跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.19) 您好!臺灣時間:2025/09/04 03:02
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:卓俊佑
研究生(外文):CHO, CHUN-YU
論文名稱:半導體激發式Nd:YAG與Nd:YLF雷射在低溫環境下的特性研究
論文名稱(外文):Exploring Output Characteristics of Cryogenic Diode-Pumped Nd:YAG and Nd:YLF Lasers
指導教授:陳永富陳永富引用關係
指導教授(外文):CHEN, YUNG-FU
口試委員:黃凱風蘇冠暐洪基彬葉昭永閻偉中
口試委員(外文):HUANG, KAI-FENGSU, KUAN-WEIHORGN, JI-BINYEH, CHAO-YUNGYEN, WEI-CHUNG
口試日期:2016-05-04
學位類別:博士
校院名稱:國立交通大學
系所名稱:電子物理系所
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:英文
論文頁數:227
中文關鍵詞:固態雷射半導體雷射激發低溫
外文關鍵詞:Solid-State LaserNeodymiumDiode-pumpCryogenic
相關次數:
  • 被引用被引用:0
  • 點閱點閱:311
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
固態雷射因具有彈性的共振腔設計及良好的光束品質等特性,已被廣泛應用於醫療、工業、國防及學術研究等各種領域。受限於雷射晶體的熱效應,固態雷射無法有效的操作在百瓦等級的高輸入功率下仍維持一定的輸出光束品質,其原因包含受熱不均造成的光學特性改變及晶體損壞閥值的限制等。過去的研究證明,隨著溫度的降低,固態雷射晶體的熱效應能有效的改善。在接近100 K左右的極低溫環境下,固態雷射晶體可承受的激發功率可大幅提升且不影響光學特性,進而可望發展出極高功率的高光束品質雷射系統。另一方面,對於在室溫輸出效率遠差於四能階雷射的準三能階雷射系統,在低溫環境下除了可有效改善再吸收損耗外,較大的量子效率亦可使之達到更高效率的輸出。除了這些改善之外,巨大的溫度改變亦會造成雷射輸出特性有許多無法預期的現象,例如晶體能階集中化的結果造成光譜強度變化等。因此,相較於已廣泛被利用來研究低溫雷射的參鐿晶體,在本研究中採用光譜更豐富、亦是最常被使用的參銣晶體來觀察雷射輸出特性在低溫環境下的改變。包含Nd:YLF雷射的連續光、自鎖模及Q開關雷射等現象的觀察,以及Nd:YAG雷射在四能階及準三能階系統的研究等。低溫雷射因降溫系統的限制,目前尚未有效的被利用在實際應用中,但隨著科技進步,勢必能發展出符合經濟價值的使用方法。雖然因研究設備的限制,本研究無法實現百瓦等級的輸出結果,但仍期許所提供的成果,對未來低溫雷射的發展有莫大的幫助。
Owning the characteristics of flexible cavity adjustment and good output beam quality, etc., solid-state lasers have been widely applied in plenty regions such as medical treatment and industry. However, suffering from the serious thermal effect, the solid-state laser faces the difficulty to be operated with up to hundreds of incident power while maintaining excellent output beam quality. The difficulty mainly comes from the thermal induced optical distortion and the limitation of crystal damage threshold. Previous researches have verified that thermal and thermo-optic properties for the laser crystal will improve with cooler temperature. At a cryogenic temperature near 100 K, the solid-state laser can sustain significantly higher input power without influences on optical properties. Furthermore, cryogenic process provides the quasi-three-level laser with less reabsorption loss and results in dramatic improvement of output efficiency. The enhanced efficiency can be even higher than the four-level system, which owns better performances at room temperature, because of the higher quantum efficiency. In spite of these features, plenty output characteristics might vary with the giant temperature difference for the cryogenic solid-state lasers, such as the emission spectrum variation caused by the sorting out of the energy level. Consequently, owning more abundant spectroscopic, the mostly used neodymium-doped crystals are employed in this dissertation instead of ytterbium-doped crystals, which have been widely utilized in cryogenic lasers due to the quasi-three-level properties. The study includes continuous wave, self-mode-locked, and Q-switched Nd:YLF lasers, as well as four-level and quasi-three-level Nd:YAG lasers. Restricted by the cooling system, the cryogenic laser is currently lack of practical applications. Nevertheless, it is expected that following the rapid technology development, an affordable and robust system is able to be developed in the future. As a result, although the research in this dissertation cannot reach extremely high power output, the study of characteristics variation is feasible to offer proper assistance in the development of cryogenic laser system.
摘 要 i
Abstract ii
誌謝… iv
Contents vi
List of Figures viii
Chapter 1 1
1.1 Introduction to the diode-pumped solid-state laser (DPSSL) 2
1.2 The cryogenic DPSSL 5
1.3 Overview of the dissertation 8
1.4 Experimental setup for the cryogenic DPSSL 10
References 14
Chapter 2 21
2.1 The Nd:YLF laser 22
2.1.1 Gain properties for the polarization state 22
2.1.2 The self-mode-locking 32
2.1.3 The PQS 39
2.2 The Nd:YAG laser 46
2.2.1 Gain properties for the polarization state 46
2.2.2 Gain properties for the emission level 54
References 61
Chapter 3 67
3.1 Temperature dependence of fluorescence spectra for the Nd:YLF crystal 68
3.2 Orthogonally polarized Nd:YLF laser with cryogenic process 72
3.3 The cryogenic self-mode-locked Nd:YLF laser 80
3.4 The cryogenic PQS Nd:YLF laser 91
References 100
Chapter 4 103
4.1 Temperature dependence of fluorescence spectra for the Nd:YAG crystal 104
4.2 The cryogenic Nd:YAG laser with dual-wavelength emissions at 1061 nm and 1064 nm 107
4.3 The cryogenic self-mode-locked Nd:YAG laser with orthogonal polarization emissions 114
4.4 The cryogenic Nd:YAG laser at 946 nm: from theoretical analysis to optimization in experiment 126
References 161
Chapter 5 166
5.1 Summary 167
5.2 Future works 171
References 202
Appendix I 204
CW rate equations 206
CW rate equation with spatial dependence 209
Quasi-three-level laser rate equations 212
AQS laser rate equations with dimensionless parameters 213
PQS laser rate equations with dimensionless parameters 217
References 222
Curriculum vitae 223
List of publications 224

Chapter 1
[1] W. Koechner, Solid-State Laser Engineering, 6th ed. (Springer, 2006).
[2] K. Kuhn, Laser Engineering, 1st ed. (Prentice-Hall, 1998).
[3] J. T. Verdeyen, Laser Electronics, 3rd ed. (Trentice-Hall, 1995).
[4] A. E. Siegnam, Lasers, 1st ed. (University Science Books, 1986).
[5] D. C. Brown and J. W. Kuper, “Solid-state lasers: steady progress through the decades,” Opt. Photon. News 20, 36-41 (2009).
