|
[1]Y.Zhang, T.Tang, C.Girit, Z.Hao, M. C.Martin, A.Zettl, M. F.Crommie, Y. R.Shen, andF.Wang, “Direct observation of a widely tunable bandgap in bilayer graphene,” Nature, vol. 459, no. 7248, pp. 820–823, 2009. [2]J. C.Reed, A. Y.Zhu, H.Zhu, F.Yi, andE.Cubukcu, “Wavelength Tunable Microdisk Cavity Light Source with a Chemically Enhanced MoS 2 Emitter,” 2015. [3]D.Lembke andA.Kis, “Breakdown of High-Performance Monolayer MoS 2 Transistors,” no. 11, pp. 10070–10075, 2012. [4]H.Zeng, J.Dai, W.Yao, D.Xiao, andX.Cui, “Valley polarization in MoS 2 monolayers by optical pumping,” vol. 7, no. June, 2012. [5]J. N.Coleman, M.Lotya, A. O.Neill, S. D.Bergin, P. J.King, U.Khan, K.Young, A.Gaucher, S.De, R. J.Smith, I.VShvets, S. K.Arora, G.Stanton, H.Kim, K.Lee, G. T.Kim, G. S.Duesberg, T.Hallam, J. J.Boland, J. J.Wang, J. F.Donegan, J. C.Grunlan, G.Moriarty, A.Shmeliov, R. J.Nicholls, J. M.Perkins, E. M.Grieveson, K.Theuwissen, D. W.Mccomb, P. D.Nellist, andV.Nicolosi, “Two-Dimensional Nanosheets Produced by Liquid Exfoliation of Layered Materials,” vol. 331, no. February, pp. 568–572, 2011. [6]K.Kalantar-zadeh, “Ion-Driven Photoluminescence Modulation of Quasi-Two- Dimensional MoS 2 Nano fl akes for Applications in Biological Systems,” 2014. [7]A.Splendiani, L.Sun, Y.Zhang, T.Li, J.Kim, C.Chim, G.Galli, andF.Wang, “Emerging Photoluminescence in Monolayer,” pp. 1271–1275, 2010. [8]G.Eda, H.Yamaguchi, D.Voiry, T.Fujita, M.Chen, andM.Chhowalla, “Photoluminescence from Chemically Exfoliated MoS 2,” pp. 5111–5116, 2011. [9]S.Mouri, Y.Miyauchi, andK.Matsuda, “Tunable Photoluminescence of Monolayer MoS 2 via Chemical Doping,” pp. 1–5, 2013. [10]L.Ma, D. N.Nath, E. W. L.Ii, C. H.Lee, M.Yu, A.Arehart, andS.Rajan, “mobility of 192 cm2 V − 1 s − 1 Epitaxial growth of large area single-crystalline few-layer MoS 2 with high,” vol. 72105, no. May 2016, 2015. [11]Q.Ji, Y.Zhang, T.Gao, Y.Zhang, M.Liu, Y.Chen, X.Qiao, P.Tan, M.Kan, J.Feng, Q.Sun, andZ.Liu, “Epitaxial Monolayer MoS 2 on Mica with Novel Photoluminescence,” 2013. [12]H.Nan, Z.Wang, W.Wang, Z.Liang, Y.Lu, Q.Chen, D.He, P.Tan, F.Miao, X.Wang, J.Wang, Z.Ni, andN. A. N. E. T.Al, “Strong Photoluminescence Enhancement of MoS 2 through Defect Engineering and Oxygen Bonding,” no. 6, pp. 5738–5745, 2014. [13]Y.Wang, J. Z.Ou, S.Balendhran, A. F.Chrimes, M.Mortazavi, D. D.Yao, M. R.Field, K.Latham, V.Bansal, J. R.Friend, S.Zhuiykov, N.VMedhekar, M. S.Strano, K.Kalantar-zadeh, andW. E. T.Al, “Electrochemical Control of Photoluminescence in Two-Dimensional MoS 2 Nano fl akes,” no. 11, pp. 10083–10093, 2013. [14]A.Azcatl, J.Noh, S. R.Madhvapathy, R.Addou, S.Kc, M.Dubey, K.Cho, R. M.Wallace, S.Lee, J.He, J. W. A.Iii, X.Zhang, E.Yablonovitch, andA.Javey, “Near-unity photoluminescence quantum yield in MoS2,” no. October, pp. 1–5, 2015. [15]A.Sobhani, A.Lauchner, S.Najmaei, C.Ayala-orozco, F.Wen, J.Lou, J.Naomi, A.Sobhani, A.Lauchner, S.Najmaei, andC.Ayala-orozco, “Enhancing