|
Chapter 1 [1] W. Koechner, Solid-State Laser Engineering, 6th ed. (Springer, 2006). [2] K. Kuhn, Laser Engineering, 1st ed. (Prentice-Hall, 1998). [3] J. T. Verdeyen, Laser Electronics, 3rd ed. (Trentice-Hall, 1995). [4] A. E. Siegnam, Lasers, 1st ed. (University Science Books, 1986). [5] D. C. Brown and J. W. Kuper, “Solid-state lasers: steady progress through the decades,” Opt. Photon. News 20, 36-41 (2009). [6] G. Huber, C. Kränkel, and K. Petermann, “Solid-state lasers: status and future,” J. Opt. Soc. Am. B 27, B93-B105 (2010). [7] Y. F. Chen, T. S. Liao, C. F. Kao, T. M. Huang, K. H. Lin, and S. C. Wang, “Optimization of fiber-coupled laser–diode end-pumped lasers: influence of pump-beam quality,” IEEE J. Quantum Electron. 32, 2010-2016 (1996). [8] N. Hodgson and H. Weber, Laser resonators and beam propagation, 2nd ed. (Springer, 2004). [9] D. C. Brown and J. W. Kuper, “Solid-state lasers: steady progress through the decades,” Opt. Photon. News 20, 36-41 (2009). [10] G. Huber, C. Kränkel, and K. Petermann, “Solid-state lasers: status and future,” J. Opt. Soc. Am. B 27, B93-B105 (2010). [11] R. L. Byer, “Diode laser-pumped solid-state lasers,” Science 239, 742-747 (1988). [12] T. Y. Fan and R. L. Byer, “Diode laser-pumped solid-state lasers,” IEEE J. Quantum Electron. 24, 895-912 (1988). [13] T. Y. Fan, “Diode-pumped solid state lasers,” The Lincoln Laboratory Journal 3, 413-426 (1990). [14] T. Kojima, S. Konno, S. Fujikawa, K. Yasui, K. Yoshizawa, Y. Mori, T. Sasaki, M. Tanaka, and Y. Okada, “20-W ultraviolet-beam generation by fourth-harmonic generation of an all-solid-state laser,” Opt. Lett. 25, 58-60 (2000). [15] Y. F. Chen, Y. C. Chen, S. W. Chen, and Y. P. Lan, “High-power efficient diode-pumped passively Q-swtiched Nd:YVO4/KTP/ Cr4+:YAG eye-safe laser” Opt. Commun. 234, 337-342 (2004). [16] D. Xu, Y. Wang, H. Li, J. Yao, and Y. H. Tsang, “104 W high stability green laser generation by using diode laser pumped intracavity frequency-doubling Q-switched composite ceramic Nd:YAG laser,” Opt. Express 15, 3991-3997 (2007). [17] B. T. Zhang, X. L. Dong, J. L. He, H. T. Huang, K. J. Yang, C. H. Zuo, J. L. Xu, and S. Zhao, “High-power eye-safe intracavity KTA OPO driven by a diode-pumped Q-switched Nd:YAG laser,” Laser Phys. Lett. 5, 869-873 (2008). [18] X. Yan, Q. Liu, H. Chen, X. Fu, M. Gong, and D. Wang, “35.1 W all-solid-state 355 nm ultraviolet laser,” Laser Phys. Lett. 7, 563-568 (2010). [19] F. Zhuang, N. Ye, C. Huang, H. Zhu, Y. Wei, Z. Chen, H. Wang, and G. Zhang, “Multi-reflected enhancement of fourth harmonic DUV laser generation at 266 nm,” Opt. Express 18, 25339-25345 (2010). [20] Q. Liu, X. Yan, M. Gong, H. Liu, G. Zhang, and N. Ye, “High-power 266 nm ultraviolet generation in yttrium aluminum borate,” Opt. Lett. 36, 2653-2655 (2011). [21] S. Zhang, L. Guo, B. Xiong, Y. Liu, W. Hou, X. Lin, and J. Li,“High electro-to-optical efficiency 180 W Q-switched 532 nm laser with a pulsewidth of 70 ns,” Appl. Phys. B 104, 861-866 (2011). [22] Y. J. Huang, Y. P. Huang, P. Y. Chiang, H. C. Liang, K. W. Su, and Y. F. Chen, “High-power passively Q-swtiched Nd:YVO4 UV laser at 355 nm,” Appl. Phys. B 106, 893-898 (2011). [23] D. Marcuse, “Pulsing behavior of a three0level laser with saturable absorber,” IEEE J. Quantum Electron. 29, 2390-2396 (1993). [24] A. Y. Khan and M. Kasha, “Mechanism of four-level laser action in solution excimer and excited-state proton-transfer cases,” Proc. Natl. Acad. Sci. USA 80, 1767-1770 (1983). [25] T. Y. Fan and R. L. Byer, “Modeling and CW operation of a quasi-three-level 946 nm Nd:YAG laser,” IEEE J. Quantum. Electron. 23, 605-612 (1987). [26] T. Taira, W. M. Tulloch, and R. L. Byer, “Modeling of quasi-three-level lasers and operation of cw Yb:YAG lasers,” Appl. Opt. 36, 1867-1874 (1997). [27] J. R. O’Connor, “Unusual crystal-field energy levels and efficient laser properties of YVO4:Nd,” Appl. Phys. Lett. 9, 407-409 (1966). [28] R. A. Fields, M. Birnbaum, and C. L. Fincher, “Highly efficient Nd:YVO4 diode-laser end-pumped laser,” Appl. Phys. Lett. 51, 1885-1886 (1987). [29] P. Yankov, “Cr4+:YAG Q-switching of Nd:host laser oscillators,” J. Phys. D: Appl. Phys. 27, 1118-1120 (1994). [30] T. Dascalu, G. Philipps, and H. Weber, “Investigation of a Cr4+:YAG passive Q-switch in CW pumped Nd:YAG lasers,” Opt. Laser Technol. 29, 145-149 (1997). [31] P. Lacovara, H. K. Choi, C. A. Wang, R. L. Aggarwal, and T. Y. Fan, "Room-temperature diode-pumped Yb:YAG laser," Opt. Lett. 16, 1089-1091 (1991). [32] N. V. Kuleshov, A. A. Lagatsky, V. G. Shcherbitsky, V. P. Mikhailov, E. Heumann, T. Jensen, A. Diening, and G. Huber, "CW laser performance of Yb and Er,Yb doped tungstates," Appl. Phys. B 64, 409-413 (1997). [33] W. F. Krupke, “Ytterbium solid-state lasers – the first decade,” IEEE J. Sel. Top. Quantum Electron. 