跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.182) 您好!臺灣時間:2025/10/10 05:38
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:周允中
研究生(外文):CHOU,YUN-CHUNG
論文名稱:MoS2奈米粒子之合成及其光學特性之研究
論文名稱(外文):Fabrication and optical properties of Mos2 nano-particles
指導教授:王祥辰
指導教授(外文):WANG,HSIANG-CHEN
口試委員:呂明諺呂明霈張守進張文豪王祥辰
口試委員(外文):LU,MING-YENLU,MING-PEICHANG,SHOU-CHINCHANG,WEN-HAOWANG,HSIANG-CHEN
口試日期:2017-07-14
學位類別:碩士
校院名稱:國立中正大學
系所名稱:光機電整合工程研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:95
中文關鍵詞:二硫化鉬奈米粒子分散液
外文關鍵詞:Molybdenum disulfide(MoS2)Nano-particledispersion
相關次數:
  • 被引用被引用:0
  • 點閱點閱:522
  • 評分評分:
  • 下載下載:12
  • 收藏至我的研究室書目清單書目收藏:0
本論文藉由超聲波震盪法將微米級MoS2粉末製備成MoS2奈米粒子分散液,並進行光學量測得知其光學特性。本論文選用之分散液溶劑為NMP,NMP被認為具有與MoS2較接近的表面能量,使製備出之分散液具有良好的穩定性。再來我們對於MoS2分散液進行EDX、SEM、TEM的量測,並觀測MoS2奈米粒子的大小與分散液形貌的關係,這裡觀測到隨著粒子尺寸增大分散液的色澤會朝向長波長移動。由於MoS2奈米粒子尺寸 < 100 nm時具有光致發光的特性,因此我們對於所製備之樣本使用325nm波長之He-Cd雷射進行激發並成功獲得相應產生的光源,而在拉曼量測部分可以觀測到合成出之奈米粒子具有特徵峰值可以驗證其材料特性。接著使用本實驗室研發之超頻譜影像技術對於光學顯微鏡影像進行量測,並獲得相應的波長頻譜得知其表面形貌狀態。並在最後進行了動態光散射(DLS)的方法量測分散液中粒子的水力半徑得知分散液中的粒子大小。本論文經由這些驗證,最終證實了此製程經由超聲波震盪時間與離心時間參數的調整,製備不同大小的MoS¬2的奈米粒子分散液,且觀察不同粒徑MoS2奈米粒子被激發光波長的光致發光特性。
In this paper, micron-sized MoS2 powder was prepared into MoS2 nanoparticle dispersion by ultrasonic method, and the optical properties were measured by optical measurement. The dispersion solvent chosen for this paper is NMP, NMP is considered to have the surface energy close to MoS2, and the prepared dispersion has good stability. Then we measured the EDX, SEM and TEM for the MoS2 dispersion and observed the relationship between the size of the MoS2 nanoparticles and the morphology of the dispersion. It was observed that the color of the dispersion would increase toward the long wavelength mobile. Since the MoS2 nanoparticles have a characteristic of photoluminescence at <100 nm, we use the He-Cd laser with a wavelength of 325 nm to excite and obtain the corresponding light source for the prepared samples. In the Raman measurement section It can be observed that the synthesized nanoparticles have characteristic peaks to verify their material properties. Then use the ultra-spectral imaging technology developed by our laboratory to measure the optical microscope image and obtain the corresponding wavelength spectrum to know its surface morphology. And the final method of dynamic light scattering (DLS) was used to measure the particle size of the particles in the dispersion. Based on these tests, it is proved that this process can be prepared by adjusting the ultrasonic oscillation time and centrifugal time parameters, and can be prepared in different sizes of MoS2 nanoparticle dispersion and have different particle size MoS2 nanoparticles excited light wavelength of the photoluminescence characteristics.
