1.中央健康保險局,取自http://www.nhi.gov.tw/,參考日期:2011/04/13。
2.內政部統計處,取自http://www.moi.gov.tw/stat/,參考日期:2011/04/12。
3.王人澍、張寶源、熊雅意 (2008),「應用決策樹理論於中醫辨證-以慢性咳嗽為例」,中西整合醫學雜誌,10 卷,2 期,頁25-33。4.王庭荃、陳長興 (2008),「醫師年資、醫療服務量與消化性潰瘍治療效果之相關研究」,台灣衛誌,27卷,1期,頁57-66。5.全民健康保險研究資料庫,取自http://w3.nhri.org.tw/nhird/index.php,參考日期:2011/03/25。
6.行政院經濟建設委員會,取自http://www.cepd.gov.tw/,參考日期:2011/04/12。
7.行政院衛生署,取自http://www.doh.gov.tw/CHT2006/index_populace.aspx,參考日期:2011/04/13。
8.李俊宏、古清仁 (2010),「類神經網路與資料探勘技術在醫療診斷之應用研究」,工程科技與教育學刊,7卷,1期,頁154-169。
9.林明傑、董子毅 (2008),「危險評估中ROC曲線在預測2×2表上與敏感度及特異度之關係」,亞洲家庭暴力與性侵害期刊,4卷,2期,頁64-74。10.林嘉禾、林光明、蘇世斌 (2011),「攝護腺肥大症之雷射手術治療」,家庭醫學與基層醫療, 26卷,2期,頁83-86。
11.邱志州、簡德年 (2002),「整合類神經網路與分類迴歸樹在建構企業危機診斷模式上之應用」,中華管理評論學報,5 卷,4 期,頁55-82。
12.苑守慈、王詩翔、張瑋倫 (2008),「智慧型老人居家照護-以替換調適模式之案例式推理為基礎」,資訊管理學報, 15卷,2期,頁1-25。13.范牧蘭、楊瓊珠、劉崇祥等 (2008),「基層醫療診所病患流失之預警-倒傳遞神經網路之運用」,醫務管理期刊,9卷,4期,頁286-298。14.張偉斌、吳振龍、紀櫻珍等 (2006),「案例推理法增進乳癌診斷率」,北市醫學雜誌 ,3卷,11期,頁78-84。15.陳銘樹、王建智、王麗雁 (2008),「應用決策樹演算法以探究高科技員工潛在的糖尿病之危險因子」,健康管理學刊,6 卷,2 期,頁135-146。16.彭奕欣、姚敏瓊、黃秋宗 (2009),「急性心肌梗塞醫療品質與費用的探討」,安泰醫護雜誌,15卷,2期,頁97-110。17.游榮聖 (2010),「針灸治療前列腺肥大的探討」,中醫內科醫學雜誌, 8卷,1期,頁6-9。
18.黃竫棻、洪信嘉 (2008),「肝癌患者醫療資源使用長期縱貫分析」,醫管期刊,9卷,4期,頁243-254。
19.楊登凱、簡國龍 (2009),「良性前列腺肥大的診斷與治療」,台灣醫學,13卷,6期,頁625-631。20.葉怡成 (2006),類神經網路模式應用與實作,儒林圖書公司,台北。
21.葉怡成、吳沛儒 (2009),「基於類神經網路與交叉驗證法之田口方法」,品質學報,16卷,4期,頁261-279。22.葉明憲、黃治文、葉家舟等 (2009),「應用經絡能量的乳癌分析」,臺灣中醫臨床醫學雜誌 ,15卷,3期,頁229-235。23.廖述賢、溫志皓 (2009),資料採礦與商業智慧,雙葉書廊,台北。
24.劉詩彬 (2005),「良性前列腺增生」,台灣醫學,9 卷,4期,頁518-525。25.劉嘉年 (2009),「提供者服務量與膀胱癌病患進行膀胱根除術之結果分析」,台灣衛誌,28卷,3期,頁184-192。26.蔡宜秀、孫明輝、洪麗珍等 (2008),「影響某區域醫院缺血性腦中風初患病患住院醫療費用之相關因素」,中台灣醫學雜誌,13卷,3期,頁143-151。27.蔡蕙如、柯明中、張偉斌等 (2007),「應用類神經網路與分類迴歸樹於肝癌分類模式」,北市醫學雜誌,4 卷,8 期,頁658-667。28.羅華強 (2001),類神經網路Matlab的應用,清蔚出版社,新竹。
29.嚴玉華、許碩芬、方世杰等 (2009),「總額支付制度下個別醫院醫療費用預測模型建立-以某教學醫院為例」,澄清醫護管理雜誌,5卷,2期,頁15-21。30.攝護腺保健資訊網,取自http://careprostate.com/index.php,參考日期:2011/03/24。
31.Aamodt, A., & Plaza, E. (1994). “Case-based Reasoning: Foundational Issues Methodological Variations, and System Approaches”, AI Communications, Vol. 7, No. 1, pp.39-59.