[6] G. Huber, C. Kränkel, and K. Petermann, “Solid-state lasers: status and future,” J. Opt. Soc. Am. B 27, B93-B105 (2010).
[7] Y. F. Chen, T. S. Liao, C. F. Kao, T. M. Huang, K. H. Lin, and S. C. Wang, “Optimization of fiber-coupled laser–diode end-pumped lasers: influence of pump-beam quality,” IEEE J. Quantum Electron. 32, 2010-2016 (1996).
[8] N. Hodgson and H. Weber, Laser resonators and beam propagation, 2nd ed. (Springer, 2004).
[9] D. C. Brown and J. W. Kuper, “Solid-state lasers: steady progress through the decades,” Opt. Photon. News 20, 36-41 (2009).
[10] G. Huber, C. Kränkel, and K. Petermann, “Solid-state lasers: status and future,” J. Opt. Soc. Am. B 27, B93-B105 (2010).
[11] R. L. Byer, “Diode laser-pumped solid-state lasers,” Science 239, 742-747 (1988).
[12] T. Y. Fan and R. L. Byer, “Diode laser-pumped solid-state lasers,” IEEE J. Quantum Electron. 24, 895-912 (1988).
[13] T. Y. Fan, “Diode-pumped solid state lasers,” The Lincoln Laboratory Journal 3, 413-426 (1990).
[14] T. Kojima, S. Konno, S. Fujikawa, K. Yasui, K. Yoshizawa, Y. Mori, T. Sasaki, M. Tanaka, and Y. Okada, “20-W ultraviolet-beam generation by fourth-harmonic generation of an all-solid-state laser,” Opt. Lett. 25, 58-60 (2000).
[15] Y. F. Chen, Y. C. Chen, S. W. Chen, and Y. P. Lan, “High-power efficient diode-pumped passively Q-swtiched Nd:YVO4/KTP/ Cr4+:YAG eye-safe laser” Opt. Commun. 234, 337-342 (2004).
[16] D. Xu, Y. Wang, H. Li, J. Yao, and Y. H. Tsang, “104 W high stability green laser generation by using diode laser pumped intracavity frequency-doubling Q-switched composite ceramic Nd:YAG laser,” Opt. Express 15, 3991-3997 (2007).
[17] B. T. Zhang, X. L. Dong, J. L. He, H. T. Huang, K. J. Yang, C. H. Zuo, J. L. Xu, and S. Zhao, “High-power eye-safe intracavity KTA OPO driven by a diode-pumped Q-switched Nd:YAG laser,” Laser Phys. Lett. 5, 869-873 (2008).
[18] X. Yan, Q. Liu, H. Chen, X. Fu, M. Gong, and D. Wang, “35.1 W all-solid-state 355 nm ultraviolet laser,” Laser Phys. Lett. 7, 563-568 (2010).
[19] F. Zhuang, N. Ye, C. Huang, H. Zhu, Y. Wei, Z. Chen, H. Wang, and G. Zhang, “Multi-reflected enhancement of fourth harmonic DUV laser generation at 266 nm,” Opt. Express 18, 25339-25345 (2010).
[20] Q. Liu, X. Yan, M. Gong, H. Liu, G. Zhang, and N. Ye, “High-power 266 nm ultraviolet generation in yttrium aluminum borate,” Opt. Lett. 36, 2653-2655 (2011).
[21] S. Zhang, L. Guo, B. Xiong, Y. Liu, W. Hou, X. Lin, and J. Li,“High electro-to-optical efficiency 180 W Q-switched 532 nm laser with a pulsewidth of 70 ns,” Appl. Phys. B 104, 861-866 (2011).
[22] Y. J. Huang, Y. P. Huang, P. Y. Chiang, H. C. Liang, K. W. Su, and Y. F. Chen, “High-power passively Q-swtiched Nd:YVO4 UV laser at 355 nm,” Appl. Phys. B 106, 893-898 (2011).
[23] D. Marcuse, “Pulsing behavior of a three0level laser with saturable absorber,” IEEE J. Quantum Electron. 29, 2390-2396 (1993).
[24] A. Y. Khan and M. Kasha, “Mechanism of four-level laser action in solution excimer and excited-state proton-transfer cases,” Proc. Natl. Acad. Sci. USA 80, 1767-1770 (1983).
[25] T. Y. Fan and R. L. Byer, “Modeling and CW operation of a quasi-three-level 946 nm Nd:YAG laser,” IEEE J. Quantum. Electron. 23, 605-612 (1987).
[26] T. Taira, W. M. Tulloch, and R. L. Byer, “Modeling of quasi-three-level lasers and operation of cw Yb:YAG lasers,” Appl. Opt. 36, 1867-1874 (1997).
[27] J. R. O’Connor, “Unusual crystal-field energy levels and efficient laser properties of YVO4:Nd,” Appl. Phys. Lett. 9, 407-409 (1966).
[28] R. A. Fields, M. Birnbaum, and C. L. Fincher, “Highly efficient Nd:YVO4 diode-laser end-pumped laser,” Appl. Phys. Lett. 51, 1885-1886 (1987).
[29] P. Yankov, “Cr4+:YAG Q-switching of Nd:host laser oscillators,” J. Phys. D: Appl. Phys. 27, 1118-1120 (1994).
[30] T. Dascalu, G. Philipps, and H. Weber, “Investigation of a Cr4+:YAG passive Q-switch in CW pumped Nd:YAG lasers,” Opt. Laser Technol. 29, 145-149 (1997).
[31] P. Lacovara, H. K. Choi, C. A. Wang, R. L. Aggarwal, and T. Y. Fan, "Room-temperature diode-pumped Yb:YAG laser," Opt. Lett. 16, 1089-1091 (1991).
[32] N. V. Kuleshov, A. A. Lagatsky, V. G. Shcherbitsky, V. P. Mikhailov, E. Heumann, T. Jensen, A. Diening, and G. Huber, "CW laser performance of Yb and Er,Yb doped tungstates," Appl. Phys. B 64, 409-413 (1997).
[33] W. F. Krupke, “Ytterbium solid-state lasers – the first decade,” IEEE J. Sel. Top. Quantum Electron. 6, 2187-1296 (2000).
[34] F. Brunner, G. J. Spühler, J. Aus der Au, L. Krainer, F. Morier-Genoud, R. Paschotta, N. Lichtenstein, S. Weiss, C. Harder, A. A. Lagatsky, A. Abdolvand, N. V. Kuleshov, and U. Keller, "Diode-pumped femtosecond Yb:KGd(WO4)2 laser with 1.1-W average power," Opt. Lett. 25, 1119-1121 (2000).
[35] E. C. Honea, R. J. Beach, S. C. Mitchell, J. A. Skidmore, M. A. Emanuel, S. B. Sutton, S. A. Payne, P. V. Avizonis, R. S. Monroe, and D. G. Harris, "High-power dual-rod Yb:YAG laser," Opt. Lett. 25, 805-807 (2000).