目錄
致謝
摘要
Abstract
目錄
圖目錄
第一章 緒論
1-1 前言
1-2 二維材料MoS2的介紹
1-3 MoS2量子點的發展與應用
1-4 MoS2量子點的製程簡介
1-5 研究動機與目的
1-6 論文架構
第二章 理論基礎
2-1 二硫化鉬簡介
2-1-1 二硫化鉬的物理特性
2-1-2 二硫化鉬的基本化學特性
2-2 二硫化鉬的製備方法
2-2-1 二硫化鉬製程分類
2-2-2 二硫化鉬合成法方法介紹
2-3 二硫化鉬的用途
2-4 實驗製程應用技術介紹
2-4-1 超聲波剝離法介紹
2-4-2 滴鑄法(Drop-Casting method)
2-4-3 基板親水機制(食人魚洗液洗滌)
2-4-4 基板親水機制(氧電漿改性基板)
2-5 多頻譜技術應用介紹
第三章 實驗步驟及方法
3-1 實驗材料及藥品規格
3-2 實驗流程及步驟
3-2-1 基板表面改性處理
3-2-2 MoS2研磨前置作業
3-2-3 MoS2真空乾燥作業
3-2-4 MoS2乾燥後重新分散至溶劑中
3-2-5 探針式超聲波剝離MoS2粒子
3-2-6 超聲波震盪後續處理
3-2-7 重力離心分離MoS2粒子
3-2-8 分散液製作量測樣本
3-3 實驗儀器及裝置
3-3-1 探針式超聲波震盪儀
3-3-2 離心機
3-3-3 氧氣電漿氧化系統
3-3-4 循環式烘箱系統
3-4 分析儀器
3-4-1 場發射掃描式電子顯微鏡(SEM)
3-4-2 螢光光譜儀(Fluorescence Spectrometers)
3-4-3 飛秒拉曼光譜分析儀(ft-Raman spectrometer)
3-4-4 穿透式電子顯微鏡(TEM)
3-4-5 能量色散X射線光譜儀(EDS)
3-4-6 動態光散射儀(DLS)
第四章 結果與討論 7
4-1 MoS2的表面形貌探討
4-1-1 MoS2奈米粒子樣本樣貌觀測
4-1-2 MoS2奈米粒子的熱聚合
4-1-3 MoS2奈米粒子EDS量測
4-1-4 MoS2粒子的穿透式電子顯微鏡(TEM)量測
4-2 MoS2奈米粒子的光學量測
4-2-1 MoS2分散液滴鑄至矽基板的光學顯微鏡觀測
4-2-2 分散液的光學特性觀測
4-2-3 MoS2奈米粒子的動態光散射(DLS)的量測探討
4-2-4 MoS2奈米粒子的拉曼光譜量測與探討
4-2-5 MoS2分散液的吸收頻譜量測與探討
4-2-6 MoS2超頻譜影像技術應用量測
4-2-7 MoS2奈米粒子的光致發光(PL)量測
第五章 結論與未來展望
第六章 參考文獻


[1]Y.Zhang, T.Tang, C.Girit, Z.Hao, M. C.Martin, A.Zettl, M. F.Crommie, Y. R.Shen, andF.Wang, “Direct observation of a widely tunable bandgap in bilayer graphene,” Nature, vol. 459, no. 7248, pp. 820–823, 2009.
[2]J. C.Reed, A. Y.Zhu, H.Zhu, F.Yi, andE.Cubukcu, “Wavelength Tunable Microdisk Cavity Light Source with a Chemically Enhanced MoS 2 Emitter,” 2015.
[3]D.Lembke andA.Kis, “Breakdown of High-Performance Monolayer MoS 2 Transistors,” no. 11, pp. 10070–10075, 2012.
[4]H.Zeng, J.Dai, W.Yao, D.Xiao, andX.Cui, “Valley polarization in MoS 2 monolayers by optical pumping,” vol. 7, no. June, 2012.
