跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.172) 您好!臺灣時間:2025/09/10 06:41
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張褚峰
研究生(外文):Chu-Fung Chang
論文名稱:高c軸排列AlN薄膜之製作及其在UV檢測器之應用
論文名稱(外文):Fabrication of highly oriented c-axis AlN films and their application for UV photodetector
指導教授:林啟瑞林啟瑞引用關係
指導教授(外文):Chii-Ruey Lin
口試委員:魏大華呂志誠郭正次
口試委員(外文):Da-Hua WeiChih-Cheng LuCheng-Tzu Kuo
口試日期:2010-07-21
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:機電整合研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:88
中文關鍵詞:c軸優選取向氮化鋁薄膜紫外光檢測器
外文關鍵詞:c-axis preferred orientationAluminum nitride thin films
相關次數:
  • 被引用被引用:0
  • 點閱點閱:260
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
一個優良的紫外光檢測器必須具有高靈敏性、高精密性、低功率損耗及高熱穩定性等特點,俾應用於現今之科學、化學、工業及國防方面。近年來III-V族為熱門光電材料,其中氮化鋁具有光電導特性、寬能隙(~6.2eV)、高熱傳係數、高熱穩定性及高化學穩定性,最具潛力發展紫外光檢測器之候選材料。
本論文利用非平衡磁控濺鍍系統沉積於Si(100)及Sapphire(001)之基板上,研製氮化鋁薄膜之金屬-半導體-金屬光檢測器,其中改變不同之參數條件來成長具有c軸優選取向之氮化鋁薄膜,再搭配微影蝕刻、舉離法製作出指叉狀電極,為了讓電極與材料之間有較高靈敏性及低功率損耗,利用爐管退火,其製程壓力為2×10-2 torr、氬氣為20 sccm、退火溫度為500 ℃、持溫時間為10 min,達到歐姆接觸作為電流傳導的界面,成功備製出紫外光檢測器。
本研究中,首先為了成長出c軸優選取向之氮化鋁薄膜,藉由適當的製程參數控制,成長氮化鋁薄膜。研究結果顯示氮氣濃度比例及射頻功率對於氮化鋁薄膜成長c軸優選取向影響最為顯著,接著研究中改變沉積基板為Sapphire(001),主要目的是探討基板效應之影響,雖然能因基板效應之影響成長出高AlN(002)面之繞射峰,但其薄膜屬於多晶氮化鋁。研究結果指出使用Si(100)為基板,在RF功率175 w、氮氣濃度比例50 %、工作壓力4 mtorr、沉積時間3小時,能在室溫下成長出c軸優選取向之AlN薄膜,其半高寬為0.2007°、膜厚為458.8 nm,其表面粗糙度皆<5 nm(Rms),達到製作元件的平整度。研究最後是將c軸優選取向之氮化鋁薄膜製作成紫外光檢測器,進行光電流量測,探討其光電流之增益與頻率響應,研究結果指出,在外加偏壓 10V時,自製檢測器經照射UV光(250~400 nm)後,具有明顯的電流增益,增益值差為3 order。


Future missions for space astronomy, defense, science and technology required UV photodetector that possess high sensitivity, high precision, low power loss, and high thermal stability. Recently, aluminum nitride has attracted a worldwide attention for potential applications in UV photodetectors, as it possesses good photoconductive properties, including of wide bandgap (~ 6.2 eV), high thermal conductivity as well as high chemical stability.
In this study, to develop the applications metal - semiconductor – metal photodetectors, AlN thin films were deposited onto Si (100) and Sapphire (001) substrate by using unbalanced magnetron sputtering system. Effects of various parameters on properties of coated AlN were investigated to obtain the c-axis AlN films. The obtained AlN thin films were employed to fabricate the Inter Digital Transducer (IDT) by using lithography and lift-off methods. To achieve an Ohmic contact as a conduction current interface for UV detector, the films finally were annealed at 500 oC in argon atmosphere (20 sccm of flow rate), with working pressure of 2x10-2 torr for 10 min. The produced films were characterized by X-ray diffractometry, scanning electron microscopy (SEM), atomic force microscopy (AFM). From X-ray diffraction, nitrogen concentration and RF power have the most significant impact to the deposition of high C-axis AlN films. High C-axis AlN thin films were successfully deposited onto Si (100) substrate with 0.2007o of FWHM and 458.8 nm of thickness, as the RF power was 175 w, 50% of nitrogen concentration, 4 mTorr of working pressure and 3 hours process. The AFM results showed that the roughness were &lt; 5 nm (Rms). The AlN films finally were employed to fabricate UV photodetector. From photoconductivity measurement, as the applied bias voltage was ±10V, the self-detector for UV light irradiation (250-400 nm) has a current gain increases about 3 orders.