the photocurrent and photoluminescence of single crystal monolayer MoS 2 with resonant plasmonic nanoshells,” vol. 67148, pp. 1–5, 2015. [16]K. F.Mak, C.Lee, J.Hone, J.Shan, andT. F.Heinz, “Atomically Thin MoS 2 : A New Direct-Gap Semiconductor,” vol. 136805, no. September, pp. 2–5, 2010. [17]X.Li andH.Zhu, “ScienceDirect Two-dimensional MoS 2 : Properties , preparation , and applications,” vol. 1, 2015. [18]R.Severin, A.Mu, C.Janowitz, R.Manzke, andT.Bo, “Band structure of MoS2 , MoSe2, and ? -MoTe2: Angle-resolved photoelectron spectroscopy and ab initio calculations,” vol. 64, pp. 1–11, 2001. [19]R. A.Klemm, “Pristine and intercalated transition metal dichalcogenide superconductors,” vol. 514, pp. 86–94, 2015. [20]J.Lou, X.Xu, andP. D.Ye, “Black Phosphorus À Monolayer MoS 2 Diode,” no. 8, pp. 8292–8299, 2014. [21]Y.Shi, W.Zhou, A.Lu, W.Fang, Y.Lee, andA. L.Hsu, “van der Waals Epitaxy of MoS 2 Layers Using Graphene As Growth Templates,” 2012. [22]S. W.Han, H.Kwon, S. K.Kim, S.Ryu, W. S.Yun, D. H.Kim, J. H.Hwang, J.Kang, J.Baik, H. J.Shin, andS. C.Hong, “Band-gap transition induced by interlayer van der Waals interaction in MoS 2,” vol. 45409, pp. 17–22, 2011. [23]B.Biel, “Van der Waals Epitaxial Growth of C60 Film on a Cleaved Face of MoS2.” [24]R. S.Sundaram, M.Engel, A.Lombardo, R.Krupke, A. C.Ferrari, andM.Steiner, “Electroluminescence in Single Layer MoS 2,” 2013. [25]A.Kuc, N.Zibouche, andT.Heine, “Influence of quantum confinement on the electronic structure of the transition metal sulfide T S 2,” vol. 245213, no. June, pp. 1–4, 2011. [26]M. M.Ugeda, A. J.Bradley, S.Shi, F. H.Jornada, Y.Zhang, D. Y.Qiu, W.Ruan, S.Mo, Z.Hussain, Z.Shen, F.Wang, S. G.Louie, andM. F.Crommie, “Giant bandgap renormalization and excitonic e ects in a monolayer transition metal dichalcogenide semiconductor,” vol. 13, no. August, pp. 1091–1095, 2014. [27]N.Lu, H.Guo, L.Li, J.Dai, L.Wang, andW.Mei, “MoS2/MX2 heterobilayers: bandgap engineering via tensile strain or external electrical fiel,” pp. 2879–2886, 2014. [28]A.Ramasubramaniam, D.Naveh, andE.Towe, “Tunable band gaps in bilayer transition-metal dichalcogenides,” vol. 205325, pp. 1–10, 2011. [29]M.Nanocatalysts, T. F.Jaramillo, K. P.Jørgensen, J.Bonde, J. H.Nielsen, S.Horch, andI.Chorkendorff, “Identification of Active Edge Sites for Electrochemical H 2 Evolution from,” vol. 317, no. July, pp. 100–103, 2007. [30]L.Cao, S.Yang, W.Gao, Z.Liu, Y.Gong, L.Ma, G.Shi, S.Lei, Y.Zhang, S.Zhang, andR.Vajtai, “Direct Laser-Patterned Micro-Supercapacitors from Paintable MoS 2 Films,” pp. 1–6, 2013. [31]Y.Gong, S.Yang, L.Zhan, L.Ma, R.Vajtai, andP. M.Ajayan, “A Bottom-Up Approach to Build 3D Architectures from Nanosheets for Superior Lithium Storage,” pp. 125–130, 2014. [32]H. D.Ha, D. J.Han, J. S.Choi, M.Park, andT. S.Seo, “Dual Role of Blue Luminescent MoS 2 Quantum Dots in Fluorescence Resonance Energy Transfer Phenomenon,” pp. 1–5, 2014. [33]Y.Wang