[5]J. N.Coleman, M.Lotya, A. O.Neill, S. D.Bergin, P. J.King, U.Khan, K.Young, A.Gaucher, S.De, R. J.Smith, I.VShvets, S. K.Arora, G.Stanton, H.Kim, K.Lee, G. T.Kim, G. S.Duesberg, T.Hallam, J. J.Boland, J. J.Wang, J. F.Donegan, J. C.Grunlan, G.Moriarty, A.Shmeliov, R. J.Nicholls, J. M.Perkins, E. M.Grieveson, K.Theuwissen, D. W.Mccomb, P. D.Nellist, andV.Nicolosi, “Two-Dimensional Nanosheets Produced by Liquid Exfoliation of Layered Materials,” vol. 331, no. February, pp. 568–572, 2011.
[6]K.Kalantar-zadeh, “Ion-Driven Photoluminescence Modulation of Quasi-Two- Dimensional MoS 2 Nano fl akes for Applications in Biological Systems,” 2014.
[7]A.Splendiani, L.Sun, Y.Zhang, T.Li, J.Kim, C.Chim, G.Galli, andF.Wang, “Emerging Photoluminescence in Monolayer,” pp. 1271–1275, 2010.
[8]G.Eda, H.Yamaguchi, D.Voiry, T.Fujita, M.Chen, andM.Chhowalla, “Photoluminescence from Chemically Exfoliated MoS 2,” pp. 5111–5116, 2011.
[9]S.Mouri, Y.Miyauchi, andK.Matsuda, “Tunable Photoluminescence of Monolayer MoS 2 via Chemical Doping,” pp. 1–5, 2013.
[10]L.Ma, D. N.Nath, E. W. L.Ii, C. H.Lee, M.Yu, A.Arehart, andS.Rajan, “mobility of 192 cm2 V − 1 s − 1 Epitaxial growth of large area single-crystalline few-layer MoS 2 with high,” vol. 72105, no. May 2016, 2015.
[11]Q.Ji, Y.Zhang, T.Gao, Y.Zhang, M.Liu, Y.Chen, X.Qiao, P.Tan, M.Kan, J.Feng, Q.Sun, andZ.Liu, “Epitaxial Monolayer MoS 2 on Mica with Novel Photoluminescence,” 2013.
[12]H.Nan, Z.Wang, W.Wang, Z.Liang, Y.Lu, Q.Chen, D.He, P.Tan, F.Miao, X.Wang, J.Wang, Z.Ni, andN. A. N. E. T.Al, “Strong Photoluminescence Enhancement of MoS 2 through Defect Engineering and Oxygen Bonding,” no. 6, pp. 5738–5745, 2014.
[13]Y.Wang, J. Z.Ou, S.Balendhran, A. F.Chrimes, M.Mortazavi, D. D.Yao, M. R.Field, K.Latham, V.Bansal, J. R.Friend, S.Zhuiykov, N.VMedhekar, M. S.Strano, K.Kalantar-zadeh, andW. E. T.Al, “Electrochemical Control of Photoluminescence in Two-Dimensional MoS 2 Nano fl akes,” no. 11, pp. 10083–10093, 2013.
[14]A.Azcatl, J.Noh, S. R.Madhvapathy, R.Addou, S.Kc, M.Dubey, K.Cho, R. M.Wallace, S.Lee, J.He, J. W. A.Iii, X.Zhang, E.Yablonovitch, andA.Javey, “Near-unity photoluminescence quantum yield in MoS2,” no. October, pp. 1–5, 2015.
[15]A.Sobhani, A.Lauchner, S.Najmaei, C.Ayala-orozco, F.Wen, J.Lou, J.Naomi, A.Sobhani, A.Lauchner, S.Najmaei, andC.Ayala-orozco, “Enhancing the photocurrent and photoluminescence of single crystal monolayer MoS 2 with resonant plasmonic nanoshells,” vol. 67148, pp. 1–5, 2015.
[16]K. F.Mak, C.Lee, J.Hone, J.Shan, andT. F.Heinz, “Atomically Thin MoS 2 : A New Direct-Gap Semiconductor,” vol. 136805, no. September, pp. 2–5, 2010.
[17]X.Li andH.Zhu, “ScienceDirect Two-dimensional MoS 2 : Properties , preparation , and applications,” vol. 1, 2015.