目 錄

中文摘要 i
英文摘要 iii
誌謝 v
目錄 vi
表目錄 ix
圖目錄 x
第一章 導綸
1.1 前言 1
1.2 研究動機 4
1.3 研究目的 5
第二章 文獻回顧與基礎理論
2.1 氮化鋁(AlN)薄膜 6
2.1.1 氮化鋁薄膜的結構與特性 6
2.1.2 Sapphire的結構與特性 9
2.2 製作氮化鋁薄膜技術 10
2.2.1 化學氣相沉積 10
2.2.1 物理氣相沉積 10
2.3 電漿理論 11
2.3.1 輝光放電 11
2.3.2 磁控濺鍍原理 14
2.3.3 射頻濺鍍 15
2.3.4 反應性濺鍍 16
2.4 光檢測器工作原理 18
2.5 金屬-半導體-金屬光檢測器 19
2.5.1 歐姆接觸 19
2.5.2 響應度 21
2.5.3 響應時間 22
2.6 薄膜成長機制 22
2.7 薄膜晶面成長機制 23
第三章 實驗製程與量測
3.1實驗流程設計與設備介紹 27
3.1.1 實驗流程設計 27
3.1.2 製備氮化鋁薄膜 29
3.1.2.1 基板準備 29
3.1.2.2 沉積氮化鋁薄膜之參數 30
3.1.3 非平衡式磁控濺鍍系統 31
3.2 薄膜特性分析儀器介紹 34
3.2.1 場發射電子顯微鏡 34
3.2.2 原子力顯微鏡 35
3.2.3 X-ray繞射晶體結構分析儀 35
3.2.4 場發射穿透式電子顯微鏡 36
3.3 指叉狀電極製作 40
3.3.1 AlN/Si、AlN/Sapphire結構上製作子外光檢測器 40
3.3.2 紫外光檢測器的光源與量測 41
3.3.2.1 紫外光光源 41
3.3.2.1 電性量測 41
第四章 實驗結果與討論
4.1氮氣濃度比例對氮化鋁薄膜之影響 45
4.1.1 XRD繞射分析 46
4.1.2 SEM表面形貌分析 47
4.1.3 濺鍍速率 48
4.1.4 AFM表面粗糙度分析 48
4.2射頻功率對氮化鋁薄膜之影響 56
4.2.1 XRD繞射分析 56
4.2.2 SEM表面形貌分析 57
4.3工作壓力對氮化鋁薄膜之影響 60
4.3.1 XRD繞射分析 60
4.3.2 SEM表面形貌分析 60
4.4沉積時間對氮化鋁薄膜之影響 63
4.4.1 XRD繞射分析 63
4.4.2 SEM表面形貌分析 64
4.5基板對氮化鋁薄膜之影響 67
4.5.1 XRD繞射分析 67
4.5.2 SEM表面形貌分析 67
4.5.3 AFM表面粗糙度分析 67
4.6穿透式顯微鏡分析 70
4.7紫外光檢測器電性量測分析 71
4.7.1 光罩設計 71
4.7.2 不同的退火溫度對光電導的影響 72
4.7.3 氮化鋁薄膜對光電導的影響 74
第五章 結論與未來展望 76
5.1結論 76
5.2未來展望 77
參考文獻 78
作者簡介 88


[1]M. Sasaki, S Takeshita, M. Sugiura, N. Sudo, Y. Miyake, Y. Furusawa and T. Sakata, “Ground-based observation of biologically active solar ultraviolet-B irradiance at 35° N latitude in Japan,” J. Geomagn. Geoelectr., Vol. 45, 1993, pp. 473.Kolnik J, Oguzman I H, Brennan K F, Wang R, Ruden P P and Wang Y 1995 J. Appl. Phys. 78 1033
[2]E. Monroy, T. Palacios, O. Hainaut, F. Omnes, F. Celle, J. F. Hochedez, “Assessment of GaN metal-semiconductor-metal photodiodes for high-energy ultraviolet photodetection“, Appl. Phys Lett. Vol. 80, 2000 , pp. 3198
[3]M. Razeghi and A. Rogalski, “Semiconductor ultraviolet detectors,” J. Appl. Phys. Lett., vol. 79, 1996, pp. 7433-7473
[4]M. Asif Khan, J. N. Kuznia, D. T. Olson, J. M. Van hove, M.Blasingame, L. F. Reitz, “High-responsivity photoconductiveultraviolet sensors based on insulating single-crystal GaN epilayers,” Appl. Phys. Lett., Vol. 60, 1992, pp. 2917.