[36] J. Kawanaka, K. Yamakawa, H. Nishioka, and K. Ueda, "30-mJ, diode-pumped, chirped-pulse Yb:YLF regenerative amplifier," Opt. Lett. 28, 2121-2123 (2003).
[37] G. Paunescu, J. Hein, and R. Sauerbrey, "100-fs diode-pumped Yb:KGW mode-locked laser," Appl. Phys. B 79, 555-558 (2004).
[38] A. K. Cousins, “Temperature and thermal stress scaling in finite-length end-pumped laser rods,” IEEE Quantum Electron. 28, 1057-1069 (1992).
[39] C. Pfistner, R. Weber, H. O. Weber, and S. Merazzi, "Thermal beam distortions in end-pumped Nd:YAG, Nd:GSGG, and Nd:YLF rods," IEEE Quantum Electron. 30, 1605-1615 (1994).
[40] A. Giesen, H. Hügel, A. Voss, K. Wittig, U. Brauch, and H. Opower, "Scalable concept for diode-pumped high-power solid-state lasers," Appl. Phys. B 58, 365-372 (1994).
[41] Y. F. Chen, T. M. Huang, C. F. Kao, and C. L. Wang, "Optimization in scaling fiber-coupled laser-diode end-pumped lasers to higher power: influence of thermal effect," IEEE Quantum Electron. 33, 1424-1429 (1997).
[42] W. Koechner, "Thermal Lensing in a Nd:YAG Laser Rod," Appl. Opt. 9, 2548-2533 (1970).
[43] S. J. Sheldon, L. V. Lnight, and J. M. Thorne, "Laser-induced thermal lens effect: a new theoretical model," Appl. Opt. 21, 1663-1669 (1982).
[44] J. Frauchiger, P. Albers, and H. P. Weber, "Modeling of thermal lensing and higher order ring mode oscillation in end-pumped C-W Nd:YAG lasers," IEEE Quantum Electron. 28, 1046-1056 (1992).
[45] M. Pollnau, P. J. Hardman, M. A. Kern, W. A. Clarkson, and D. C. Hanna, "Upconversion-induced heat generation and thermal lensing in Nd:YLF and Nd:YAG," Phys. Rev. B 58, 16076 (1998).
[46] P. J. Hardman, W. A. Clarkson, G. J. Friel, M. Pollnau, and D. C. Hanna, "Energy-transfer upconversion and thermal lensing in high-power end-pumped Nd:YLF laser crystals," IEEE Quantum Electron. 35, 647-655 (1999).
[47] S. Chenais, F. Balembois, F. Druon, G. Lucas-Leclin, and P. Georges, "Thermal lensing in diode-pumped ytterbium Lasers-Part I: theoretical analysis and wavefront measurements," IEEE Quantum Electron. 40, 1217-1234 (2004).
[48] A. A. Kaminskii, Laser Crystals: Their Physics and Properties, 2nd edn. (Springer-Verlag, 1990), Chap. 6.
[49] https://en.wikipedia.org/wiki/Cryogenics
[50] http://www.nist.gov
[51] D. C. Brown, “Ultrahigh-average-power diode-pumped Nd:YAG and Yb:YAG lasers,” IEEE J. Quantum Electron. 33, 861-873 (1997).
[52] T. Y. Fan, T. Crow, and B. Hoden, "Cooled Yb:YAG for high-power solid state lasers", Proc. SPIE 3381, Airborne Laser Advanced Technology, 200 (September 8, 1998).
[53] D. J. Ripin, J. R. Ochoa, R. L. Aggarwal, and T. Y. Fan, "165-W cryogenically cooled Yb:YAG laser," Opt. Lett. 29, 2154-2156 (2004).
[54] D. C. Brown, "The promise of cryogenic solid-state lasers," IEEE J. Sle. Top. Quantum Electron. 11, 587-599 (2005).
[55] D. J. Ripin, J. R. Ochoa, R. L. Aggarwal, and T. Y. Fan, "300-W cryogenically cooled Yb:YAG laser," IEEE J. Quantum Electron. 41, 1274-1277 (2005).
[56] J. Dong, A. Rapaport, M. Bass, F. Szipocs, and K. Ueda, "Temperature-dependent stimulated emission cross section and concentration quenchin in highly doped Nd3+:YAG crystals," Phys. Stat. Sol. (a) 202, 2565-2573 (2005).
[57] J. Kawanaka, S. Tokita, H. Nishioka, M. Fujita, K. Yamakawa, and K. Ueda, and Y. Izawa, "Dramatically improved laser characteristics of diode-pumped Yb-doped materials at low temperature," Laser Phys. 15, 1306-1312 (2005).
[58] T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, "Cryogenic Yb3+-doped solid-state lasers," IEEE J. Sel. Topics Quantum Electron. 13, 448-459 (2007).
[59] K. H. Hong, A. Siddiqui, J. Moses, J. Gopinath, J. Hybl, F. O. Ilday, T. Y. Fan, and F. X. Kartner, "Generation of 287 W, 5.5 ps pulses at 78 MHz repetition rate from a cryogenically cooled Yb:YAG amplifier seeded by a fiber chirped-pulse amplification system," Opt. Lett. 33, 2473-2475 (2008).
[60] A. A. Kaminskii, S. N. Bagaev, K. Ueda, A. Shirakawa, T. Tokurakawa, H. Yagi, T. Yanagitany, and J. Dong, "Stimulated-emission spectroscopy of fine-grained "garnet" ceramics Nd:3+:Y3Al5O12 in a wide temperature range between 77 and 650 K," Laser Phys. Lett. 6, 682-687 (2009).
[61] J. G. Manni, J. D. Hybl, D. Rand, D. J. Pipin, J. R. Ochoa, and T. Y. Fan, "100-W Q-switched cryogenically cooled Yb:YAG laser," IEEE J. Quantum Electron. 46, 95-98 (2010).
[62] L. E. Zapata, D. J. Ripin, and T. Y. Fan, "Power scaling of cryogenic Yb:LiYF4 lasers," Opt. Lett. 35, 1854-1856 (2010).
[63] J. Kawanaka, Y. Takeuchi, A. Yoshida, S. J. Pearce, R. Yasuhara, T. Kawashima, and H. Kan, "Highly efficient cryogenically-cooled Yb:YAG laser," Laser Phys. 20, 1079-1084 (2010).
[64] D. Rand, D. Miller, D. J. Ripin, and T. Y. Fan, "Cryogenic Yb3+-doped materials for pulsed solid state laser applications," Opt. Mater. Express 1, 434-450 (2011).
[65] D. A. Rand, S. E. J. Shaw, J. R. Ochoa, D. J. Ripin, A. Taylor, T. Y. Fan, H. Martin, S. Hawes, J. Zhang, S. Sarkisyan, E. Wilson, and P. Lundquist, "Picosecond pulses from a cryogenically cooled, composite amplifier using Yb:YAG and Yb:GSAG," Opt. Lett. 36, 340-342 (2011).