[18]R.Severin, A.Mu, C.Janowitz, R.Manzke, andT.Bo, “Band structure of MoS2 , MoSe2, and ? -MoTe2: Angle-resolved photoelectron spectroscopy and ab initio calculations,” vol. 64, pp. 1–11, 2001.
[19]R. A.Klemm, “Pristine and intercalated transition metal dichalcogenide superconductors,” vol. 514, pp. 86–94, 2015.
[20]J.Lou, X.Xu, andP. D.Ye, “Black Phosphorus À Monolayer MoS 2 Diode,” no. 8, pp. 8292–8299, 2014.
[21]Y.Shi, W.Zhou, A.Lu, W.Fang, Y.Lee, andA. L.Hsu, “van der Waals Epitaxy of MoS 2 Layers Using Graphene As Growth Templates,” 2012.
[22]S. W.Han, H.Kwon, S. K.Kim, S.Ryu, W. S.Yun, D. H.Kim, J. H.Hwang, J.Kang, J.Baik, H. J.Shin, andS. C.Hong, “Band-gap transition induced by interlayer van der Waals interaction in MoS 2,” vol. 45409, pp. 17–22, 2011.
[23]B.Biel, “Van der Waals Epitaxial Growth of C60 Film on a Cleaved Face of MoS2.”
[24]R. S.Sundaram, M.Engel, A.Lombardo, R.Krupke, A. C.Ferrari, andM.Steiner, “Electroluminescence in Single Layer MoS 2,” 2013.
[25]A.Kuc, N.Zibouche, andT.Heine, “Influence of quantum confinement on the electronic structure of the transition metal sulfide T S 2,” vol. 245213, no. June, pp. 1–4, 2011.
[26]M. M.Ugeda, A. J.Bradley, S.Shi, F. H.Jornada, Y.Zhang, D. Y.Qiu, W.Ruan, S.Mo, Z.Hussain, Z.Shen, F.Wang, S. G.Louie, andM. F.Crommie, “Giant bandgap renormalization and excitonic e ects in a monolayer transition metal dichalcogenide semiconductor,” vol. 13, no. August, pp. 1091–1095, 2014.
[27]N.Lu, H.Guo, L.Li, J.Dai, L.Wang, andW.Mei, “MoS2/MX2 heterobilayers: bandgap engineering via tensile strain or external electrical fiel,” pp. 2879–2886, 2014.
[28]A.Ramasubramaniam, D.Naveh, andE.Towe, “Tunable band gaps in bilayer transition-metal dichalcogenides,” vol. 205325, pp. 1–10, 2011.
[29]M.Nanocatalysts, T. F.Jaramillo, K. P.Jørgensen, J.Bonde, J. H.Nielsen, S.Horch, andI.Chorkendorff, “Identification of Active Edge Sites for Electrochemical H 2 Evolution from,” vol. 317, no. July, pp. 100–103, 2007.
[30]L.Cao, S.Yang, W.Gao, Z.Liu, Y.Gong, L.Ma, G.Shi, S.Lei, Y.Zhang, S.Zhang, andR.Vajtai, “Direct Laser-Patterned Micro-Supercapacitors from Paintable MoS 2 Films,” pp. 1–6, 2013.
[31]Y.Gong, S.Yang, L.Zhan, L.Ma, R.Vajtai, andP. M.Ajayan, “A Bottom-Up Approach to Build 3D Architectures from Nanosheets for Superior Lithium Storage,” pp. 125–130, 2014.
[32]H. D.Ha, D. J.Han, J. S.Choi, M.Park, andT. S.Seo, “Dual Role of Blue Luminescent MoS 2 Quantum Dots in Fluorescence Resonance Energy Transfer Phenomenon,” pp. 1–5, 2014.
[33]Y.Wang andY.Ni, “Molybdenum Disul fide Quantum Dots as a Photoluminescence Sensing Platform for 2,4,6-Trinitrophenol Detection,” 2014.
[34]J. S.Ross, P.Klement, A. M.Jones, N. J.Ghimire, J.Yan, D. G.Mandrus, T.Taniguchi, K.Watanabe, K.Kitamura, W.Yao, D. H.Cobden, andX.Xu, “Electrically tunable excitonic light-emitting diodes based on monolayer WSe 2 p – n junctions,” vol. 9, no. April, pp. 268–272, 2014.