[5]J. C. Carrano, T. Li, P. A. Grudowski, C. J. Eiting, R. D. Dupuis, J. C.Campell, “Comprehensive characterization of metal-semiconductor-metal ultraviolet photodetectors fabricated on single-crystal GaN,” J. Appl. Phys. Lett., Vol. 83, 1998, pp. 6148.
[6]李光立,氮化鎵金屬-半導體-金屬光偵測器之研究,碩士論文,交通大學電子物理系,新竹,2002年7月。
[7]Li, J., Nam, K.B., Nakarmi, M.L., Lin, J.Y., Jiang, H.X. “Band-edge photoluminescence of AlN epilayers,” Applied Physics Letters, 81 (18), 2002 , p. 3365.
[8]Nam, K.B., Li, J., Nakarmi, M.L., Lin, J.Y., Jiang, H.X. “Deep ultraviolet picosecond time-resolved photoluminescence studies of AlN epilayers,” Applied Physics Letters, 82 (11), 2003 , pp. 1694-1696.
[9]Li, J., Fan, Z.Y., Dahal, R., Nakarmi, M.L., Lin, J.Y., Jiang, H.X. “200 nm deep ultraviolet photodetectors based on AlN,” Applied Physics Letters 2006, 89 (21), art. no. 213510.
[10]E Monroy, F Omn`es and F Calle. “Wide-bandgap semiconductor ultraviolet photodetectors,” Semiconductor Science and Technology 18 (4), 2003 , pp. R33-R51.
[11]M. A. Khan, J. N. Kuznia, D. T. Olson, J. M. Van Hove, M. Blasingame, and
L. F. Reitz, “High-responsivity photoconductive ultraviolet sensors based on insulating single-crystal GaN epilayers,” Appl. Phys. Lett., vol. 60, no. 23, 1992 , pp. 2917-2919.
[12]Chen, P., Zhang, R., Zhao, Z.M., Xi, D.J., Shen, B., Chen, Z.Z., Zhou, Y.G., Zheng, Y.D. “Growth of high quality GaN layers with AlN buffer on Si(1 1 1) substrates,” Journal of Crystal Growth 225 (2-4), 2001, pp. 150-154.
[13]Moustakas, T.D., Misra, M. “Origin of the high photoconductive gain in AlGaN films ,” Proceedings of SPIE - The International Society for Optical Engineering 6766, art. 2007, no. 67660C.
[14]Walker, D., Zhang, X., Kung, P., Saxler, A., Javadpour, S., Xu, J., Razeghi, M.
“AlGaN ultraviolet photoconductors grown on sapphire,” Applied Physics Letters, 68 (15), 1996 , pp. 2100-2101.
[15]Misra, M., Korakakis, D., Ng, H.M., Moustakas, T.D. “Photoconductive detectors based on partially ordered AlxGa1-xN alloys grown by molecular beam epitaxy,” Applied Physics Letters, 74 (15), 1999 , pp. 2203-2205.
[16]D. Walker, X. Zhang, P. Kung, A. Saxler, S. Javadpour, J. Xu and M. Razeghi, “ AlGaN ultraviolet photoconductors grown on sapphire”, Appl. Phys. Lett., vol.68, 1996 , pp.2100-2101.