6, 2187-1296 (2000). [34] F. Brunner, G. J. Spühler, J. Aus der Au, L. Krainer, F. Morier-Genoud, R. Paschotta, N. Lichtenstein, S. Weiss, C. Harder, A. A. Lagatsky, A. Abdolvand, N. V. Kuleshov, and U. Keller, "Diode-pumped femtosecond Yb:KGd(WO4)2 laser with 1.1-W average power," Opt. Lett. 25, 1119-1121 (2000). [35] E. C. Honea, R. J. Beach, S. C. Mitchell, J. A. Skidmore, M. A. Emanuel, S. B. Sutton, S. A. Payne, P. V. Avizonis, R. S. Monroe, and D. G. Harris, "High-power dual-rod Yb:YAG laser," Opt. Lett. 25, 805-807 (2000). [36] J. Kawanaka, K. Yamakawa, H. Nishioka, and K. Ueda, "30-mJ, diode-pumped, chirped-pulse Yb:YLF regenerative amplifier," Opt. Lett. 28, 2121-2123 (2003). [37] G. Paunescu, J. Hein, and R. Sauerbrey, "100-fs diode-pumped Yb:KGW mode-locked laser," Appl. Phys. B 79, 555-558 (2004). [38] A. K. Cousins, “Temperature and thermal stress scaling in finite-length end-pumped laser rods,” IEEE Quantum Electron. 28, 1057-1069 (1992). [39] C. Pfistner, R. Weber, H. O. Weber, and S. Merazzi, "Thermal beam distortions in end-pumped Nd:YAG, Nd:GSGG, and Nd:YLF rods," IEEE Quantum Electron. 30, 1605-1615 (1994). [40] A. Giesen, H. Hügel, A. Voss, K. Wittig, U. Brauch, and H. Opower, "Scalable concept for diode-pumped high-power solid-state lasers," Appl. Phys. B 58, 365-372 (1994). [41] Y. F. Chen, T. M. Huang, C. F. Kao, and C. L. Wang, "Optimization in scaling fiber-coupled laser-diode end-pumped lasers to higher power: influence of thermal effect," IEEE Quantum Electron. 33, 1424-1429 (1997). [42] W. Koechner, "Thermal Lensing in a Nd:YAG Laser Rod," Appl. Opt. 9, 2548-2533 (1970). [43] S. J. Sheldon, L. V. Lnight, and J. M. Thorne, "Laser-induced thermal lens effect: a new theoretical model," Appl. Opt. 21, 1663-1669 (1982). [44] J. Frauchiger, P. Albers, and H. P. Weber, "Modeling of thermal lensing and higher order ring mode oscillation in end-pumped C-W Nd:YAG lasers," IEEE Quantum Electron. 28, 1046-1056 (1992). [45] M. Pollnau, P. J. Hardman, M. A. Kern, W. A. Clarkson, and D. C. Hanna, "Upconversion-induced heat generation and thermal lensing in Nd:YLF and Nd:YAG," Phys. Rev. B 58, 16076 (1998). [46] P. J. Hardman, W. A. Clarkson, G. J. Friel, M. Pollnau, and D. C. Hanna, "Energy-transfer upconversion and thermal lensing in high-power end-pumped Nd:YLF laser crystals," IEEE Quantum Electron. 35, 647-655 (1999). [47] S. Chenais, F. Balembois, F. Druon, G. Lucas-Leclin, and P. Georges, "Thermal lensing in diode-pumped ytterbium Lasers-Part I: theoretical analysis and wavefront measurements," IEEE Quantum Electron. 40, 1217-1234 (2004). [48] A. A. Kaminskii, Laser Crystals: Their Physics and Properties, 2nd edn. (Springer-Verlag, 1990), Chap. 6. [49] https://en.wikipedia.org/wiki/Cryogenics [50] http://www.nist.gov [51] D. C. Brown, “Ultrahigh-average-power diode-pumped Nd:YAG and Yb:YAG lasers,” IEEE J. Quantum Electron. 33, 861-873 (1997). [52] T. Y. Fan, T. Crow, and B. Hoden, "Cooled Yb:YAG for high-power solid state lasers", Proc. SPIE 3381, Airborne Laser Advanced Technology, 200 (September 8, 1998). [53] D. J. Ripin, J. R. Ochoa, R. L. Aggarwal, and T. Y. Fan, "165-W cryogenically cooled Yb:YAG laser," Opt. Lett. 29, 2154-2156 (2004). [54] D. C. Brown, "The promise of cryogenic solid-state lasers," IEEE J. Sle. Top. Quantum Electron. 11, 587-599 (2005). [55] D. J. Ripin, J. R. Ochoa, R. L. Aggarwal, and T. Y. Fan, "300-W cryogenically cooled Yb:YAG laser," IEEE J. Quantum Electron. 41, 1274-1277 (2005). [56] J. Dong, A. Rapaport, M. Bass, F. Szipocs, and K. Ueda, "Temperature-dependent stimulated emission cross section and concentration quenchin in highly doped Nd3+:YAG crystals," Phys. Stat. Sol. (a) 202, 2565-2573 (2005). [57] J. Kawanaka, S. Tokita, H. Nishioka, M. Fujita, K. Yamakawa, and K. Ueda, and Y. Izawa, "Dramatically improved laser characteristics of diode-pumped Yb-doped materials at low temperature," Laser Phys. 15, 1306-1312 (2005). [58] T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, "Cryogenic Yb3+-doped solid-state lasers," IEEE J. Sel. Topics Quantum Electron. 