[66] N. Bidin, S. E. Pourmand, M. F. S. Ahmad, G. Khrisnan, N. A. M. Taib, N. N. Adnan, and H. Bakhtiar, "Temperature dependence of quasi-three level laser transition for long pulse Nd:YAG laser," Opt. and Laser Tech. 45, 74-78 (2013).
[67] S. J. Yoon and J. I. Mackenzie, "Cryogenically cooled 946nm Nd:YAG laser," Opt. Express 22, 8069-8075 (2014).
[68] S. J. Yoon and J. I. Mackenzie, "Implications of the temperature dependence of Nd:YAG spectroscopic values for low temperature laser operation at 946 nm," Proc. of SPIE 9135, 913503 (2014).

Chapter 2
[1] W. Koechner, Solid-State Laser Engineering, 6thedn. (Springer, 2006).
[2] T. M. Pollak, W. F. Wing, R. J. Grasso, E. P. Chicklis, and H. P. Jenssen, “CW laser operation of Nd:YLF,” IEEE J. Quantum Electron. 18, 159-163 (1982).
[3] Y. F. Chen and Y. P. Lan, “Comparison between c-cut and a-cut Nd:YVO4 lasers passively Q-switched with a Cr4+:YAG saturable absorber,” Appl. Phys. B 74, 415-418 (2002).
[4] A. I. Zagumenny, V. G. Ostroumov, I. A. Shcherbakov, T. Jensen, J. P. Meyen, and G. Huber, “The Nd:GdVO4 crystal: a new material for diode-pumped lasers,”Sov. J. Quantum Electron. 22, 1071-1072 (1992).
[5] M. S. Ribeiro, D. F. Silva, E. P. Maldonado, W. de Rossi, and D. M. Zezell, “Effects of 1047-nm neodymium laser radiation on skin wound healing,” J. Clin. Laser Med. Surg. 20, 37-40 (2002).
[6] A. V. Okishev and W. Seka, “Diode-pumped Nd:YLF master oscillator for the 30-kJ (UV), 60-beam OMEGA laser facility,” IEEE J. Sel. Top. Quantum Electron. 3 59-63 (1997).
[7] G. P. A. Malcolm and A. I. Ferguson, "Self-mode locking of a diode-pumped Nd:YLF laser," Opt. Lett. 16, 1967-1969 (1991).
[8] Y. J. Huang, C. Y. Tang, Y. P. Huang, S. C. Huang, K. W. Su, and Y. F. Chen, "Power scale-up of high-pulse-energy passively Q-switched Nd:YLF laser: influence of negative thermal lens enhanced by upconversion," Laser Phys. Lett. 9, 625-630 (2012).
[9] Y. J. Huang, C. Y. Tang, Y. P. Huang, S. C. Huang, K. W. Su, and Y. F. Chen, "Power scale-up of high-pulse-energy passively Q-switched Nd:YLF laser: influence of negative thermal lens enhanced by upconversion," Laser Phys. Lett. 9, 625-630 (2012).
[10] Y. J. Huang, C. Y. Tang, W. L. Lee, Y. P. Huang, S. C. Huang, Y. F. Chen, "Efficient passively Q-switched Nd:YLF TEM00-mode laser at 1053 nm: selection of polarization with birefringence," Appl. Phys. B 108, 313-317 (2012).
[11] Y. J. Huang, C. Y. Tang, Y. S. Tzeng, K. W. Su, and Y. F. Chen, "Efficient high-energy passively Q-switched Nd:YLF/Cr4+:YAG UV laser at 351 nm with pulsed pumping in a nearly hemispherical cavity," Opt. Lett. 38, 519-521 (2013).
[12] G. T. Maker and A. I. Ferguson, "Frequency modulation mode-locking and Q-switching of diode-laser-pumped Nd:YLF laser," Electron. Lett. 25, 1025-1026 (1989).
[13] X. Y. Peng, L. Xu, and A. Asundi, "High-power efficient continuous-wave TEM00 intracavity frequency-doubled diode-pumped Nd:YLF laser," Appl. Phys. B 44, 800-807 (2005).
[14] U. Keller, D. A. B. Miller, G. D. Boyd, T. H. Chiu, J. F. Ferguson, and M. T. Asom, "Solid-state low-loss intracavity saturable absorber for Nd:YLF lasers: an antiresonant semiconductor Fabry-Perot saturable absorber," Opt. Lett. 17, 505-507 (1992).
[15] A. agnesi1 and S. Dell'acqua, "High-peak-power diode-pumped passively Q-switched Nd:YVO4 laser," Appl. Phys. B 76, 351-354 (2003).
[16] U. Keller, "Recent developments in compact ultrafast lasers," Nature 424, 831–838 (2003).
[17] U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. A. D. Au, "Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers," IEEE J. Sel. Top. Quantum Electron. 2, 435–453 (1996).
[18] S. Tsuda, W. H. Knox, S. T. Cundiff, W. Y. Jan, and J. E. Cunningham, "Mode-locking ultrafast solid-state lasers with saturable Bragg reflectors," IEEE J. Sel. Top. Quantum Electron. 2, 454–464 (1996).
[19] C. Hönninger, R. Paschotta, F. Morier-Genoud, M. Moser, and U. Keller, "Q-switching stability limits of continuous-wave passive mode locking," J. Opt. Soc. Am. B 16, 46–56 (1999).
[20] H. A. Haus, J. G. Fujimoto, and E. P. Ippen, "Analytic theory of additive pulse and Kerr lens mode Locking," IEEE J. Quantum Electron. 28, 2086-2096 (1992).
[21] T. Brabec, Ch. Spielmann, P. F. Curley, and F Krausz, "Kerr lens mode locking," Opt. Lett. 17, 1292-1294 (1992).
[22] H. C. Liang, H. L. Chang, W. C. Huang, K. W. Su, Y. F. Chen, and Y. T. Chen, "Self-mode-locked Nd:GdVO4 laser with multi-GHz oscillations: manifestation of third-order nonlinearity," Appl. Phys. B 97, 451-455 (2009).
[23] H. C. Liang, Y. J. Huang, W. C. Huang, K. W. Su, and Y. F. Chen, "High-power, diode-end-pumped, multigigahertz self-mode-locked Nd:YVO4 laser at 1342 nm," Opt. Lett. 35, 4-6 (2010).
[24] Y. F. Chen, Y. J. Huang, P. Y. Chiang, Y. C. Lin, and H. C. Liang, "Controlling number of lasing modes for designing short-cavity self-mode-locked Nd-doped vanadate lasers," Appl. Phys. B 103, 841-846 (2011).
[25] H. C. Liang, P. Y. Chiang, Y. J. Huang, Y. C. Lin, and Y. F. Chen, "Simultaneous self-mode-locking of TEM0,0 and TEM1,0 modes in a Nd:YVO4 laser: application for measuring the thermal focal length," Laser Phys. 21, 480-484 (2011).
[26] H. C. Liang, Y. J. Huang, P. Y. Chiang, and Y. F. Chen, "Highly efficient Nd:Gd0.6Y0.4VO4 laser by direct in-band pumping at 914 nm and observation of self-mode-locked operation," Appl. Phys. B 103, 637-641 (2011).
