power Operation at THz Frequencies,” to be published in IEEE J. of Sel. Topics in Quantum Electronics, vol. 24, no. 2, March, /April, 2018. [6.7] V. Rodriguez, “The dual-ridged horn antenna,” EE, Evaluation engineering vol. 45, no. 10, pp. 58-63, Oct., 2006. [6.8] ANSYS HFSS:3D full-wave electromagnetic field simulation, ANSYS, Inc. [6.9] Keysight ADS, Keysight Technologies, 1400 Fountaingrove Parkway, Santa Rosa, CA 95403-1799.' [6.10] N.-W. Chen, H.-J. Tsai, F.-M. Kuo, and J.-W. Shi, “High-Speed W-Band Integrated Photonic Transmitter for Radio-Over-Fiber Applications,” IEEE Trans. Microwave Theory Tech., vol. 59, No. 4, pp. 978-986, April, 2011. [6.11] N.-W. Chen, J.-W. Shi, F.-M. Kuo, J. Hesler, T. W. Crowe, and J. E. Bowers, “25 Gbits/sec Error-Free Wireless Link between Ultra-Fast W-Band Photonic Transmitter-Mixer and Envelop Detector,” Optics Express, vol. 20, No. 19, pp. 21223-21234, Sep., 2012. [6.12] D. M. Pozar, Microwave Engineering, 4th ed. New York: Wiley, 2011. [6.13] K.C. Gupta, R. Garg, I. Bahl,R.Bhartia, MicrostripLines and Slotlines, Artech House, Inc., Norwood, MA, 1996. [6.14] G. Mattaei, L. Young, and E. M. T. Jones, Microwave filters, impedance matching networks, and coupling structures, Artech House, Norwood, MA, 1980. [6.15] Y. Peng, X.-F. Zang, Y.-M. Zhu, C. Shi, L. Chen, B. Cai, and S.-L. Zhuang, “Ultra-broadband terahertz perfect absorber by exciting multi-order diffractions in a doublelayered grating structure,” Optics Express, vol. 23, No. 03, pp. 2032-2039, Feb., 2015. [6.16] X.- F. Zang, C. Shi, L. Chen, B. Cai, Y.-M. Zhu, and S.-L. Zhuang, “Ultra-broadband terahertz absorption by exciting the orthogonal diffraction in dumbbell-shaped gratings,” Scientific Reports, vol. 5, pp. 8901, March, 2015.
[6.17] C. Shi, X.-F. Zang, L. Chen, Y. Peng, B. Cai, G. R. Nash, and Y.-M. Zhu, “Compact Broadband Terahertz Perfect Absorber Based on Multi-Interference and Diffraction Effects,” IEEE Trans. Terahertz Science Tech., vol. 6, pp. 40-44, Jan., 2016. [6.18] S. Kawanishi, and M. Saruwatari, “A Very Wide-Band Frequency Response Measurement System Using Optical Heterodyne Detection,” IEEE Trans. Instrumentation and Measurement, vol. 38, pp.569 - 573, April, 1989. [6.19] Y.-Y. Hu, “A Method of Determining Phase Centers and Its Applications to Electromagnetic Horns,” Journal of the Franklin Institute, vol. 271, pp. 31–39, Jan. 1961. [6.20] J. Zehentner, J. Machac, and J. Mrkvica, “Modes on standard and inverted conductor-backed slotline,” 2003 IEEE IMS Symposium, June 8-13, pp.1-4. [6.21] R. King and D. D. King, “Microwave Impedance Measurements with Application to Antennas. II,” Journal of Applied Physics, vol. 16, pp. 445-453, 1945. [7.1] R. Soref, “Mid-infrared photonics in silicon and germanium,” Nature Photon., vol. 4, pp. 495–497, Aug. 2010. [7.2] A. Joshi and S. Datta, “High-speed, large-area, p-i-n InGaAs photodiode linear array at 2-micron wavelength,” Proc. SPIE, vol. 8353, p. 83533D, May 2012. [7.3] J. E. Bowers, A. K. Srivastava, C. A. Burrus, M. A. DeWinter, M. A. Pollack, and J. L. Zyskind, “High-speed GaInAsSb/GaSb PIN photodetectors for wavelengths to 2.3 μm,” Electron. Lett., vol. 22, pp. 137–138, Jan. 1986. [7.4] N. Ye et al., “InGaAs surface normal photodiode for 2 m optical communication systems,” IEEE Photon. Technol. Lett., vol. 27, no. 14, pp. 1469–1472, Jul. 15, 2015. [7.5] Y. Miyamoto, M. Yoneyama, K. Hagimoto, T. Ishibashi, and N. Shimizu, “40 Gbit/s high sensitivity optical receiver with uni-travelling-carrier photodiode acting as decision IC driver,” Electron. Lett., vol. 34, no. 2, pp. 214–215, Jan. 1998. [7.6] A. Rakovska et al., “Room temperature InAsSb photovoltaic mid-infrared detector,” Appl. Phys. Lett., vol. 77, no. 3, pp. 397–399, Jul. 2000. [7.7] M. P. Mikhailova, Handbook Series on Semiconductor Parameters, vol. 1, M. Levinshtein, S. Rumyantsev, and M. Shur, Eds. London, U.K.: World Scientific, 1996, pp. 147–168. [7.8] K. Kato, “Ultrawide-band/high-frequency photodetectors,” IEEE Trans. Microw. Theory Techn., vol. 47, no. 7, pp. 1265–1281, Jul. 1999.
|