13, 448-459 (2007). [59] K. H. Hong, A. Siddiqui, J. Moses, J. Gopinath, J. Hybl, F. O. Ilday, T. Y. Fan, and F. X. Kartner, "Generation of 287 W, 5.5 ps pulses at 78 MHz repetition rate from a cryogenically cooled Yb:YAG amplifier seeded by a fiber chirped-pulse amplification system," Opt. Lett. 33, 2473-2475 (2008). [60] A. A. Kaminskii, S. N. Bagaev, K. Ueda, A. Shirakawa, T. Tokurakawa, H. Yagi, T. Yanagitany, and J. Dong, "Stimulated-emission spectroscopy of fine-grained "garnet" ceramics Nd:3+:Y3Al5O12 in a wide temperature range between 77 and 650 K," Laser Phys. Lett. 6, 682-687 (2009). [61] J. G. Manni, J. D. Hybl, D. Rand, D. J. Pipin, J. R. Ochoa, and T. Y. Fan, "100-W Q-switched cryogenically cooled Yb:YAG laser," IEEE J. Quantum Electron. 46, 95-98 (2010). [62] L. E. Zapata, D. J. Ripin, and T. Y. Fan, "Power scaling of cryogenic Yb:LiYF4 lasers," Opt. Lett. 35, 1854-1856 (2010). [63] J. Kawanaka, Y. Takeuchi, A. Yoshida, S. J. Pearce, R. Yasuhara, T. Kawashima, and H. Kan, "Highly efficient cryogenically-cooled Yb:YAG laser," Laser Phys. 20, 1079-1084 (2010). [64] D. Rand, D. Miller, D. J. Ripin, and T. Y. Fan, "Cryogenic Yb3+-doped materials for pulsed solid state laser applications," Opt. Mater. Express 1, 434-450 (2011). [65] D. A. Rand, S. E. J. Shaw, J. R. Ochoa, D. J. Ripin, A. Taylor, T. Y. Fan, H. Martin, S. Hawes, J. Zhang, S. Sarkisyan, E. Wilson, and P. Lundquist, "Picosecond pulses from a cryogenically cooled, composite amplifier using Yb:YAG and Yb:GSAG," Opt. Lett. 36, 340-342 (2011). [66] N. Bidin, S. E. Pourmand, M. F. S. Ahmad, G. Khrisnan, N. A. M. Taib, N. N. Adnan, and H. Bakhtiar, "Temperature dependence of quasi-three level laser transition for long pulse Nd:YAG laser," Opt. and Laser Tech. 45, 74-78 (2013). [67] S. J. Yoon and J. I. Mackenzie, "Cryogenically cooled 946nm Nd:YAG laser," Opt. Express 22, 8069-8075 (2014). [68] S. J. Yoon and J. I. Mackenzie, "Implications of the temperature dependence of Nd:YAG spectroscopic values for low temperature laser operation at 946 nm," Proc. of SPIE 9135, 913503 (2014).
Chapter 2 [1] W. Koechner, Solid-State Laser Engineering, 6thedn. (Springer, 2006). [2] T. M. Pollak, W. F. Wing, R. J. Grasso, E. P. Chicklis, and H. P. Jenssen, “CW laser operation of Nd:YLF,” IEEE J. Quantum Electron. 18, 159-163 (1982). [3] Y. F. Chen and Y. P. Lan, “Comparison between c-cut and a-cut Nd:YVO4 lasers passively Q-switched with a Cr4+:YAG saturable absorber,” Appl. Phys. B 74, 415-418 (2002). [4] A. I. Zagumenny, V. G. Ostroumov, I. A. Shcherbakov, T. Jensen, J. P. Meyen, and G. Huber, “The Nd:GdVO4 crystal: a new material for diode-pumped lasers,”Sov. J. Quantum Electron. 22, 1071-1072 (1992). [5] M. S. Ribeiro, D. F. Silva, E. P. Maldonado, W. de Rossi, and D. M. Zezell, “Effects of 1047-nm neodymium laser radiation on skin wound healing,” J. Clin. Laser Med. Surg. 20, 37-40 (2002). [6] A. V. Okishev and W. Seka, “Diode-pumped Nd:YLF master oscillator for the 30-kJ (UV), 60-beam OMEGA laser facility,” IEEE J. Sel. Top. Quantum Electron. 3 59-63 (1997). [7] G. P. A. Malcolm and A. I. Ferguson, "Self-mode locking of a diode-pumped Nd:YLF laser," Opt. Lett. 16, 1967-1969 (1991). [8] Y. J. Huang, C. Y. Tang, Y. P. Huang, S. C. Huang, K. W. Su, and Y. F. Chen, "Power scale-up of high-pulse-energy passively Q-switched Nd:YLF laser: influence of negative thermal lens enhanced by upconversion," Laser Phys. Lett. 9, 625-630 (2012). [9] Y. J. Huang, C. Y. Tang, Y. P. Huang, S. C. Huang, K. W. Su, and Y. F. Chen, "Power scale-up of high-pulse-energy passively Q-switched Nd:YLF laser: influence of negative thermal lens enhanced by upconversion," Laser Phys. Lett. 9, 625-630 (2012). [10] Y. J. Huang, C. Y. Tang, W. L. Lee, Y. P. Huang, S. C. Huang, Y. F. Chen, "Efficient passively Q-switched Nd:YLF TEM00-mode laser at 1053 nm: selection of polarization with birefringence," Appl. Phys. B 108, 313-317 (2012). [11] Y. J. Huang, C. Y. Tang, Y. S. Tzeng, K. W. Su, and Y. F. Chen, "Efficient high-energy passively Q-switched Nd:YLF/Cr4+:YAG UV laser at 351 nm with pulsed pumping in a nearly hemispherical cavity," Opt. Lett. 38, 519-521 (2013). [12] G. T. Maker and A. I. Ferguson, "Frequency modulation mode-locking and Q-switching of diode-laser-pumped Nd:YLF laser," Electron. Lett. 25, 1025-1026 (1989). [13] X. Y. Peng, L. Xu, and A. Asundi, "High-power efficient continuous-wave TEM00 intracavity frequency-doubled diode-pumped Nd:YLF laser," Appl. Phys. B 44, 800-807 (2005). [14] U. Keller, D. A. B. Miller, G. D. Boyd, T. H. Chiu, J. F. Ferguson, and M. T. Asom, "Solid-state low-loss intracavity saturable absorber for Nd:YLF lasers: an antiresonant semiconductor Fabry-Perot saturable absorber," Opt. Lett. 17, 505-507 (1992). [15] A. agnesi1 and S. Dell'acqua, "High-peak-power diode-pumped passively Q-switched Nd:YVO4 laser," Appl. Phys. B 76, 351-354 (2003). [16] U. Keller, "Recent developments in compact ultrafast lasers," Nature 424, 831–838 (2003). [17] U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. A. D. Au, "Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers," IEEE J. Sel. Top. Quantum Electron. 