32.Astrom, F., & Koker, R. (2011). “A parallel neural network approach to prediction of Parkinson’s Disease”, Expert Systems with Applications, Vol. 38, No. 10, pp.12470-12474.
33.Begg, C.B., Riedel, E.R., Bach, P.B., et al. (2002). “Variations in morbidity after radical prostatectomy”, New England Journal of Medicine, Vol. 346, No. 1, pp.1138-1144.
34.Berry, M., & Linoff, G. (1999). Mastering Data Mining, the Art & Science of Cutomer Relation Management, John Wiley, New York.
35.Budaus, L., Morgan, M., Abdollah, F. et al. (2011). “Impact of annual surgical volume on length of stay in patients undergoing minimally invasive prostatectomy: A population-based study”, European Journal of Surgical Oncology, Vol. 37, No. 5, pp.429-434.
36.Breiman, L., Friedman, J., Olshen, R., et al. (1984). Classification and Regression Trees, Wadsworth, Belmont, CA.
37.Charlson, M.E., Pompei, P., Ales, K.L., et al. (1987). “A new method for classifying prognostic comorbidity in a longitudinal studies: Development and validation”, Journal of Chronic Diseases, Vol. 40, No. 5, pp.373-383.
38.Chen, C.S. (2008). “Comparison of ICUD, AUA and EAU Treatment Guidelines for Male LUTS/BPH”, Incontinence & Pelvic Floor Disorders, Vol. 2, No. 1, pp.11-16.
39.Choudhry, K.N., Fletcher, R.H., Soumerai, S.B. (2005). “Systematic Review: The Relationship between Clinical Experience and Quality of Health Care”, Annals of Internal Medicine, Vol. 142, No. 4, pp.260-273.
40.Chulte, C.G., Panser, L.A., Girman, C.J., et al. (1993). “The prevalence of prostatism: a population based survey of urinary symptoms”, The Journal of Urology, Vol. 150, No. 1, pp.85-89.
41.Cortes, C., & Vapnik, V. (1995). “Support-vector networks”, Machine Learning, Vol. 20, No. 3, pp.273-297.
42.Das, R. (2010). “A comparison of multiple classification methods for diagnosis of Parkinson disease”, Expert Systems with Applications, Vol. 37, No. 2, pp.1568-1572.
43.Demsar, J. (2006). “Statistical comparisons of classifiers over multiple data sets”, Journal of machine learning research, Vol. 7, No. 1, pp.1-30.
44.Deyo, R.A., Cherkin, D.C., Ciol, M.A. (1992). “Adapting a clinical comorbidity index for use with ICD-9-CM administrative databases”, Journal of Clinical Epidemiology, Vol. 45, No. 6, pp.613-619.
45.Dogantekin, E., Dogantekin, A., Avci, D. (2011). “An expert system based on Generalized Discriminant Analysis and Wavelet Support Vector Machine for diagnosis of thyroid diseases”, Expert Systems with Applications, Vol. 38, No. 1, pp.146-150.
46.Er, O., Yumusak, N., Temurtas, F. (2010). “Chest diseases diagnosis using artificial neural networks”, Expert Systems with Applications, Vol. 37, No. 12, pp.7648-7655.
47.Fei, S.W. (2010). “Diagnostic study on arrhythmia cordis based on particle swarm optimization-based support vector machine”, Expert Systems with Applications, Vol. 37, No. 10, pp.6748-6752.
48.Hanson, K., & Thornton, D. (1999). Static 99: Improving actuarial risk assessments for sex offenders, Department of the Solicitor General Canada, Ottawa, Canada.
49.Hartigan, J.A. (1975). Clustering Algorithms, John Wiley, New York.
50.Harvard University, “Harvard experts discuss surgical options for benign prostatic hyperplasia”, available at http://www.harvardprostateknowledge.org/ retrieved May 12, 2011.
51.Hollenbeck, B., Dunn, R.L., Miller, D., et al. (2007). “Volume-based referral for cancer surgery: Informing the debate”, Journal of Clinical Oncology, Vol. 25, No. 1, pp.91-96.
52.Hong Kong Urological Association, “Benign Prostatic Hyperplasia”, available at http://www.hkua.org/healthinfo01.php retrieved May 01, 2011.
53.Hsu, C.W., Chang, C.C., Lin, C.J. (2003). “A Practical Guide to Support Vector Classification Technical Report”, Department of Computer Science and Information Engineering, National Taiwan University. available at http://www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf retrieved May 12, 2011.
54.Hu, J.C., Gold, K.F., Pashos, C.L., et al. (2003). “Role of surgeon volume in radical prostatectomy outcomes”, Journal of Clinical Oncology, Vol. 21, No. 3, pp.401-405.
55.Huang, C.L., Liao, H.C., Chen, M.C. (2008). “Prediction model building and feature selection with support vector machines in breast cancer diagnosis”, Expert Systems with Applications, Vol. 34, No. 1, pp.578-587.