andY.Ni, “Molybdenum Disul fide Quantum Dots as a Photoluminescence Sensing Platform for 2,4,6-Trinitrophenol Detection,” 2014. [34]J. S.Ross, P.Klement, A. M.Jones, N. J.Ghimire, J.Yan, D. G.Mandrus, T.Taniguchi, K.Watanabe, K.Kitamura, W.Yao, D. H.Cobden, andX.Xu, “Electrically tunable excitonic light-emitting diodes based on monolayer WSe 2 p – n junctions,” vol. 9, no. April, pp. 268–272, 2014. [35]M.Bernardi, M.Palummo, C.Grossman, andR.Scienti, “Extraordinary Sunlight Absorption and One Nanometer Thick Photovoltaics Using Two-Dimensional Monolayer Materials,” 2013. [36]O.Lopez-sanchez, D.Lembke, M.Kayci, A.Radenovic, andA.Kis, “Ultrasensitive photodetectors based on monolayer MoS 2,” vol. 8, no. June, pp. 497–501, 2013. [37]K.Gundogdu, “Many-Body E ff ects in Valleytronics: Direct Measurement of Valley Lifetimes in Single-Layer MoS 2,” 2014. [38]R.Rossetti, S.Nakahara, L. E.Brus, R.Rossetti, S.Nakahara, andL. E.Brus, “Quantum size effects in the redox potentials , resonance Raman spectra , and electronic spectra of CdS crystallites in aqueous solution Quantum size effects in the redox potentials , resonance Raman spectra , and electronic spectra of CdS crystallites in aqueous solution,” vol. 1086, 1983. [39]C. B.Murray, M.Nirmal, D. J.Norris, andM. G.Bawendi, “Synthesis and Structural Characterization of II-VI Semiconductor Nanocrystallites (Quantum Dots),” vol. 233, pp. 231–233, 1993. [40]R.Chaves, D.Cavalcanti, L.Davidovich, J.Kempe, J. H.Eberly, P.Milman, L.Davidovich, N.Zagury, J. H.Eberly, I.Chuang, Q.Computation, R.Laflamme, G. J.Milburn, E.Wigner, E.Waks, A. G.White, I.Applebaum, P. H.Eberhard, P. G.Kwiat, W. J.Munro, A. G.White, E. R.Jeffrey, P. G.Kwiat, G.Alber, andF.DeMelo, “Colloidal Nanocrystals with Molecular Metal Chalcogenide Surface Ligands,” no. June, pp. 1417–1421, 2009. [41]J.Shi, G.Han, Y.Zhang, Q.Ji, T.Gao, J.Sun, X.Song, C.Li, Y.Zhang, X.Lang, Y.Zhang, Z.Liu, M.Science, M.Sciences, M.Engineering, A.Materials, andM.Science, “Controllable Growth and Transfer of Monolayer MoS 2 on Au Foils and Its Potential Application in Hydrogen,” no. 10, pp. 10196–10204, 2014. [42]Y.Zhan, Z.Liu, S.Najmaei, P. M.Ajayan, andJ.Lou, “Large-Area Vapor-Phase Growth and Characterization of MoS 2 Atomic Layers on a SiO 2 Substrate,” no. 7, pp. 966–971, 2012. [43]S.Mcdonnell, R.Addou, C.Buie, R. M.Wallace, andC. L.Hinkle, “Defect-Dominated Doping and Contact Resistance in MoS 2,” no. 3, pp. 2880–2888, 2014. [44]E. M.Nanosheets, D.Gopalakrishnan, D.Damien, andM. M.Shaijumon, “MoS2 Quantum Dot-Interspersed Exfoliated MoS2 Nanosheets,” no. 5, pp. 5297–5303, 2014. [45]A. W.Maijenburg, M.Regis, A. N.Hattori, H.Tanaka, andK.Choi, “MoS 2 Nanocube Structures as Catalysts for Electrochemical H 2 Evolution from Acidic Aqueous Solutions,” 2014. [46]Q.Li, E. C.Walter, W. E.Van DerVeer, B. J.Murray, J. T.Newberg, E. W.Bohannan, J. A.Switzer, J. C.Hemminger, andR. M.Penner, “Molybdenum Disulfide Nanowires