[27] Y. J. Huang, H. C. Liang, Y. F. Chen, H. J. Zhang, J. Y. Wang, and M. H. Jiang, "High-power 10-GHz self-mode-locked Nd:LuVO4 laser," Laser Phys. 21, 1750-1754 (2011).
[28] W. Z. Zhuang, M. T. Chang, H. C. Liang, and Y. F. Chen, "High-power high-repetition-rate subpicosecond monolithic Yb:KGW laser with self-mode locking," Opt. Lett. 38, 2596-2599 (2013).
[29] H. C. Liang, T. W. Wu, J. C. Tung, C. H. Tsou, K. F. Huang, and Y. F. Chen, "Total self-mode locking of multi-pass geometric modes in diode-pumped Nd:YVO4 lasers," Laser Phys. Lett. 10, 105804 (2013).
[30] Y. F. Chen, W. Z. Zhuang, H. C. Liang, G. W. Huang, and K. W. Su, "High-power subpicosecond harmonically mode-locked Yb:YAG laser with pulse repetition rate up to 240 GHz," Laser phys. Lett. 10, 015803 (2013).
[31] W. Z. Zhuang, M. T. Chang, K. W. Su, K. F. Huang, and Y. F. Chen, "High-power terahertz optical pulse generation with a dual-wavelength harmonically mode-locked Yb:YAG laser," Laser Phys. 23, 075803 (2013).
[32] Y. J. Huang, Y. S. Tzeng, C. Y. Tang, S. Y. Chiang, H. C. Liang, and Y. F. Chen, "Efficient high-power terahertz beating in a dual-wavelength synchronously mode-locked laser with dual gain media," Opt. Lett. 39, 1477-1480 (2014).
[33] T. W. Wu, C. H. Tsou, C. Y. Tang, H. C. Liang, and Y. F. Chen, "A high-power harmonically self-mode-locked Nd:YVO4 1.34-μm laser with repetition rate up to 32.1 GHz," Laser Phys. 24, 045803 (2014).
[34] Y. J. Huang, Y. S. Tzeng, C. Y. Tang, Y. P. Huang, and Y. F. Chen, " Tunable GHz pulse repetition rate operation in high-power TEM00-mode Nd:YLF lasers at 1047 nm and 1053 nm with self mode locking," Opt. Express 20, 18230-18237 (2012).
[35] W. Krichbaumer, H. Herrmann, E. Nagel, R. Häring, J. Streicher, C. Werner, A. Mehnert, T. Halldorsson, S. Heinemann, P. Peuser, and N. P. Schmitt, “A diode-pumped Nd:YAG lidar for airborne cloud measurements,” Opt. Laser Technol. 25, 283-287 (1993).
[36] D. J. Binks, P. S. Golding, and T. A. King, “Compact all-solid-state high repetition rate tunable ultraviolet source for airborne atmospheric gas sensing,” J. Mod. Opt. 47, 1899-1912 (2000).
[37] D. Kracht, S. Hahn, R. Huss, J. Neumann, R. Wilhelm, M. Frede, and P. Peuser, “High efficiency, passively Q-switched Nd:YAG MOPA for spaceborne laser-altimetry,” Proc. SPIE 6100, 548-555 (2006).
[38] P. Peuser, W. Platz, P. Zeller, T. Brand, M. Haag, and B. Köhler, “High-power, longitudinally fiber-pumped, passively Q-switched Nd:YAG oscillator–amplifier,” Opt. Lett. 31, 1991-1993 (2006).
[39] Y. F. Chen, Y. P. Lan, and H. L. Chang, "Analytical model for design criteria of passively Q-switched lasers," IEEE J. Quantum Electron. 37, 462-468 (2001).
[40] J. J. Degnan, "Optimization of passively Q-switched lasers," IEEE J. Quantum Electron. 31, 1890-1901 (1995).
[41] W. Koechner and D. K. Rice, "Effect of birefringence on the performance of linearly polarized YAG:Nd lasers," IEEE J. Quantum Electron. 6, 557-566 (1970).
[42] G. A. Bogomolova, D. N. Vylegzhanin, and A. A. KaminskiT, "Spectral and lasing investigations of garnets with Yb3+ ions," Sov. Phys. JETP 42, 440-446 (1975).
[43] T. Yoshino and Y. Kobayashi, "Temperature characteristics and stabilization of orthogonal polarization two-frequency Nd3+:YAG microchip lasers," Appl. Opt. 38, 3266-3270 (1999).
[44] J. W. Haus, G. Shaulov, E. A. Kuzin, and J. Sanchez-Mondragon, "Vector soliton fiber lasers," Opt. Lett. 24, 376–378 (1999).
[45] S. T. Cundiff, B. C. Collings, N. N. Akhmediev, J. M. Soto-Crespo, K. Bergman, and W. H. Knox, "Observation of polarization-locked vector solitons in an optical fiber," Phys. Rev. Lett. 82, 3988–3991 (1999).
[46] J. Javaloyes, J. Mulet, and S. Balle, "Passive mode locking of lasers by crossed-polarization gain medium," Phys. Rev. Lett. 97, 163902 (2006).
[47] L. M. Zhao, D. Y. Tang, H. Zhang, and X. Wu, "Polarization rotation locking of vector solitons in a fiber ring laser," Opt. Express 16, 10053–10058 (2008).
[48] S. V. Sergeyev, C. Mou, A. Rozhin, and S. K. Turitsyn, "Vector solitons with locked and precessing states of polarization," Opt. Express 20, 27434–274400 (2012).
[49] J. Thévenin, M. Vallet, and M. Brunel, "Dual-polarization mode-locked Nd:YAG laser," Opt. Lett. 37, 2859-2861 (2012).
[50] C. L. Sung, H. P. Cheng, C. Y. Lee, C. Y. Cho, H. C. Liang, and Y. F. Chen, “
Generation of orthogonally polarized self-mode-locked Nd:YAG lasers with tunable beat frequencies from the thermally induced birefringence,” Opt. Lett. 41, 1781-1784 (2016).
[51] S. Konno1, S. Fujikawa1, and K. Yasui, "80 W cw TEM00 1064 nm beam generation by use of a laser-diode-side-pumped Nd:YAG rod laser," Appl. Phys. Lett. 70, 2650-2651 (1997).
[52] J. H. Lu, J. R. Lu, T. Murai, K. Takaichi, T. Uematsu, J. Q. Xu, and K. Ueda, "36-W diode-pumped continuous-wave 1319-nm Nd:YAG ceramic laser," Opt. Lett. 27, 1120-1122 (2002).
[53] L. Guo, R. J. Lan, H. Liu, H. H. Yu, H. J. Zhang, .Y. Wang, D. W. Hu, S. D. Zhuang, L. J. Chen, Y. G. Zhao, X. G. Xu, and Z. P. Wang, "1319 nm and 1338 nm dual-wavelength operation of LD end-pumped Nd:YAG ceramic laser," Opt. Express 18, 9098-9106 (2010).