[17]F. Binet, J. Y. Duboz, E. Rosencher, F. Scholz and V. Harle, “ Mechanisms of recombination in GaN photodetectors”, Appl. Phys. Lett., vol.69, 1996, pp.1202-1204.
[18]Mohammad, S.N., Morkoç, H. “Progress and prospects of group-III nitride semiconductors ”, Progress in Quantum Electronics 20 (5-6), 1996 , pp. 361-525.
[19]Saito, T., Hitora, T., Ishihara, H., Matsuoka, M., Hitora, H., Kawai, H., Saito, I., Yamaguchi, E. “Group III-nitride semiconductor Schottky barrier photodiodes for radiometric use in the UV and VUV regions ”, Metrologia 46 (4), 2009 , pp. S272-S276.
[20]Dahal, R., Li, J., Fan, Z.Y., Nakarmi, M.L., Al Tahtamouni, T.M., Lin, J.Y., Jiang, H.X. “AlN MSM and Schottky photodetectors ”, Physica Status Solidi (C) Current Topics in Solid State Physics 5 (6), 2008 , pp. 2148-2151.
[21]Ward, B.L., Hartman, J.D., Hurt, E.H., Tracy, K.M., Davis, R.F., Nemanich, R.J. “Schottky barrier height and electron affinity of titanium on AIN ”, Journal of Vacuum Science and Technology B: Microelectronics and Nanometer Structures 18 (4), 2000 , pp. 2082-2087.
[22]Taniyasu, Y., Kasu, M. “Aluminum nitride deep-ultraviolet light-emitting p-n junction diodes ”, Diamond and Related Materials 17 (7-10), 2008 , pp. 1273-1277.
[23]Kuryatkov, V., Zhu, K., Borisov, B., Chandolu, A., Gherasoiu, Ìu., Kipshidze, G., Chu, S.N.G., (...), Temkin, H. “Electrical properties of p-n junctions based on superlattices of AlN/AlGa(In)N ”, Applied Physics Letters 83 (7), 2003 , pp. 1319-1321.
[24]Razeghi, M., Zhang, X., Kung, P., Saxler, A., Walker, D., Lim, K.Y., Kim, K.S. “Recent advances in III-Nitride materials, characterization and device applications ”, Proceedings of SPIE - The International Society for Optical Engineering 3179, 1997 , pp. 2-11.
[25]Chae, K.-S., Kim, D.-W., Kim, B.-S., Som, S.-J., Lee, I.-H., Lee, C.-R. “Characteristics of back-illuminated visible-blind UV photodetector based on AlxGa1-xN p-i-n photodiodes ”, Journal of Crystal Growth 276 (3-4), 2005 , pp. 367-373.
[26]McClintock, R., Yasan, A., Mayes, K., Shiell, D., Darvish, S.R., Kung, P., Razeghi, M. “High quantum efficiency solar-blind photodetectors ”, Proceedings of SPIE - The International Society for Optical Engineering 5359, 2004 , pp. 434-444.
[27]Holtz, M., Kipshidze, G., Chandolu, A., Yun, J., Borisov, B., Kuryatkov, V., Zhu, K., (...), Temkin, H. “Preparation of optoelectronic devices based on AlN/AlGaN superlattices ”, Materials Research Society Symposium - Proceedings 744, 2002 , pp. 621-626.
[28]Li, T., Carrano, J.C., Eiting, C.J., Grudowski, P.A., Lambert, D.J.H., Kwon, H.K., Dupuis, R.D., (...), Tober, R.T. “Design of a resonant-cavity-enhanced p-i-n GaN/AlxGa1-xN photodetector ”, Fiber and Integrated Optics 20 (2), pp. 125-132 , 2001.
[29]McClintock, R., Yasan, A., Mayes, K., Kung, P., Razeghi, M. “Back-illuminated solar-blind photodetectors for imaging applications ”, Progress in Biomedical Optics and Imaging - Proceedings of SPIE 5732, art. no. 55, 2005 , pp. 175-184.
