跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.41) 您好!臺灣時間:2026/01/13 08:53
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:朱柏安
研究生(外文):Po-An Chu
論文名稱:前列腺手術之住院日與醫療費用評估研究
論文名稱(外文):A Study on Length of Stay and Expenditure on Surgery of Prostate
指導教授:張俊郎張俊郎引用關係
學位類別:碩士
校院名稱:國立虎尾科技大學
系所名稱:工業工程與管理研究所
學門:工程學門
學類:工業工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:124
中文關鍵詞:良性前列腺肥大前列腺癌健保資料庫決策樹倒傳遞類神經網路支持向量機案例式推理人工智慧
外文關鍵詞:Benign Prostatic HyperplasiaProstate CancerDatabase of Bureau of National Health InsuranceDecision TreeBack Propagation Neural NetworkSupport Vector MachinesCase Based ReasoningArtificial Intelligence
相關次數:
  • 被引用被引用:4
  • 點閱點閱:511
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
良性前列腺肥大是中老年男性常見的泌尿科疾病,通常施以經尿道前列腺切除術,即可紓解其症狀。前列腺癌為國人癌症死亡原因第七位,死亡率達2.34%,於初期施以前列腺根除術,治癒率很高。隨著人口老化,近幾年前列腺患者有快速攀升趨勢,其治療所耗費的醫療資源與費用相當可觀,如何有效評估住院日與醫療費用對於整體醫療資源規劃是值得深入探討的醫療議題。
本研究透過文獻蒐集與醫師訪談,彙整相關影響變數,並以2006至2009年健保資料庫中前列腺手術之病患為研究對象,運用決策樹、倒傳遞類神經網路、支持向量機、案例式推理等相互結合的人工智慧方法於評估患者術後住院日與醫療費用。研究結果,住院日方面,A案例中各模型之準確率與ROC曲線下面積皆有78%及0.7以上之水準;B案例中SVM和BPN結合SVM兩者模型具有較佳之評估結果;C案例中C5.0結合SVM模型之敏感度僅24%,無法有效辨識住院超過標準值的個案。醫療費用方面,A、C兩案例平均誤差費用比率約為14%優於B案例的24.46%,代表有較佳的評估表現。本研究可提供醫療人員做為臨床輔助評估住院日與醫療費用之參考,有效提升醫療服務品質與效率,避免不必要之浪費,且對醫療機構於資源配置上有實質上的助益。


The Benign Prostatic Hyperplasia (BPH), is one of the common aged male urinary tract diseases. Usually applying the radical prostatectomy can relieve of the symptoms of BPH. The prostate cancer ranks the top 7th for domestic death rates arising from cancers and its death rate is about 2.34%. In case of conducting the radical prostatectomy in the preliminary stage, the curative ratio is pretty high. With the population remains in a state of aging and the ever-increasingly rising number of prostate patients, the corresponding consumed medical treatment resources and costs are tremendous. One of the top priority medical issues shall be show to effectively evaluate the length of stay and the relevance the medical treatment costs and overall medical resource planning.
It has been conducted reference document collection and in-depth interviews with the physicians for summarizing all the relevant influential variables in conjunction with regarding the prostate surgery patients in the database of Bureau of National Health Insurance from years 2006 to 2009. The portfolios of various artificial intelligence algorithm, including C5.0 Decision Tree, Back Propagation Neural Network (BPN), Support Vector Machines (SVM), Case Based Reasoning (CBR) have been applied in this research for evaluating the length of stay after surgery and total medical treatment costs. The results of length of stay, in the case A, the accuracy and area under the ROC curve of all individual models are all maintained at least 78% and a value of 0.7. In the case B, the SVM and the BPN combined with SVM models demonstrate better analysis performance. In the case C, the C5.0 combined with SVM model yields a sensitivity ratio of only 24%, which symbolizes incompetence for making effective authentication on the cases. In terms of expenditure, the average error of expenditure for case A and case C are both about 14%, much better than the 24.46% yielding from the case B. It symbolizes a better performance. This study can providing medical professionals auxiliary reference basis for evaluating length of stay and clinical diagnosis and for substantial enhancement of medical service quality and efficiency and for avoidance of unnecessary waste and assistance for medical institutions in reaching practical benefits for medical resource appropriation. Meanwhile, the research results can also provide the Bureau of National Health Insurance some reference basis for making disbursement policy improvement measures and making the national health insurance act more comprehensive.