2, 435–453 (1996). [18] S. Tsuda, W. H. Knox, S. T. Cundiff, W. Y. Jan, and J. E. Cunningham, "Mode-locking ultrafast solid-state lasers with saturable Bragg reflectors," IEEE J. Sel. Top. Quantum Electron. 2, 454–464 (1996). [19] C. Hönninger, R. Paschotta, F. Morier-Genoud, M. Moser, and U. Keller, "Q-switching stability limits of continuous-wave passive mode locking," J. Opt. Soc. Am. B 16, 46–56 (1999). [20] H. A. Haus, J. G. Fujimoto, and E. P. Ippen, "Analytic theory of additive pulse and Kerr lens mode Locking," IEEE J. Quantum Electron. 28, 2086-2096 (1992). [21] T. Brabec, Ch. Spielmann, P. F. Curley, and F Krausz, "Kerr lens mode locking," Opt. Lett. 17, 1292-1294 (1992). [22] H. C. Liang, H. L. Chang, W. C. Huang, K. W. Su, Y. F. Chen, and Y. T. Chen, "Self-mode-locked Nd:GdVO4 laser with multi-GHz oscillations: manifestation of third-order nonlinearity," Appl. Phys. B 97, 451-455 (2009). [23] H. C. Liang, Y. J. Huang, W. C. Huang, K. W. Su, and Y. F. Chen, "High-power, diode-end-pumped, multigigahertz self-mode-locked Nd:YVO4 laser at 1342 nm," Opt. Lett. 35, 4-6 (2010). [24] Y. F. Chen, Y. J. Huang, P. Y. Chiang, Y. C. Lin, and H. C. Liang, "Controlling number of lasing modes for designing short-cavity self-mode-locked Nd-doped vanadate lasers," Appl. Phys. B 103, 841-846 (2011). [25] H. C. Liang, P. Y. Chiang, Y. J. Huang, Y. C. Lin, and Y. F. Chen, "Simultaneous self-mode-locking of TEM0,0 and TEM1,0 modes in a Nd:YVO4 laser: application for measuring the thermal focal length," Laser Phys. 21, 480-484 (2011). [26] H. C. Liang, Y. J. Huang, P. Y. Chiang, and Y. F. Chen, "Highly efficient Nd:Gd0.6Y0.4VO4 laser by direct in-band pumping at 914 nm and observation of self-mode-locked operation," Appl. Phys. B 103, 637-641 (2011). [27] Y. J. Huang, H. C. Liang, Y. F. Chen, H. J. Zhang, J. Y. Wang, and M. H. Jiang, "High-power 10-GHz self-mode-locked Nd:LuVO4 laser," Laser Phys. 21, 1750-1754 (2011). [28] W. Z. Zhuang, M. T. Chang, H. C. Liang, and Y. F. Chen, "High-power high-repetition-rate subpicosecond monolithic Yb:KGW laser with self-mode locking," Opt. Lett. 38, 2596-2599 (2013). [29] H. C. Liang, T. W. Wu, J. C. Tung, C. H. Tsou, K. F. Huang, and Y. F. Chen, "Total self-mode locking of multi-pass geometric modes in diode-pumped Nd:YVO4 lasers," Laser Phys. Lett. 10, 105804 (2013). [30] Y. F. Chen, W. Z. Zhuang, H. C. Liang, G. W. Huang, and K. W. Su, "High-power subpicosecond harmonically mode-locked Yb:YAG laser with pulse repetition rate up to 240 GHz," Laser phys. Lett. 10, 015803 (2013). [31] W. Z. Zhuang, M. T. Chang, K. W. Su, K. F. Huang, and Y. F. Chen, "High-power terahertz optical pulse generation with a dual-wavelength harmonically mode-locked Yb:YAG laser," Laser Phys. 23, 075803 (2013). [32] Y. J. Huang, Y. S. Tzeng, C. Y. Tang, S. Y. Chiang, H. C. Liang, and Y. F. Chen, "Efficient high-power terahertz beating in a dual-wavelength synchronously mode-locked laser with dual gain media," Opt. Lett. 39, 1477-1480 (2014). [33] T. W. Wu, C. H. Tsou, C. Y. Tang, H. C. Liang, and Y. F. Chen, "A high-power harmonically self-mode-locked Nd:YVO4 1.34-μm laser with repetition rate up to 32.1 GHz," Laser Phys. 24, 045803 (2014). [34] Y. J. Huang, Y. S. Tzeng, C. Y. Tang, Y. P. Huang, and Y. F. Chen, " Tunable GHz pulse repetition rate operation in high-power TEM00-mode Nd:YLF lasers at 1047 nm and 1053 nm with self mode locking," Opt. Express 20, 18230-18237 (2012). [35] W. Krichbaumer, H. Herrmann, E. Nagel, R. Häring, J. Streicher, C. Werner, A. Mehnert, T. Halldorsson, S. Heinemann, P. Peuser, and N. P. Schmitt, “A diode-pumped Nd:YAG lidar for airborne cloud measurements,” Opt. Laser Technol. 25, 283-287 (1993). [36] D. J. Binks, P. S. Golding, and T. A. King, “Compact all-solid-state high repetition rate tunable ultraviolet source for airborne atmospheric gas sensing,” J. Mod. Opt. 47, 1899-1912 (2000). [37] D. Kracht, S. Hahn, R. Huss, J. Neumann, R. Wilhelm, M. Frede, and P. Peuser, “High efficiency, passively Q-switched Nd:YAG MOPA for spaceborne laser-altimetry,” Proc. SPIE 6100, 548-555 (2006). [38] P. Peuser, W. Platz, P. Zeller, T. Brand, M. Haag, and B. Köhler, “High-power, longitudinally fiber-pumped, passively Q-switched Nd:YAG oscillator–amplifier,” Opt. Lett. 31, 1991-1993 (2006). [39] Y. F. Chen, Y. P. Lan, and H. L. Chang, "Analytical model for design criteria of passively Q-switched lasers," IEEE J. Quantum Electron. 