[30]Chen, C.-H., Chang, S.-J., Wu, M.-H., Tsai, S.-Y., Chien, H.-J. “AlGaN metal-semiconductor-metal photodetectors with low-temperature AlN cap layer and recessed electrodes ”, Japanese Journal of Applied Physics 49 (4 PART 2), art. , 2010 , no. 04DG05.
[31]Yang, R.-Y., Hsiung, C.-M., Chen, H.-H., Wu, H.-W., Shin, M.-C. “Effect of AIN film thickness on photo/dark currents of MSM UV photodetector ”, Microwave and Optical Technology Letters 50 (11), 2008 , pp. 2863-2866.
[32]Chen, L.-C., Fu, M.-S., Huang, I.-L. “Metal-semiconductor-metal AlN mid- ultraviolet photodetectors grown by magnetron reactive sputtering deposition ”, Japanese Journal of Applied Physics, Part 1: Regular Papers and Short Notes and Review Papers 43 (6 A), 2004 , pp. 3353-3355.
[33]Muller, A., Konstantinidis, G., Kostopoulos, A., Dragoman, M., Neculoiu, D., Androulidaki, M., Kayambaki, M., (...), Petrini, I. “GaN membrane MSM ultraviolet photodetectors ”, Proceedings of SPIE - The International Society for Optical Engineering 6415, art. , 2007 , no. 641509
[34]J. J. Zhou, R. L. Jiang, X. L. Ji, B. Wen, P. Chen, S. J. Chua, R. Zhang, B. Shen, and Y. D. Zheng, “ Effects of the Polarization Fields on the Responsivity of the AlN/GaN Photodetectors”, Semi. Insu. Mat., 13th International Conference, 2004.
[35]Lung-Chien CHEN, Ming-Song FU and In-Lin HUANG, “ Metal-Semico nductor-Metal AlN Mid-Ultraviolet Photodetectors Grown by Magnetron Reactive Sputtering Deposition”, J.J.Appl.Phys., 2004 , Vol.43, No. 6A.
[36]Nikishin, S., Borisov, B., Pandikunta, M., Dahal, R., Lin, J.Y., Jiang, H.X., Harris, H., Holtz, M. “High quality AlN for deep UV photodetectors ”, Applied Physics Letters 95 (5), art. , 2009 , no. 054101.
[37]Chen, M.-R., Chang, S.H., Chen, T.C., Hsu, C.-H., Kao, H.L., Chyi, J.-I. “Fabrication study of AIN solar-blind (<280nm) MSM photodetectors grown by low-temperature deposition ”, Physica Status Solidi (A) Applications and Materials 207 (1), 2010 , pp. 224-228
[38]Chen, L.-C., Fu, M.-S., Huang, I.-L. “Metal-semiconductor-metal AlN mid- ultraviolet photodetectors grown by magnetron reactive sputtering deposition”, Japanese Journal of Applied Physics, Part 1: Regular Papers and Short Notes and Review Papers, 43 (6 A), 2004 , pp. 3353-3355.
[39]Dahal, R., Li, J., Fan, Z.Y., Nakarmi, M.L., Al Tahtamouni, T.M., Lin, J.Y., Jiang, H.X. “AlN MSM and Schottky photodetectors ”, Physica Status Solidi (C) Current Topics in Solid State Physics, 5 (6), 2008 , pp. 2148-2151.
[40]Cinzia Caliendo, “Gigahertz-band electro acoustic devices based on AlN thick films sputtered on Al2O3 at low temperature”, Appl. Phys. Lett., 2003 , Vol. 83, No. 23.
[41]K. Uehara, C. –M Yang, T. Shibata, S. –K. Kim, S. Kameda, H. Nakase and K. Tsubouchi, “Fabrication of 5-GHz-Band SAW Filter with Atomicaly – Flat - Surface AlN on Sapphire”, IEEE Ultra. Sym., 2004 , vol.1.
[42]C. Caliendo, P. Imperatori, “High-frequency, high-sensitivity acoustic sensor implemented on AlN/Si substrate”, Appl. Phys. Lett., 2003 , vol. 83, No. 8.