56.Judge, A., Evans, S., Gunnell, D.J., et al. (2007). “Patient outcomes and length of hospital stay after radical prostatectomy for prostate cancer: Analysis of hospital episodes statistics for England”, BJU International, Vol. 100, No. 5, pp.1040-1049.
57.Kreder, H.J., Grosso, P., Williams, J.I., et al. (2003). “Provider volume and other predicators of outcome after total knee arthroplasty: a population study in Ontario”, Canadian Journal of Surgery, Vol. 46, No. 1, pp.15-22.
58.Ku, T.S., Kane, C.J., Sen, S., et al. (2008). “Effects of hospital procedure volume nd resident training on clinical outcomes and resource use in radical etropubic prostatectomy surgery in the Department of Veterans Affairs”, The Journal of Urology, Vol. 179, No. 1, pp.272-278.
59.Kurt, I., Ture, M., Kurum, A.T. (2008). “Comparing performances of logistic regression, classification and regression tree, and neural networks for predicting coronary artery disease”, Expert Systems with Applications, Vol. 34, No. 1, pp.366-374.
60.Liu, C.L., Li, C.C., Yang, C.R. et al. (2011). “Trends in treatment for localized prostate cancer after emergence of robotic-assisted laparoscopic radical prostatectomy in Taiwan”, Journal of the Chinese Medical Association, Vol. 74, No. 4, pp.155-158.
61.Madersbacher, S., Alivizatos, G., Nordling, J., et al. (2004). “EAU 2004 Guidelines on Assessment, Therapy and Follow-Up of Men with Lower Urinary Tract Symptoms Suggestive of Benign Prostatic Obstruction (BPH Guidelines)”, European Urology, Vol. 46, No. 5, pp.547-554.
62.Mitra, R., & Basak, J. (2005). “Methods of Case Adaptation: A Survey”, International Journal of Intelligent Systems, Vol. 20, No. 6, pp.627-645.
63.Pandey, B., & Mishra, R.B. (2009). “Knowledge and intelligent computing system in medicine”, Computers in Biology and Medicine, Vol. 39, No. 3, pp.215-230.
64.Philbin, E.F., McCullough, P.A., Dec, G.W., et al. (2001). “Length of stay and procedure utilization are the major determinants of hospital charges for heart failure”, Clinical Cardiology, Vol. 24, No. 1, pp.56-62.
65.Quinlan, J. R. (1986). “Induction of decision tree”, Machine Learning, Vol. 1, No. 1, pp.81-106.
66.Quinlan, J. R. (1996). “Improved use of continuous attributes in C4.5”, Journal of Artificial Intelligence Research, Vol. 4, No. 1, pp.77-90.
67.Rahman, R.M., Hasan, F.R. (2011). “Using and comparing different decision tree classification techniques for mining ICDDR, B Hospital Surveillance data”, Expert Systems with Applications, Vol. 38, No. 9, pp.11421-11436.
68.Schank, R.C., & Abelson, R.P. (1977). Scripts, Plans, Goals and Understanding, Erlbaum, Hillsdale, Mahwah, NJ.
69.Siu, W., Daignault, S., Miller, D., et al. (2008). “Understanding differences between high and low volume hospitals for radical prostatectomy”, Urologic Oncology, Vol. 26, No. 3, pp.260-265.
70.Soohoo, N.F., Zingmond, D.S., Lieberman, J.R., et al. (2006). “Primary total knee arthroplasty in California 1991 to 2001: does hospital volume affect outcomes”, The Journal of Arthroplasty, Vol. 21, No. 2, pp.199-205.
71.Su, C.T., & Yang, C.H. (2008). “Feature selection for the SVM: An application tohypertension diagnosis”, Expert Systems with Applications, Vol. 34, No. 1, pp.754-763.
72.Sugihara, T., Yasunaga, H., Horiguchi, H. (2011). “Impact of Hospital Volume and Laser Use on Postoperative Complications and In-Hospital Mortality in Cases of Benign Prostate Hyperplasia”, The Journal of Urology, Vol. 185, No. 6, pp.2248-2253.
73.Ting, S.L., Wang, W.M., Kwok, S.K., et al. (2010). “RACER: Rule-Associated Case-based Reasoning for supporting General Practitioners in prescription making”, Expert Systems with Applications, Vol. 37, No. 12, pp.8079-8089.
74.Vincent, K.R., Vincent, H.K., Lee, L.W., et al. (2006). “Outcomes in total knee arthroplasty patients after inpatient rehabilitation: influence of age and gender”, American Journal of Physical Medicine Rehabilitation, Vol. 85, No. 6, pp.482-489.
75.Woods, K., & Bowyer, K.W. (1997). “Generating ROC Curves for Artificial Neural Networks”, IEEE Transactions on Medical Imaging, Vol. 16, No. 3, pp.329-337.