[35]M.Bernardi, M.Palummo, C.Grossman, andR.Scienti, “Extraordinary Sunlight Absorption and One Nanometer Thick Photovoltaics Using Two-Dimensional Monolayer Materials,” 2013.
[36]O.Lopez-sanchez, D.Lembke, M.Kayci, A.Radenovic, andA.Kis, “Ultrasensitive photodetectors based on monolayer MoS 2,” vol. 8, no. June, pp. 497–501, 2013.
[37]K.Gundogdu, “Many-Body E ff ects in Valleytronics: Direct Measurement of Valley Lifetimes in Single-Layer MoS 2,” 2014.
[38]R.Rossetti, S.Nakahara, L. E.Brus, R.Rossetti, S.Nakahara, andL. E.Brus, “Quantum size effects in the redox potentials , resonance Raman spectra , and electronic spectra of CdS crystallites in aqueous solution Quantum size effects in the redox potentials , resonance Raman spectra , and electronic spectra of CdS crystallites in aqueous solution,” vol. 1086, 1983.
[39]C. B.Murray, M.Nirmal, D. J.Norris, andM. G.Bawendi, “Synthesis and Structural Characterization of II-VI Semiconductor Nanocrystallites (Quantum Dots),” vol. 233, pp. 231–233, 1993.
[40]R.Chaves, D.Cavalcanti, L.Davidovich, J.Kempe, J. H.Eberly, P.Milman, L.Davidovich, N.Zagury, J. H.Eberly, I.Chuang, Q.Computation, R.Laflamme, G. J.Milburn, E.Wigner, E.Waks, A. G.White, I.Applebaum, P. H.Eberhard, P. G.Kwiat, W. J.Munro, A. G.White, E. R.Jeffrey, P. G.Kwiat, G.Alber, andF.DeMelo, “Colloidal Nanocrystals with Molecular Metal Chalcogenide Surface Ligands,” no. June, pp. 1417–1421, 2009.
[41]J.Shi, G.Han, Y.Zhang, Q.Ji, T.Gao, J.Sun, X.Song, C.Li, Y.Zhang, X.Lang, Y.Zhang, Z.Liu, M.Science, M.Sciences, M.Engineering, A.Materials, andM.Science, “Controllable Growth and Transfer of Monolayer MoS 2 on Au Foils and Its Potential Application in Hydrogen,” no. 10, pp. 10196–10204, 2014.
[42]Y.Zhan, Z.Liu, S.Najmaei, P. M.Ajayan, andJ.Lou, “Large-Area Vapor-Phase Growth and Characterization of MoS 2 Atomic Layers on a SiO 2 Substrate,” no. 7, pp. 966–971, 2012.
[43]S.Mcdonnell, R.Addou, C.Buie, R. M.Wallace, andC. L.Hinkle, “Defect-Dominated Doping and Contact Resistance in MoS 2,” no. 3, pp. 2880–2888, 2014.
[44]E. M.Nanosheets, D.Gopalakrishnan, D.Damien, andM. M.Shaijumon, “MoS2 Quantum Dot-Interspersed Exfoliated MoS2 Nanosheets,” no. 5, pp. 5297–5303, 2014.
[45]A. W.Maijenburg, M.Regis, A. N.Hattori, H.Tanaka, andK.Choi, “MoS 2 Nanocube Structures as Catalysts for Electrochemical H 2 Evolution from Acidic Aqueous Solutions,” 2014.
[46]Q.Li, E. C.Walter, W. E.Van DerVeer, B. J.Murray, J. T.Newberg, E. W.Bohannan, J. A.Switzer, J. C.Hemminger, andR. M.Penner, “Molybdenum Disulfide Nanowires and Nanoribbons by Electrochemical / Chemical Synthesis,” pp. 3169–3182, 2005.