[43]Kao, H.L., Chen, W.C., Chien, W.-C., Lin, H.-F., Chen, T.C., Lin, C.Y., Lin, Y.T., (...), Hsu, C.-H. “Epitaxial AlN thin film surface acoustic wave devices prepared on GaN/sapphire using low-temperature helicon sputtering system”,
Japanese Journal of Applied Physics, 47 (1), 2008 , pp. 124-129.
[44]L. Shen, S. Heikman, B. Moran, R. Coffie, N.-Q. Zhang, D. Buttari, I.P. Smorchkova, S. Keller, S. P. DenBaars, and U. K. Mishra, ” AlGaN/AlN/GaN High-Power Microwave HEMT”, IEEE Elec. Devi. Lett , 2001 , Vol. 22, No. 10.
[45]Marianne Germain, Maarten Leys, Steven Boeykens, Stefan Degroote, Wenfei Wang, Dominique Schreurs, Wouter Ruythooren, Kang-Hoon Choi, Benny Van Daele, Gustaaf Van Tendeloo, and Gustaaf Borghs, “High electron mobility in AlGaN/GaN HEMT grown on sapphire: strain modification by means of AlN interlayers”, Mat. Res. Soc. Symp. Proc. , 2004 ,Vol. 798.
[46]R. Rodriguze-Cheng, B. Aspar, N. Azema, B. Armas, C.Combescure, J. Durand, and A. Figueras, “Influence of the experimental conditions on the morphology of CVD AIN films” Journal of Crystal Growth. 133, 1993 , pp.59-70.
[47]Iriarte, G.F., Engelmark, F., Katardjiev, I.V. “Reactive sputter deposition of highly oriented AIN films at room temperature”, Journal of Materials Research, 17 (6), 2002 , pp. 1469-1475.
[48]E. Ruiz, Santigo alvarez, P. Alemany, “Electric Structure Properties of AlN”, Physical Review B. Vol.49, 1994 , pp.7115-7123.
[49]嚴豐明,高熱傳導率氮化鋁基版材料之簡介,材料與社會。Vol.71,
45-46,(1994).
[50]Y. M. Ching,D. Birnie III ,W. D. Kingery, “Physical Ceramic : Principles for
Ceramic Science and Engineering”, John Wiley & Sons,Inc,New York, 1997.
[51]A. Roy Chowdhuri, C.G. Takoudis, “Incestigation of the aluminum oxide/Si(100)
interface formed by chemical vapor deposition”, Thin Solid Films, Vol.446,2004,
pp.155-159.
[52]Jing-zhong Xiao, Shaotang Yin, Manjun Shao, Xiyi Zhang, “Observation of
dislocation etch pits in a sapphire crystal grown by Cz method using
environmental SEM ”, Journal of Crystal Growth, Volume 266, Issue 4, 2004 ,
pp.519-522.
[53]R. Cueff, G. Baud, M. Benmalek, J.P. Besse, J.R. Butruille, H.M. Dunlop, M.J
acquet, “Characterization and adhesion study of thin alumina coatings sputtered
on PET”, Thin Solid Films, 1995 , Vol.270 pp.230-236.
[54]R. L. Puurunen, M. Lindblad, “Growth of aluminum nitride on porous alumina
and silica through separate saturated gas-solid reactions of trimethylaluminum
and ammonia ”, Physical Chemistry Physics,3 , 2001 , pp. 1093.
[55]K. Wongchotigul, S. Wilson “Growth of aluminum nitride with superior optical
and morphological properties”, Materials Science Forum 264-268 (PART 2),
1998 , pp.1137-1140.
[56]Meng, G.Y., Xie, S., Peng, O.K. “Rate-limiting process and growth kinetics of
AlN thin films by microwave plasma CVD with AlBr3-NH3-N2 system ”, Thin
Solid Films 334 (1-2), 1998 , pp. 145-150.
[57]Zhang, W., Vargas, R., Goto, T., Someno, Y., Hirai, T. “Preparation of epitaxial
AlN films by electron cyclotron resonance plasma-assisted chemical vapor
deposition on Ir- and Pt-coated sapphire substrates ”, Applied Physics Letters 64
(11), 1994 , pp. 1359-1361.