37, 462-468 (2001). [40] J. J. Degnan, "Optimization of passively Q-switched lasers," IEEE J. Quantum Electron. 31, 1890-1901 (1995). [41] W. Koechner and D. K. Rice, "Effect of birefringence on the performance of linearly polarized YAG:Nd lasers," IEEE J. Quantum Electron. 6, 557-566 (1970). [42] G. A. Bogomolova, D. N. Vylegzhanin, and A. A. KaminskiT, "Spectral and lasing investigations of garnets with Yb3+ ions," Sov. Phys. JETP 42, 440-446 (1975). [43] T. Yoshino and Y. Kobayashi, "Temperature characteristics and stabilization of orthogonal polarization two-frequency Nd3+:YAG microchip lasers," Appl. Opt. 38, 3266-3270 (1999). [44] J. W. Haus, G. Shaulov, E. A. Kuzin, and J. Sanchez-Mondragon, "Vector soliton fiber lasers," Opt. Lett. 24, 376–378 (1999). [45] S. T. Cundiff, B. C. Collings, N. N. Akhmediev, J. M. Soto-Crespo, K. Bergman, and W. H. Knox, "Observation of polarization-locked vector solitons in an optical fiber," Phys. Rev. Lett. 82, 3988–3991 (1999). [46] J. Javaloyes, J. Mulet, and S. Balle, "Passive mode locking of lasers by crossed-polarization gain medium," Phys. Rev. Lett. 97, 163902 (2006). [47] L. M. Zhao, D. Y. Tang, H. Zhang, and X. Wu, "Polarization rotation locking of vector solitons in a fiber ring laser," Opt. Express 16, 10053–10058 (2008). [48] S. V. Sergeyev, C. Mou, A. Rozhin, and S. K. Turitsyn, "Vector solitons with locked and precessing states of polarization," Opt. Express 20, 27434–274400 (2012). [49] J. Thévenin, M. Vallet, and M. Brunel, "Dual-polarization mode-locked Nd:YAG laser," Opt. Lett. 37, 2859-2861 (2012). [50] C. L. Sung, H. P. Cheng, C. Y. Lee, C. Y. Cho, H. C. Liang, and Y. F. Chen, “ Generation of orthogonally polarized self-mode-locked Nd:YAG lasers with tunable beat frequencies from the thermally induced birefringence,” Opt. Lett. 41, 1781-1784 (2016). [51] S. Konno1, S. Fujikawa1, and K. Yasui, "80 W cw TEM00 1064 nm beam generation by use of a laser-diode-side-pumped Nd:YAG rod laser," Appl. Phys. Lett. 70, 2650-2651 (1997). [52] J. H. Lu, J. R. Lu, T. Murai, K. Takaichi, T. Uematsu, J. Q. Xu, and K. Ueda, "36-W diode-pumped continuous-wave 1319-nm Nd:YAG ceramic laser," Opt. Lett. 27, 1120-1122 (2002). [53] L. Guo, R. J. Lan, H. Liu, H. H. Yu, H. J. Zhang, .Y. Wang, D. W. Hu, S. D. Zhuang, L. J. Chen, Y. G. Zhao, X. G. Xu, and Z. P. Wang, "1319 nm and 1338 nm dual-wavelength operation of LD end-pumped Nd:YAG ceramic laser," Opt. Express 18, 9098-9106 (2010). [54] T. Y. Fan and R. L. Byer, "Modeling and CW operation of a quasi-three-level 946 nm Nd:YAG laser," IEEE J. Quantum Electron. 23, 605-612 (1987). [55] R. Zhou, E. Li, H. Li, P. Wang, and J. Yao, "Continuous-wave, 15.2 W diode-end-pumped Nd:YAG laser operating at 946 nm," Opt. Lett. 31, 1869-1871 (2006).
Chapter 3 [1] A. L. Harmer, A. Linz, and D. R. Gabbe, "Fluorescence of Nd3+ in Lithium Yttrium Fluoride," J. Phys. Chem. Solids 30, 1483-1491 (1969). [2] C. Y. Cho, T. L. Huang, S. M. Wen, Y. J. Huang, K. F. Huang, and Y. F. Chen, "Nd:YLF laser at cryogenic temperature with orthogonally polarized simultaneous emission at 1047 nm and 1053 nm," Opt. Express 22, 25318-25323 (2014). [3] D. L. Woolard, R. Brown, M.L Pepper, and M. Kemp, "Terahertz frequency sensing and imaging: a Time of reckoning future applications?" Proc. IEEE 93, 1722-1743 (2005). [4] M. Koch, "Terahertz technology: A land to be discovered," Opt. Photon. News 18, 20-25 (2007). [5] G. Kh. Kitaeva, "Terahertz generation by means of optical lasers," Laser Phys. Lett. 5, 559-576 (2008). [6] Y, J. Huang, Y. S. Tzeng, C. Y. Tang, and Y. F. Chen, "Efficient dual-wavelength synchronously mode-Locked picosecond laser operating on the 4F3/2 → 4I11/2 transition with compactly combined dual gain media," IEEE J. Sel. Topics Quantum Electron. 21, 1100107 (2015). [7] B. M. Walsh, "Dual wavelength lasers," Laser Phys. 20, 622-634, (2010). [8] J. T. Verdeyen, Laser electronics, 3rd edn. (Prentics Hall, 1995). [9] W. Koechner, Solid-State Laser Engineering, 6th edn. (Springer, 2006). [10] T. Kimura, K. Otsuka, and M. Saruwatari, "Spatial hole-burning effects in a Nd3+:YAG laser," IEEE J. Quantum Electron. 