and Nanoribbons by Electrochemical / Chemical Synthesis,” pp. 3169–3182, 2005. [47]J.Kibsgaard, Z.Chen, B. N.Reinecke, andT. F.Jaramillo, “Engineering the surface structure of MoS2 to preferentially expose active edge sites for electrocatalysis,” vol. 11, no. October, pp. 963–969, 2012. [48]V. A.Online, “MoS2 nanoflower-decorated reduced graphene oxide paper for high-performance hydrogen evolution reaction,” pp. 5624–5629, 2014. [49]H.Liu, X.Su, C.Duan, X.Dong, andZ.Zhu, “A novel hydrogen peroxide biosensor based on immobilized hemoglobin in 3D fl ower-like MoS 2 microspheres structure,” vol. 122, pp. 182–185, 2014. [50]G.Li, C.Li, H.Tang, K.Cao, J.Chen, F.Wang, andY.Jin, “Synthesis and characterization of hollow MoS 2 microspheres grown from MoO 3 precursors,” vol. 501, pp. 275–281, 2010. [51]Y.Teng, H.Zhao, Z.Zhang, Z.Li, Q.Xia, Y.Zhang, L.Zhao, X.Du, Z.Du, andP.Lv, “MoS 2 Nanosheets Vertically Grown on Graphene Sheets for Lithium-Ion Battery Anodes,” 2016. [52]Y.Li, H.Wang, L.Xie, Y.Liang, G.Hong, andH.Dai, “MoS2 Nanoparticles Grown on Graphene: An Advanced Catalyst for the Hydrogen Evolution Reaction,” pp. 7296–7299, 2011. [53]S.Zhang, X.Jia, andE.Wang, “Facile synthesis of optical pH-sensitive molybdenumdisulfide quantum dots,” pp. 15152–15157, 2016. [54]H.Liu, Y.Zhu, Q.Meng, X.Lu, S.Kong, andZ.Huang, “Role of the carrier gas flow rate in monolayer MoS 2 growth by modified chemical vapor deposition,” vol. 2, pp. 1–9, 2016. [55]Z.Chen, D.Cummins, B. N.Reinecke, E.Clark, M. K.Sunkara, andT. F.Jaramillo, “Core-shell MoO3-MoS2 Nanowires for Hydrogen Evolution: A Functional Design for Electrocatalytic Materials,” pp. 4168–4175, 2011. [56]M. D.Nanostructures, “Preparation and Application of Molybdenum Disulfide Nanostructures,” vol. 30, no. 9, pp. 897–905, 2015. [57]H.Lin, X.Chen, H.Li, M.Yang, andY.Qi, “Hydrothermal synthesis and characterization of MoS 2 nanorods,” vol. 64, pp. 1748–1750, 2010. [58]N.VBhat andD. J.Upadhyay, “Plasma-Induced Surface Modification and Adhesion Enhancement of Polypropylene Surface,” no. December 2001, 2002. [59]N.VBhat, D. J.Upadhyay, R. R.Deshmukh, andS. K.Gupta, “Investigation of Plasma-Induced Photochemical Reaction on a Polypropylene Surface,” pp. 4550–4559, 2003. [60]Y.Wang andY.Ni, “Molybdenum Disul fi de Quantum Dots as a Photoluminescence Sensing Platform for 2,4,6-Trinitrophenol Detection,” 2014. [61]H.Dong, S.Tang, Y.Hao, H.Yu, W.Dai, G.Zhao, Y.Cao, H.Lu, X.Zhang, andH.Ju, “Fluorescent MoS 2 Quantum Dots: Ultrasonic Preparation, Up- Conversion and Down-Conversion Bioimaging, and Photodynamic Therapy,” 2016. [62]S.Stankovich, D. A.Dikin, R. D.Piner, K. A.Kohlhaas, A.Kleinhammes, Y.Jia, andY.Wu, “Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide,” vol. 45, pp. 1558–1565, 2007. [63]F.Mos, C.Lee, H.Yan, L. E.Brus, T. F.Heinz, Ќ. J.Hone, andS.Ryu, “Anomalous Lattice Vibrations of Single- and Few-Layer MoS2,” vol. 4, no. 5, pp. 2695–2700, 2010.
|