[58]Yasui, K., Hoshino, S., Akahane, T. “Epitaxial growth of AlN films on Si
substrates by ECR plasma assisted MOCVD under controlled plasma conditions
in afterglow region ”, Applied Surface Science 159, 2000 , pp. 462-467.
[59]R. D. Vispute, H. Wu, “High quality epitaxial aluminum nitride layers on
sapphire by pulsed laser deposition”, Appl. Phys. Lett., Vol. 67, 1995 , pp. 1549.
[60]R. D. Vispute, J. Narayan, “High quality optoelectronic grade epitaxial AlN
films on α-Al2O3, Si and 6H-SiC by pulsed laser deposition ”, Thin Solid Films
299 (1-2), 1997 , pp. 94-103.
[61]Ito, S., Fujioka, H., Ohta, J., Takahashi, H., Oshima, M. “Growth of AlN on
lattice-matched MnO substrates by pulsed laser deposition ”, Thin Solid Films
435 (1-2), 2003 , pp. 215-217.
[62]Nikitin, A.N., Mansurov, V.G., Galitsyn, Y.G., Zhuravlev, K.S. “GaN islands
density growth kinetics on (0001) AlN surface by ammonia molecular-beam
epitaxy ”, International Workshop and Tutorials on Electron Devices and
Materials, EDM - Proceedings , art. no. 4585843, 2008 , pp. 48.
[63]Shishkin, Y., Devaty, R.P., Choyke, W.J., Yun, F., King, T., Morkoç, H. “Near
Bandedge Cathodoluminescence Studies of AlN Films: Dependence on MBE
Growth Conditions ”, Physica Status Solidi (A) Applied Research 188 (2), 2001,
pp. 591-594.
[64]Robert W. Berry, Peter M. Hall, Murray T. Harris, “Thin Film Technology ”,
Van Nostrand Reinhold, 1980, P.201.
[65]宋增滄,以迴旋濺鍍法成長氮化鋁薄膜之機制探討,碩士論文,中原大學電
子工程學系,2002年7月。
[66]E. Janczak-Bienk, H. Jensen and G. Sorensen, Mater. Sci. and Eng. A140, 1991
P.696.
[67]Schubert F. Soares, “Photoconductive gain in a Schottky barrier photodiode ”,
Japanese Journal of Applied Physics, Part 1: Regular Papers and Short Notes and Review Papers 31 (2 A), 1992 , pp. 210-216.
[68]Klingenstein, M., Kuhl, J., Rosenzweig, J., Moglestue, C., Hülsmann, A.,
Schneider, Jo., Köhler, K. , “ Photocurrent gain mechanisms in metal- semiconductor-metal photodetectors ”, 1992 , Solid-State Electronics 37 (2), pp. 333-340.
[69]O. Katz, V. Garber, B. Meyler, G. Bahir, and J. Salzman , “ Gain
mechanism in GaN Schottky ultraviolet detectors ”, 2001 , Applied Physics Letters 79 (10), pp. 1417-1419.
[70]Ali K. Okyay, Chi on Chui, and Krishna C. Sarawat, “Leakage suppression by
asymmetric area electrodes in metal-semiconductor-metal photodetectors,” Appl.
Phys. Lett., vol.88, 2006.
[71]楊孟儒,以濺鍍法控制方向性鉑底電極成長C軸擇優取向氮化鋁薄膜,碩士
論文,國立台灣科技大學材料科技研究所,2006年7月。
[72]林宗憶,以射頻磁控濺鍍法沉積高品質類鑽碳薄膜之機械及光學性質研究,碩士論文,國立台北科技大學製造科技研究所,2006年7月。
[73]許嘗軒,節能省碳之活塞環曲面類鑽探複合鍍膜技術,碩士論文,國立台北
科技大學機電整合研究所,2008年7月。
[74]汪健民,材料分析,新竹,中國材料科學學會,1998。
[75]X. H. Xu, H. S. Wu, C. J. Zhang, Z. H. Jin, “Morphological properties of AlN
piezoelectric thin films deposited by DC reactive magnetron sputtering ”, Thin
Solid Films Vol. 388, 2001, pp. 62-37.


連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top