7, 225-230 (1971). [11] D. Vakhshoori, J. D. Wynn, G. J. Zydzik, R. E. Leibenguth, M. T. Asom, K. Kojima, and R. A. Morgan, "Top surface emitting lasers with 1.9 V threshold voltage and the effect of spatial hole burning on their transverse mode operation and efficiencies," Appl. Phys. Lett. 62, 1448-1450 (1993). [12] G. C. Wilson, D. M. Kuchta, J. D. Walker, and J. S. Smith, "Spatial hole burning and self-focusing in vertical-cavity surface-emitting laser diodes," Appl. Phys. Lett. 64, 542-544 (1994). [13] C. Degen, I. Fischer and W. Elsäβer, "Transverse modes in oxide confined," Opt. Express 5, 38-47 (1999). [14] Z. Jiang1 and J. R. Marciante, "Impact of transverse spatial-hole burning on beam quality in large-mode-area Yb-doped fibers," J. Opt. Soc. Am. B 25, 247-254 (2008). [15] F. Weigl, "A generalized technique of two-wavelength, nondiffuse holographic interferometry," Appl. Opt. 10, 187-192 (1971). [16] R. W. Farley and P. D. Dao, "Development of an intracavity-summed multiple-wavelength Nd:YAG laser for a rugged, solid-state sodium lidar system," Appl. Opt. 34, 4269-4273 (1995). [17] H. Y. Shen and H. Su, "Operating conditions of continuous wave simultaneous dual wavelength laser in neodymium host crystals," J. Appl. Phys. 86, 6647-6651 (1999). [18] I. Mattis, A. Ansmann, D. Muller, U. Wandinger, and D. Althausen, "Dual-wavelength Raman lidar observations of the extinction-to-backscatter ratio of Saharan dust," Geophys. Res. Lett. 29, 20 (2002). [19] H. Su, H. Y. Shen, W. X. Lin, R. R. Zeng, C. H. Huang, and G. Zhang, "Computational model of Q -switch Nd:YAlO3 dual-wavelength laser," J. Appl. Phys. 84, 6519-6255 (1998). [20] J. Janousek, P. Tidemand-Lichtenberg, J.L. Mortensen, and P. Buchhave, "Investigation of passively synchronized dual-wavelength Q-switched lasers based on V:YAG saturable absorber," Opt. Commun. 268, 277-282 (2006). [21] Y. E. Hou, Y. X. Fan, J. L. He, and H. T. Wang, "High-efficiency continuous-wave and Q-switched diode-pumped multi-wavelength Nd:YAG lasers," Opt. Commun. 265, 301-305 (2006). [22] Y. F. Chen, "cw dual-wavelength operation of a diode-end-pumped Nd:YVO4 laser," Appl. Phys. B 70, 475-478 (2000). [23] J. L. He, J. Du, J. Sun, S. Liu, Y. X. Fan, H.T. Wang, L.H. Zhang, and Y. Hang, "High efficiency single- and dual-wavelength Nd:GdVO4 lasers pumped by a fiber-coupled diode," Appl. Phys. B 79, 301-304 (2004). [24] P. Li, D. Li, C. Li, and Z. Zhang, "Simultaneous dual-wavelength continuous wave laser operation at 1.06 μm and. 946 nm in Nd:YAG and their frequency doubling," Opt. Commun. 235, 169-174 (2004). [25] N. Pavel, "Simultaneous dual-wavelength emission at 0.9 and 1.06 μm in Nd-based laser crystals," Laser Phy. 20, 215-221 (2010). [26] K. J. Åström and T. Hägglund, "The future of PID control," Control Eng. Pract. 9, 1163-1175 (2001). [27] K. H. Ang, G. Chong, and Y. Li, "PID control system analysis, design, and technology," IEEE Trans. Control Syst. Technol. 13, 559-567 (2005).
Chapter 4 [1] J. Dong, A. Rapaport, M. Bass, F. Szipocs, and K. Uedm, “Temperature-dependent stimulated emission cross section and concentration quenching in highly doped Nd3+:YAG crystals,” Phys. Stat. sol. (a) 202, 2565-2573 (2005). [2] S. J. Yoon and J. I. Mackenzie, “Implications of the temperature dependence of Nd:YAG spectroscopic values for low temperature laser operation at 946 nm,” Proc. SPIE 9135, 913503 (2014). [3] A. A. Kaminskii, Laser Crystals: Their Physics and Properties, 2nd edn. (Springer-Verlag, 1990). [4] D. C. Brown, "Ultrahigh-average-power diode-pumped Nd:YAG and Yb:YAG lasers," IEEE J. Quantum Electron. 33, 861-873 (1997). [5] T. Y. Fan, T. Crow, and B. Hoden, "Cooled Yb:YAG for high-power solid state lasers", Proc. SPIE 3381, Airborne Laser Advanced Technology, 200 (September 8, 1998). [6] D. J. Ripin, J. R. Ochoa, R. L. Aggarwal, and T. Y. Fan, "165-W cryogenically cooled Yb:YAG laser," Opt. Lett. 29, 2154-2156 (2004). [7] D. C. Brown, "The promise of cryogenic solid-state lasers," IEEE J. Sle. Top. Quantum Electron. 11, 587-599 (2005). [8] D. J. Ripin, J. R. Ochoa, R. L. Aggarwal, and T. Y. Fan, "300-W cryogenically cooled Yb:YAG laser," IEEE J. Quantum Electron. 41, 1274-1277 (2005). [9] J. Kawanaka, S. Tokita, H. Nishioka, M. Fujita, K. Yamakawa, and K. Ueda, and Y. Izawa, "Dramatically improved laser characteristics of diode-pumped Yb-doped materials at low temperature," Laser Phys. 15, 1306-1312 (2005). [10] T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, "Cryogenic Yb3+-doped solid-state lasers," IEEE J. Sel. Topics Quantum Electron. 13, 448-459 (2007). [11] K. H. Hong, A. Siddiqui, J. Moses, J. Gopinath, J. Hybl, F. O. Ilday, T. Y. Fan, and F. X. Kartner, "Generation of 287 W, 5.5 ps pulses at 78 MHz repetition rate from a cryogenically cooled Yb:YAG amplifier seeded by a fiber chirped-pulse amplification system," Opt. Lett. 33, 2473-2475 (2008). [12] A. A. Kaminskii, S. N. Bagaev, K. Ueda, A. Shirakawa, T. Tokurakawa, H. Yagi, T. Yanagitany, and J. Dong, "Stimulated-emission spectroscopy of fine-grained "garnet" ceramics Nd:3+:Y3Al5O12 in a wide temperature range between 77 and 650 K," Laser Phys. Lett. 6, 682-687 (2009). [13] J. G. Manni, J. D. Hybl, D. Rand, D. J. Pipin, J. R. Ochoa, and T. Y. Fan, "100-W Q-switched cryogenically cooled Yb:YAG laser," IEEE J. Quantum Electron. 