[54] T. Y. Fan and R. L. Byer, "Modeling and CW operation of a quasi-three-level 946 nm Nd:YAG laser," IEEE J. Quantum Electron. 23, 605-612 (1987).
[55] R. Zhou, E. Li, H. Li, P. Wang, and J. Yao, "Continuous-wave, 15.2 W diode-end-pumped Nd:YAG laser operating at 946 nm," Opt. Lett. 31, 1869-1871 (2006).

Chapter 3
[1] A. L. Harmer, A. Linz, and D. R. Gabbe, "Fluorescence of Nd3+ in Lithium Yttrium Fluoride," J. Phys. Chem. Solids 30, 1483-1491 (1969).
[2] C. Y. Cho, T. L. Huang, S. M. Wen, Y. J. Huang, K. F. Huang, and Y. F. Chen, "Nd:YLF laser at cryogenic temperature with orthogonally polarized simultaneous emission at 1047 nm and 1053 nm," Opt. Express 22, 25318-25323 (2014).
[3] D. L. Woolard, R. Brown, M.L Pepper, and M. Kemp, "Terahertz frequency sensing and imaging: a Time of reckoning future applications?" Proc. IEEE 93, 1722-1743 (2005).
[4] M. Koch, "Terahertz technology: A land to be discovered," Opt. Photon. News 18, 20-25 (2007).
[5] G. Kh. Kitaeva, "Terahertz generation by means of optical lasers," Laser Phys. Lett. 5, 559-576 (2008).
[6] Y, J. Huang, Y. S. Tzeng, C. Y. Tang, and Y. F. Chen, "Efficient dual-wavelength synchronously mode-Locked picosecond laser operating on the 4F3/2 → 4I11/2 transition with compactly combined dual gain media," IEEE J. Sel. Topics Quantum Electron. 21, 1100107 (2015).
[7] B. M. Walsh, "Dual wavelength lasers," Laser Phys. 20, 622-634, (2010).
[8] J. T. Verdeyen, Laser electronics, 3rd edn. (Prentics Hall, 1995).
[9] W. Koechner, Solid-State Laser Engineering, 6th edn. (Springer, 2006).
[10] T. Kimura, K. Otsuka, and M. Saruwatari, "Spatial hole-burning effects in a Nd3+:YAG laser," IEEE J. Quantum Electron. 7, 225-230 (1971).
[11] D. Vakhshoori, J. D. Wynn, G. J. Zydzik, R. E. Leibenguth, M. T. Asom, K. Kojima, and R. A. Morgan, "Top surface emitting lasers with 1.9 V threshold voltage and the effect of spatial hole burning on their transverse mode operation and efficiencies," Appl. Phys. Lett. 62, 1448-1450 (1993).
[12] G. C. Wilson, D. M. Kuchta, J. D. Walker, and J. S. Smith, "Spatial hole burning and self-focusing in vertical-cavity surface-emitting laser diodes," Appl. Phys. Lett. 64, 542-544 (1994).
[13] C. Degen, I. Fischer and W. Elsäβer, "Transverse modes in oxide confined," Opt. Express 5, 38-47 (1999).
[14] Z. Jiang1 and J. R. Marciante, "Impact of transverse spatial-hole burning on beam quality in large-mode-area Yb-doped fibers," J. Opt. Soc. Am. B 25, 247-254 (2008).
[15] F. Weigl, "A generalized technique of two-wavelength, nondiffuse holographic interferometry," Appl. Opt. 10, 187-192 (1971).
[16] R. W. Farley and P. D. Dao, "Development of an intracavity-summed multiple-wavelength Nd:YAG laser for a rugged, solid-state sodium lidar system," Appl. Opt. 34, 4269-4273 (1995).
[17] H. Y. Shen and H. Su, "Operating conditions of continuous wave simultaneous dual wavelength laser in neodymium host crystals," J. Appl. Phys. 86, 6647-6651 (1999).
[18] I. Mattis, A. Ansmann, D. Muller, U. Wandinger, and D. Althausen, "Dual-wavelength Raman lidar observations of the extinction-to-backscatter ratio of Saharan dust," Geophys. Res. Lett. 29, 20 (2002).
[19] H. Su, H. Y. Shen, W. X. Lin, R. R. Zeng, C. H. Huang, and G. Zhang, "Computational model of Q -switch Nd:YAlO3 dual-wavelength laser," J. Appl. Phys. 84, 6519-6255 (1998).
[20] J. Janousek, P. Tidemand-Lichtenberg, J.L. Mortensen, and P. Buchhave, "Investigation of passively synchronized dual-wavelength Q-switched lasers based on V:YAG saturable absorber," Opt. Commun. 268, 277-282 (2006).
[21] Y. E. Hou, Y. X. Fan, J. L. He, and H. T. Wang, "High-efficiency continuous-wave and Q-switched diode-pumped multi-wavelength Nd:YAG lasers," Opt. Commun. 265, 301-305 (2006).
[22] Y. F. Chen, "cw dual-wavelength operation of a diode-end-pumped Nd:YVO4 laser," Appl. Phys. B 70, 475-478 (2000).
[23] J. L. He, J. Du, J. Sun, S. Liu, Y. X. Fan, H.T. Wang, L.H. Zhang, and Y. Hang, "High efficiency single- and dual-wavelength Nd:GdVO4 lasers pumped by a fiber-coupled diode," Appl. Phys. B 79, 301-304 (2004).
[24] P. Li, D. Li, C. Li, and Z. Zhang, "Simultaneous dual-wavelength continuous wave laser operation at 1.06 μm and. 946 nm in Nd:YAG and their frequency doubling," Opt. Commun. 235, 169-174 (2004).
[25] N. Pavel, "Simultaneous dual-wavelength emission at 0.9 and 1.06 μm in Nd-based laser crystals," Laser Phy. 20, 215-221 (2010).
[26] K. J. Åström and T. Hägglund, "The future of PID control," Control Eng. Pract. 9, 1163-1175 (2001).
[27] K. H. Ang, G. Chong, and Y. Li, "PID control system analysis, design, and technology," IEEE Trans. Control Syst. Technol. 13, 559-567 (2005).

Chapter 4
[1] J. Dong, A. Rapaport, M. Bass, F. Szipocs, and K. Uedm, “Temperature-dependent stimulated emission cross section and concentration quenching in highly doped Nd3+:YAG crystals,” Phys. Stat. sol. (a) 202, 2565-2573 (2005).
[2] S. J. Yoon and J. I. Mackenzie, “Implications of the temperature dependence of Nd:YAG spectroscopic values for low temperature laser operation at 946 nm,” Proc. SPIE 9135, 913503 (2014).
[3] A. A. Kaminskii, Laser Crystals: Their Physics and Properties, 2nd edn. (Springer-Verlag, 1990).
[4] D. C. Brown, "Ultrahigh-average-power diode-pumped Nd:YAG and Yb:YAG lasers," IEEE J. Quantum Electron. 33, 861-873 (1997).