[47]J.Kibsgaard, Z.Chen, B. N.Reinecke, andT. F.Jaramillo, “Engineering the surface structure of MoS2 to preferentially expose active edge sites for electrocatalysis,” vol. 11, no. October, pp. 963–969, 2012.
[48]V. A.Online, “MoS2 nanoflower-decorated reduced graphene oxide paper for high-performance hydrogen evolution reaction,” pp. 5624–5629, 2014.
[49]H.Liu, X.Su, C.Duan, X.Dong, andZ.Zhu, “A novel hydrogen peroxide biosensor based on immobilized hemoglobin in 3D fl ower-like MoS 2 microspheres structure,” vol. 122, pp. 182–185, 2014.
[50]G.Li, C.Li, H.Tang, K.Cao, J.Chen, F.Wang, andY.Jin, “Synthesis and characterization of hollow MoS 2 microspheres grown from MoO 3 precursors,” vol. 501, pp. 275–281, 2010.
[51]Y.Teng, H.Zhao, Z.Zhang, Z.Li, Q.Xia, Y.Zhang, L.Zhao, X.Du, Z.Du, andP.Lv, “MoS 2 Nanosheets Vertically Grown on Graphene Sheets for Lithium-Ion Battery Anodes,” 2016.
[52]Y.Li, H.Wang, L.Xie, Y.Liang, G.Hong, andH.Dai, “MoS2 Nanoparticles Grown on Graphene: An Advanced Catalyst for the Hydrogen Evolution Reaction,” pp. 7296–7299, 2011.
[53]S.Zhang, X.Jia, andE.Wang, “Facile synthesis of optical pH-sensitive molybdenumdisulfide quantum dots,” pp. 15152–15157, 2016.
[54]H.Liu, Y.Zhu, Q.Meng, X.Lu, S.Kong, andZ.Huang, “Role of the carrier gas flow rate in monolayer MoS 2 growth by modified chemical vapor deposition,” vol. 2, pp. 1–9, 2016.
[55]Z.Chen, D.Cummins, B. N.Reinecke, E.Clark, M. K.Sunkara, andT. F.Jaramillo, “Core-shell MoO3-MoS2 Nanowires for Hydrogen Evolution: A Functional Design for Electrocatalytic Materials,” pp. 4168–4175, 2011.
[56]M. D.Nanostructures, “Preparation and Application of Molybdenum Disulfide Nanostructures,” vol. 30, no. 9, pp. 897–905, 2015.
[57]H.Lin, X.Chen, H.Li, M.Yang, andY.Qi, “Hydrothermal synthesis and characterization of MoS 2 nanorods,” vol. 64, pp. 1748–1750, 2010.
[58]N.VBhat andD. J.Upadhyay, “Plasma-Induced Surface Modification and Adhesion Enhancement of Polypropylene Surface,” no. December 2001, 2002.
[59]N.VBhat, D. J.Upadhyay, R. R.Deshmukh, andS. K.Gupta, “Investigation of Plasma-Induced Photochemical Reaction on a Polypropylene Surface,” pp. 4550–4559, 2003.
[60]Y.Wang andY.Ni, “Molybdenum Disul fi de Quantum Dots as a Photoluminescence Sensing Platform for 2,4,6-Trinitrophenol Detection,” 2014.
[61]H.Dong, S.Tang, Y.Hao, H.Yu, W.Dai, G.Zhao, Y.Cao, H.Lu, X.Zhang, andH.Ju, “Fluorescent MoS 2 Quantum Dots: Ultrasonic Preparation, Up- Conversion and Down-Conversion Bioimaging, and Photodynamic Therapy,” 2016.
[62]S.Stankovich, D. A.Dikin, R. D.Piner, K. A.Kohlhaas, A.Kleinhammes, Y.Jia, andY.Wu, “Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide,” vol. 45, pp. 1558–1565, 2007.
[63]F.Mos, C.Lee, H.Yan, L. E.Brus, T. F.Heinz, Ќ. J.Hone, andS.Ryu, “Anomalous Lattice Vibrations of Single- and Few-Layer MoS2,” vol. 4, no. 5, pp. 2695–2700, 2010.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top