46, 95-98 (2010). [14] L. E. Zapata, D. J. Ripin, and T. Y. Fan, "Power scaling of cryogenic Yb:LiYF4 lasers," Opt. Lett. 35, 1854-1856 (2010). [15] J. Kawanaka, Y. Takeuchi, A. Yoshida, S. J. Pearce, R. Yasuhara, T. Kawashima, and H. Kan, "Highly efficient cryogenically-cooled Yb:YAG laser," Laser Phys. 20, 1079-1084 (2010). [16] D. Rand, D. Miller, D. J. Ripin, and T. Y. Fan, "Cryogenic Yb3+-doped materials for pulsed solid state laser applications," Opt. Mater. Express 1, 434-450 (2011). [17] D. A. Rand, S. E. J. Shaw, J. R. Ochoa, D. J. Ripin, A. Taylor, T. Y. Fan, H. Martin, S. Hawes, J. Zhang, S. Sarkisyan, E. Wilson, and P. Lundquist, "Picosecond pulses from a cryogenically cooled, composite amplifier using Yb:YAG and Yb:GSAG," Opt. Lett. 36, 340-342 (2011). [18] N. Bidin, S. E. Pourmand, M. F. S. Ahmad, G. Khrisnan, N. A. M. Taib, N. N. Adnan, and H. Bakhtiar, "Temperature dependence of quasi-three level laser transition for long pulse Nd:YAG laser," Opt. and Laser Tech. 45, 74-78 (2013). [19] S. J. Yoon and J. I. Mackenzie, "Cryogenically cooled 946nm Nd:YAG laser," Opt. Express 22, 8069-8075 (2014). [20] C. Y. Cho, P. H. Tuan, Y. T. Yu, K. F. Huang, and Y. F. Chen, “A cryogenically cooled Nd:YAG monolithic laser for efficient dual-wavelength operation at 1061 and 1064 nm,” Laser Phys. Lett. 10, 045806 (2013). [21] N. Hodgson and H. Weber, Laser resonators and beam propagation, 2nd ed. (Springer, 2004). [22] Y. F. Chen, S. C. Wang, T. M. Huang, C. F. Kao, and C. L. Wang, “Analytical model for output optimization of fiber-coupled laser-diodes end-pumped lasers,” Proc. SPIE 2989, 35-45 (1997). [23] Y. F. Chen, T. M. Huang, C. F. Kao, C. L. Wang, and S. C. Wang, “Generation of Hermite-Gaussian modes in fiber-coupled laser-diode end-pumped lasers,” IEEE J. Quantum Electron. 33, 1025-1031 (1997). IEEE J. Sel. Topics Quantum Electron. 21, 1100107 (2015). [24] Y. Rabin, M. J. Taylor, and N. Wolmark, “Thermal expansion measurements of frozen biological tissues at cryogenic temperatures,” J. Biomech. Eng. 120, 259-266 (1998). [25] R. Zhou, E. Li, H. Li, P. Wang, and J. Yao, "Continuous-wave, 15.2 W diode-end-pumped Nd:YAG laser operating at 946 nm," Opt. Lett. 31, 1869-1871 (2006). [26] W. P. Risk and W. Lenth, "Room-temperature, continuous-wave, 946-nm Nd:YAG laser pumped by laser-diode arrays and intracavity frequency doubling to 473 nm," Opt. Lett. 12, 993-995 (1987). [27] T. Kellner, F. Heine, and G. Huber, "Efficient laser performance of Nd:YAG at 946 nm and intracavity frequency doubling with LiJO3, β-BaB2O4, and LiB3O5," Appl. Phys. B 65, 789-792 (1997). [28] C. Czeranowsky, E. Heumannm, and G. Huber, "All-solid-state continuous-wave frequency-doubled Nd:YAG-BiBO laser with 2.8-W output power at 473 nm," Opt. Lett. 28, 432-434 (2003). [29] R. Zhou, T. Zhang, E. Li, X. Ding, Z. Cai, B. Zhang, W. Wen, P. Wang, and J. Yao, "8.3 W diode-end-pumped continuous-wave Nd:YAG laser operating at 946-nm," Opt. Express 13, 10115-10119 (2005). [30] C. Y. Cho, C. Y. Lee, C. C. Chang, P. H. Tuan, K. F. Huang, and Y. F. Chen, "24-W cryogenically cooled Nd:YAG monolithic 946-nm laser with a slope efficiency >70%," Opt. Express 23, 10126-10131 (2015). [31] C. Y. Cho, T. L. Huang, H. P. Cheng, K. F. Huang, and Y. F. Chen, "Analysis of the optimal temperature for the cryogenic monolithic Nd:YAG laser at 946-nm," Opt. Express 24, 1-8 (2016). [32] K. Lee, Y. Kim, S. Lee, J. H. Kwon, J. S. Gwak, and J. Yi, "Reducing temperature dependence of the output energy of a quasi-continuous wave diode-pumped Nd:YAG laser," Appl. Opt. 52, 5967-5973 (2013). [33] T. Y. Fan and R. L. Byer, "Modeling and CW operation of a quasi-three-level 946 nm Nd:YAG laser," IEEE J. Quantum Electron. 23, 605-612 (1987). [34] P. Laporta, "Design criteria for mode size optimization in diode-pumped solid-state lasers," IEEE J. Quantum Electron. 27, 2319-2326 (1991). [35] M. E. Innocenzi, H. T. Yura, C. L. Fincher, and R. A. Fields, "Thermal modeling of continuous-wave end-pumped solid-state lasers," Appl. Phys. Lett. 56, 1831-1833 (1990). [36] Y. J. Huang, C. Y. Tang, Y. P. Huang, S. C. Huang, K. W. Su, and Y. F. Chen, "Power scale-up of high-pulse-energy passively Q-switched Nd:YLF laser: influence of negative thermal lens enhanced by upconversion," Laser Phys. Lett. 9, 625-630 (2012). [37] R. Wynne, J. L. Daneu, and T. Y. Fan, "Thermal coefficients of the expansion and refractive index in YAG," Appl. Opt. 38, 3382-3384 (1999).