[5] T. Y. Fan, T. Crow, and B. Hoden, "Cooled Yb:YAG for high-power solid state lasers", Proc. SPIE 3381, Airborne Laser Advanced Technology, 200 (September 8, 1998).
[6] D. J. Ripin, J. R. Ochoa, R. L. Aggarwal, and T. Y. Fan, "165-W cryogenically cooled Yb:YAG laser," Opt. Lett. 29, 2154-2156 (2004).
[7] D. C. Brown, "The promise of cryogenic solid-state lasers," IEEE J. Sle. Top. Quantum Electron. 11, 587-599 (2005).
[8] D. J. Ripin, J. R. Ochoa, R. L. Aggarwal, and T. Y. Fan, "300-W cryogenically cooled Yb:YAG laser," IEEE J. Quantum Electron. 41, 1274-1277 (2005).
[9] J. Kawanaka, S. Tokita, H. Nishioka, M. Fujita, K. Yamakawa, and K. Ueda, and Y. Izawa, "Dramatically improved laser characteristics of diode-pumped Yb-doped materials at low temperature," Laser Phys. 15, 1306-1312 (2005).
[10] T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, "Cryogenic Yb3+-doped solid-state lasers," IEEE J. Sel. Topics Quantum Electron. 13, 448-459 (2007).
[11] K. H. Hong, A. Siddiqui, J. Moses, J. Gopinath, J. Hybl, F. O. Ilday, T. Y. Fan, and F. X. Kartner, "Generation of 287 W, 5.5 ps pulses at 78 MHz repetition rate from a cryogenically cooled Yb:YAG amplifier seeded by a fiber chirped-pulse amplification system," Opt. Lett. 33, 2473-2475 (2008).
[12] A. A. Kaminskii, S. N. Bagaev, K. Ueda, A. Shirakawa, T. Tokurakawa, H. Yagi, T. Yanagitany, and J. Dong, "Stimulated-emission spectroscopy of fine-grained "garnet" ceramics Nd:3+:Y3Al5O12 in a wide temperature range between 77 and 650 K," Laser Phys. Lett. 6, 682-687 (2009).
[13] J. G. Manni, J. D. Hybl, D. Rand, D. J. Pipin, J. R. Ochoa, and T. Y. Fan, "100-W Q-switched cryogenically cooled Yb:YAG laser," IEEE J. Quantum Electron. 46, 95-98 (2010).
[14] L. E. Zapata, D. J. Ripin, and T. Y. Fan, "Power scaling of cryogenic Yb:LiYF4 lasers," Opt. Lett. 35, 1854-1856 (2010).
[15] J. Kawanaka, Y. Takeuchi, A. Yoshida, S. J. Pearce, R. Yasuhara, T. Kawashima, and H. Kan, "Highly efficient cryogenically-cooled Yb:YAG laser," Laser Phys. 20, 1079-1084 (2010).
[16] D. Rand, D. Miller, D. J. Ripin, and T. Y. Fan, "Cryogenic Yb3+-doped materials for pulsed solid state laser applications," Opt. Mater. Express 1, 434-450 (2011).
[17] D. A. Rand, S. E. J. Shaw, J. R. Ochoa, D. J. Ripin, A. Taylor, T. Y. Fan, H. Martin, S. Hawes, J. Zhang, S. Sarkisyan, E. Wilson, and P. Lundquist, "Picosecond pulses from a cryogenically cooled, composite amplifier using Yb:YAG and Yb:GSAG," Opt. Lett. 36, 340-342 (2011).
[18] N. Bidin, S. E. Pourmand, M. F. S. Ahmad, G. Khrisnan, N. A. M. Taib, N. N. Adnan, and H. Bakhtiar, "Temperature dependence of quasi-three level laser transition for long pulse Nd:YAG laser," Opt. and Laser Tech. 45, 74-78 (2013).
[19] S. J. Yoon and J. I. Mackenzie, "Cryogenically cooled 946nm Nd:YAG laser," Opt. Express 22, 8069-8075 (2014).
[20] C. Y. Cho, P. H. Tuan, Y. T. Yu, K. F. Huang, and Y. F. Chen, “A cryogenically cooled Nd:YAG monolithic laser for efficient dual-wavelength operation at 1061 and 1064 nm,” Laser Phys. Lett. 10, 045806 (2013).
[21] N. Hodgson and H. Weber, Laser resonators and beam propagation, 2nd ed. (Springer, 2004).
[22] Y. F. Chen, S. C. Wang, T. M. Huang, C. F. Kao, and C. L. Wang, “Analytical model for output optimization of fiber-coupled laser-diodes end-pumped lasers,” Proc. SPIE 2989, 35-45 (1997).
[23] Y. F. Chen, T. M. Huang, C. F. Kao, C. L. Wang, and S. C. Wang, “Generation of Hermite-Gaussian modes in fiber-coupled laser-diode end-pumped lasers,” IEEE J. Quantum Electron. 33, 1025-1031 (1997). IEEE J. Sel. Topics Quantum Electron. 21, 1100107 (2015).
[24] Y. Rabin, M. J. Taylor, and N. Wolmark, “Thermal expansion measurements of frozen biological tissues at cryogenic temperatures,” J. Biomech. Eng. 120, 259-266 (1998).
[25] R. Zhou, E. Li, H. Li, P. Wang, and J. Yao, "Continuous-wave, 15.2 W diode-end-pumped Nd:YAG laser operating at 946 nm," Opt. Lett. 31, 1869-1871 (2006).
[26] W. P. Risk and W. Lenth, "Room-temperature, continuous-wave, 946-nm Nd:YAG laser pumped by laser-diode arrays and intracavity frequency doubling to 473 nm," Opt. Lett. 12, 993-995 (1987).
[27] T. Kellner, F. Heine, and G. Huber, "Efficient laser performance of Nd:YAG at 946 nm and intracavity frequency doubling with LiJO3, β-BaB2O4, and LiB3O5," Appl. Phys. B 65, 789-792 (1997).
[28] C. Czeranowsky, E. Heumannm, and G. Huber, "All-solid-state continuous-wave frequency-doubled Nd:YAG-BiBO laser with 2.8-W output power at 473 nm," Opt. Lett. 28, 432-434 (2003).
[29] R. Zhou, T. Zhang, E. Li, X. Ding, Z. Cai, B. Zhang, W. Wen, P. Wang, and J. Yao, "8.3 W diode-end-pumped continuous-wave Nd:YAG laser operating at 946-nm," Opt. Express 13, 10115-10119 (2005).
[30] C. Y. Cho, C. Y. Lee, C. C. Chang, P. H. Tuan, K. F. Huang, and Y. F. Chen, "24-W cryogenically cooled Nd:YAG monolithic 946-nm laser with a slope efficiency >70%," Opt. Express 23, 10126-10131 (2015).
[31] C. Y. Cho, T. L. Huang, H. P. Cheng, K. F. Huang, and Y. F. Chen, "Analysis of the optimal temperature for the cryogenic monolithic Nd:YAG laser at 946-nm," Opt. Express 24, 1-8 (2016).