Chapter 5 [1] H. X. Wang, X. Q. Yang, S. Zhao, B. T. Zhang, H. T. Huang, J. F. Yang, J. L. Xu, and J. L. He, "2ns-pulse, compact and reliable microchip lasers by Nd:YAG/Cr4+:YAG composite crystal," Laser Phys. 19, 1824-1827 (2009). [2] C. Y. Cho, H. P. Cheng, Y. C. Chang, C. Y. Tang, and Y. F. Chen, “An energy adjustable linearly polarized passively Q-switched bulk laser with a wedged diffusion-bonded Nd:YAG/Cr4+:YAG crystal,” Opt. Express 23, 8162-8169 (2015) [3] W. Koechner, Solid-State Laser Engineering, 6th edn. (Springer, 2006), Chap. 8. [4] Y. F. Chen, Y. P. Lan, and H. L. Chang, "Analytical model for design criteria of passively Q-switched lasers," IEEE J. Quantum Electron. 37, 462-468 (2001). [5] J. J. Degnan, "Optimization of passively Q-switched lasers," IEEE J. Quantum Electron. 31, 1890-1901 (1995). [6] D. J. Ripin, J. R. Ochoa, R. L. Aggarwal, and T. Y. Fan, "165-W cryogenically cooled Yb:YAG laser," Opt. Lett. 29, 2154-2156 (2004). [7] H. Y. Shen, R. R. Zeng, Y. P. Zhou, G. F. Yu, C. H. Huang, Z. D. Zeng, W. J. Zhang, and Q. J. Ye, “Comparison of simultaneous multiple wavelength lasing in various neodymium host crystals at transitions from 4F3/2→4I11/2 and 4F3/2→4I13/2,” Appl. Phys. Lett. 56, 1937-1939 (1990). [8] Y. F. Chen, “cw dual-wavelength operation of a diode-end-pumped Nd:YVO4 laser,” Appl. Phys. B 70, 475-478 (2000). [9] Y. F. Chen and S. W. Tsai, “Diode-pumped Q-switched Nd:YVO4 yellow laser with intracavity sum-frequency mixing,” Opt. Lett. 27, 397-399 (2002). [10] J. L. He, J. Du, J. Sun, S. Liu, Y.X. Fan, H.T. Wang, L.H. Zhang, and Y. Hang, “High efficiency single- and dual-wavelength Nd:GdVO4 lasers pumped by a fiber-coupled diode,” Appl. Phys. B 79, 301-304 (2004). [11] Y. Lu, B. G. Zhang, E. B. Li, D. G. Xu, R. Zhou, X. Zhao, F. Ji, T. L. Zhang, P. Wang, and J. Q. Yao, “High-power simultaneous dual-wavelength emission of an end-pumped Nd:YAG laser using the quasi-three-level and the four-level transition,” Opt. Commun. 262, 241–245 (2006). [12] N. Pavel, “Simultaneous dual-wavelength emission at 0.90 and 1.06 μm in Nd-based laser crystals,” Laser Phy. 20, 215-221 (2010). [13] P. Li, D. Li, C. Li, and Z. Zhang, “Simultaneous dual-wavelength continuous wave laser operation at 1.06 µm and. 946 nm in Nd:YAG and their frequency doubling,” Opt. Commun. 235, 169-174 (2004). [14] Y. Lu, B. G. Zhang, E. B. Li, D. G. Xu, R. Zhou, X. Zhao, F. Ji, T. L. Zhang, P. Wang, and J. Q. Yao, “High-power simultaneous dual-wavelength emission of an end-pumped Nd:YAG laser using the quasi-three-level and the four-level transition,” Opt. Commun. 262, 241–245 (2006). [15] C. Y. Cho, C. C. Chang, and Y. F. Chen, "Efficient dual-wavelength laser at 946 and 1064 nm with compactly combined Nd:YAG and Nd:YVO4 crystals," Laser Phys. Lett. 10, 045805 (2013). [16] C. Y. Cho, C. C. Chang, and Y. F. Chen, “Diode-end-pumped solid-state lasers with dual gain media for multi-wavelength emission,” Laser Phys. 25, 015802 (2015).
Appendix I [1] P. Laporta and M. Brussard, “Design criteria for mode size optimization in diode-pumped solid-state lasers,” IEEE J. Quantum Electron. 27, 2319-2326 (1991). [2] Y. F. Chen, C. F. Kao, and S. C. Wang, “Analytical model for the design of fiber-coupled laser-diode end-pumped lasers,” Opt. Commun. 133, 517-524 (1997). [3] Y. F. Chen, “Pump-to-mode size ration dependence of thermal loading in diode-end-pumped solid-state lasers,” J. Opt. Soc. Am. B 17, 1835-1840 (2000). [4] T. Y. Fan and R. L. Byer, "Modeling and CW operation of a quasi-three-level 946 nm Nd:YAG laser," IEEE J. Quantum Electron. 23, 605-612 (1987). [5] J. J. Degnan, “Theory of the optimally coupled Q-switched laser,” IEEE J. Quantum Electron. 25, 214-220 (1989). [6] J. J. Degnan, “Optimization of passively Q-switched lasers,” IEEE J. Quantum Electron. 31, 1890-1901 (1995). [7] Y. F. Chen, Y. P. Lan, and H. L. Chang, “Analytical model for design criteria of passively Q-switched lasers,” IEEE J. Quantum Electron. 37, 462-468(2001).
|