[32] K. Lee, Y. Kim, S. Lee, J. H. Kwon, J. S. Gwak, and J. Yi, "Reducing temperature dependence of the output energy of a quasi-continuous wave diode-pumped Nd:YAG laser," Appl. Opt. 52, 5967-5973 (2013).
[33] T. Y. Fan and R. L. Byer, "Modeling and CW operation of a quasi-three-level 946 nm Nd:YAG laser," IEEE J. Quantum Electron. 23, 605-612 (1987).
[34] P. Laporta, "Design criteria for mode size optimization in diode-pumped solid-state lasers," IEEE J. Quantum Electron. 27, 2319-2326 (1991).
[35] M. E. Innocenzi, H. T. Yura, C. L. Fincher, and R. A. Fields, "Thermal modeling of continuous-wave end-pumped solid-state lasers," Appl. Phys. Lett. 56, 1831-1833 (1990).
[36] Y. J. Huang, C. Y. Tang, Y. P. Huang, S. C. Huang, K. W. Su, and Y. F. Chen, "Power scale-up of high-pulse-energy passively Q-switched Nd:YLF laser: influence of negative thermal lens enhanced by upconversion," Laser Phys. Lett. 9, 625-630 (2012).
[37] R. Wynne, J. L. Daneu, and T. Y. Fan, "Thermal coefficients of the expansion and refractive index in YAG," Appl. Opt. 38, 3382-3384 (1999).

Chapter 5
[1] H. X. Wang, X. Q. Yang, S. Zhao, B. T. Zhang, H. T. Huang, J. F. Yang, J. L. Xu, and J. L. He, "2ns-pulse, compact and reliable microchip lasers by Nd:YAG/Cr4+:YAG composite crystal," Laser Phys. 19, 1824-1827 (2009).
[2] C. Y. Cho, H. P. Cheng, Y. C. Chang, C. Y. Tang, and Y. F. Chen, “An energy adjustable linearly polarized passively Q-switched bulk laser with a wedged diffusion-bonded Nd:YAG/Cr4+:YAG crystal,” Opt. Express 23, 8162-8169 (2015)
[3] W. Koechner, Solid-State Laser Engineering, 6th edn. (Springer, 2006), Chap. 8.
[4] Y. F. Chen, Y. P. Lan, and H. L. Chang, "Analytical model for design criteria of passively Q-switched lasers," IEEE J. Quantum Electron. 37, 462-468 (2001).
[5] J. J. Degnan, "Optimization of passively Q-switched lasers," IEEE J. Quantum Electron. 31, 1890-1901 (1995).
[6] D. J. Ripin, J. R. Ochoa, R. L. Aggarwal, and T. Y. Fan, "165-W cryogenically cooled Yb:YAG laser," Opt. Lett. 29, 2154-2156 (2004).
[7] H. Y. Shen, R. R. Zeng, Y. P. Zhou, G. F. Yu, C. H. Huang, Z. D. Zeng, W. J. Zhang, and Q. J. Ye, “Comparison of simultaneous multiple wavelength lasing in various neodymium host crystals at transitions from 4F3/2→4I11/2 and 4F3/2→4I13/2,” Appl. Phys. Lett. 56, 1937-1939 (1990).
[8] Y. F. Chen, “cw dual-wavelength operation of a diode-end-pumped Nd:YVO4 laser,” Appl. Phys. B 70, 475-478 (2000).
[9] Y. F. Chen and S. W. Tsai, “Diode-pumped Q-switched Nd:YVO4 yellow laser with intracavity sum-frequency mixing,” Opt. Lett. 27, 397-399 (2002).
[10] J. L. He, J. Du, J. Sun, S. Liu, Y.X. Fan, H.T. Wang, L.H. Zhang, and Y. Hang, “High efficiency single- and dual-wavelength Nd:GdVO4 lasers pumped by a fiber-coupled diode,” Appl. Phys. B 79, 301-304 (2004).
[11] Y. Lu, B. G. Zhang, E. B. Li, D. G. Xu, R. Zhou, X. Zhao, F. Ji, T. L. Zhang, P. Wang, and J. Q. Yao, “High-power simultaneous dual-wavelength emission of an end-pumped Nd:YAG laser using the quasi-three-level and the four-level transition,” Opt. Commun. 262, 241–245 (2006).
[12] N. Pavel, “Simultaneous dual-wavelength emission at 0.90 and 1.06 μm in Nd-based laser crystals,” Laser Phy. 20, 215-221 (2010).
[13] P. Li, D. Li, C. Li, and Z. Zhang, “Simultaneous dual-wavelength continuous wave laser operation at 1.06 µm and. 946 nm in Nd:YAG and their frequency doubling,” Opt. Commun. 235, 169-174 (2004).
[14] Y. Lu, B. G. Zhang, E. B. Li, D. G. Xu, R. Zhou, X. Zhao, F. Ji, T. L. Zhang, P. Wang, and J. Q. Yao, “High-power simultaneous dual-wavelength emission of an end-pumped Nd:YAG laser using the quasi-three-level and the four-level transition,” Opt. Commun. 262, 241–245 (2006).
[15] C. Y. Cho, C. C. Chang, and Y. F. Chen, "Efficient dual-wavelength laser at 946 and 1064 nm with compactly combined Nd:YAG and Nd:YVO4 crystals," Laser Phys. Lett. 10, 045805 (2013).
[16] C. Y. Cho, C. C. Chang, and Y. F. Chen, “Diode-end-pumped solid-state lasers with dual gain media for multi-wavelength emission,” Laser Phys. 25, 015802 (2015).

Appendix I
[1] P. Laporta and M. Brussard, “Design criteria for mode size optimization in diode-pumped solid-state lasers,” IEEE J. Quantum Electron. 27, 2319-2326 (1991).
[2] Y. F. Chen, C. F. Kao, and S. C. Wang, “Analytical model for the design of fiber-coupled laser-diode end-pumped lasers,” Opt. Commun. 133, 517-524 (1997).
[3] Y. F. Chen, “Pump-to-mode size ration dependence of thermal loading in diode-end-pumped solid-state lasers,” J. Opt. Soc. Am. B 17, 1835-1840 (2000).
[4] T. Y. Fan and R. L. Byer, "Modeling and CW operation of a quasi-three-level 946 nm Nd:YAG laser," IEEE J. Quantum Electron. 23, 605-612 (1987).
[5] J. J. Degnan, “Theory of the optimally coupled Q-switched laser,” IEEE J. Quantum Electron. 25, 214-220 (1989).
[6] J. J. Degnan, “Optimization of passively Q-switched lasers,” IEEE J. Quantum Electron. 31, 1890-1901 (1995).
[7] Y. F. Chen, Y. P. Lan, and H. L. Chang, “Analytical model for design criteria of passively Q-switched lasers,” IEEE J. Quantum Electron. 37, 462-468(2001).


連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top