摘要 i
Abstract ii
誌謝 iv
目錄 v
表目錄 ix
圖目錄 xii
第一章 緒論 1
1.1 研究背景與動機 1
1.2 研究重要性 2
1.3 研究目的 2
1.4 研究範圍與限制 3
1.5 研究流程 3
第二章 文獻探討 6
2.1 前列腺簡介與相關文獻探討 6
2.1.1 前列腺腫瘤 7
2.1.2 臨床診斷 9
2.1.3 臨床治療 11
2.1.4 前列腺手術健保支付內容 14
2.1.5 前列腺腫瘤相關文獻 15
2.2 住院日與醫療費用相關文獻探討 16
2.3 決策樹相關應用 18
2.3.1 決策樹簡介 18
2.3.2 決策樹分類模式 19
2.3.3 決策樹應用於醫療領域 20
2.4 類神經網路相關應用 21
2.4.1 類神經網路簡介 21
2.4.2 類神經網路基本架構 21
2.4.3 類神經網路運作模式 23
2.4.4 倒傳遞類神經網路模式 24
2.4.5 類神經網路應用於醫療領域 25
2.5 支持向量機相關應用 26
2.5.1 支持向量機簡介 26
2.5.2 支持向量機原理 26
2.5.3 支持向量機應用於醫療領域 28
2.6 案例式推理 29
2.6.1 案例式推理簡介 29
2.6.2 案例式推理運作模式 30
2.6.3 案例式推理之優缺點與特性 31
2.6.4 案例式推理應用於醫療領域 32
2.7 績效評估 33
2.7.1 混亂矩陣 33
2.7.2 K疊交互驗證 34
2.7.3 接收操作特徵曲線 34
第三章 研究方法 36
3.1 研究架構 36
3.2 研究資料 39
3.3 資料處理 40
3.4 變數篩選 40
3.5 變數定義 41
3.5.1 依變項 41
3.5.2 自變項 41
3.5.3 變數編碼 43
3.6 模型與系統建構 45
3.6.1 模型建構流程 45
3.6.2 系統建構流程 48
3.7 模型績效評估 50
3.7.1 K疊交互驗證 50
3.7.2 模型綜合評估 51
3.8 模型差異統計方法驗證 52
第四章 研究結果分析 54
4.1 案例資料敘述統計 54
4.2 C5.0決策樹實驗分析 55
4.2.1 最佳參數設定 55
4.2.2 決策樹分類規則 55
4.2.3 K疊交互驗證 56
4.3 倒傳遞類神經網路實驗分析 57
4.3.1 神經元編碼 57
4.3.2 最佳參數設定 57
4.3.3 K疊交互驗證 60
4.3.4 權重值分析 61
4.4 支持向量機實驗分析 62
4.4.1 最佳參數設定 62
4.4.2 K疊交互驗證 63
4.5 C5.0決策樹結合支持向量機之實驗分析 64
4.5.1 變數篩選 64
4.5.2 最佳參數設定 64
4.5.3 K疊交互驗證 65
4.6 倒傳遞類神經網路結合支持向量機之實驗分析 67
4.6.1 變數篩選 67
4.6.2 最佳參數設定 67
4.6.3 K疊交互驗證 68
4.7 案例式推理系統建構 70
4.7.1 預設權重值 70
4.7.2 住院日評估系統之操作程序與使用介面 71
4.7.3 醫療費用評估系統 76
4.7.4 評估系統之驗證 77
4.8 案例模型綜合比較 79
4.8.1 案例A 79
4.8.2 案例B 82
4.8.3 案例C 84
第五章 結論與建議 87
5.1 研究結論 87
5.1.1 研究發現與探討 87
5.1.2 研究貢獻 89
5.2 未來建議 90
參考文獻 91
附錄A 98
附錄B 100
附錄C 106
附錄D 110
附錄E 113
Extended Abstract 119
簡歷 124



1.中央健康保險局,取自http://www.nhi.gov.tw/,參考日期:2011/04/13。
2.內政部統計處,取自http://www.moi.gov.tw/stat/,參考日期:2011/04/12。
3.王人澍、張寶源、熊雅意 (2008),「應用決策樹理論於中醫辨證-以慢性咳嗽為例」,中西整合醫學雜誌,10 卷,2 期,頁25-33。
4.王庭荃、陳長興 (2008),「醫師年資、醫療服務量與消化性潰瘍治療效果之相關研究」,台灣衛誌,27卷,1期,頁57-66。
5.全民健康保險研究資料庫,取自http://w3.nhri.org.tw/nhird/index.php,參考日期:2011/03/25。
6.行政院經濟建設委員會,取自http://www.cepd.gov.tw/,參考日期:2011/04/12。
7.行政院衛生署,取自http://www.doh.gov.tw/CHT2006/index_populace.aspx,參考日期:2011/04/13。
8.李俊宏、古清仁 (2010),「類神經網路與資料探勘技術在醫療診斷之應用研究」,工程科技與教育學刊,7卷,1期,頁154-169。
9.林明傑、董子毅 (2008),「危險評估中ROC曲線在預測2×2表上與敏感度及特異度之關係」,亞洲家庭暴力與性侵害期刊,4卷,2期,頁64-74。
10.林嘉禾、林光明、蘇世斌 (2011),「攝護腺肥大症之雷射手術治療」,家庭醫學與基層醫療, 26卷,2期,頁83-86。
11.邱志州、簡德年 (2002),「整合類神經網路與分類迴歸樹在建構企業危機診斷模式上之應用」,中華管理評論學報,5 卷,4 期,頁55-82。
12.苑守慈、王詩翔、張瑋倫 (2008),「智慧型老人居家照護-以替換調適模式之案例式推理為基礎」,資訊管理學報, 15卷,2期,頁1-25。
13.范牧蘭、楊瓊珠、劉崇祥等 (2008),「基層醫療診所病患流失之預警-倒傳遞神經網路之運用」,醫務管理期刊,9卷,4期,頁286-298。
14.張偉斌、吳振龍、紀櫻珍等 (2006),「案例推理法增進乳癌診斷率」,北市醫學雜誌 ,3卷,11期,頁78-84。
15.陳銘樹、王建智、王麗雁 (2008),「應用決策樹演算法以探究高科技員工潛在的糖尿病之危險因子」,健康管理學刊,6 卷,2 期,頁135-146。
16.彭奕欣、姚敏瓊、黃秋宗 (2009),「急性心肌梗塞醫療品質與費用的探討」,安泰醫護雜誌,15卷,2期,頁97-110。
17.游榮聖 (2010),「針灸治療前列腺肥大的探討」,中醫內科醫學雜誌, 8卷,1期,頁6-9。
18.黃竫棻、洪信嘉 (2008),「肝癌患者醫療資源使用長期縱貫分析」,醫管期刊,9卷,4期,頁243-254。
19.楊登凱、簡國龍 (2009),「良性前列腺肥大的診斷與治療」,台灣醫學,13卷,6期,頁625-631。
20.葉怡成 (2006),類神經網路模式應用與實作,儒林圖書公司,台北。
21.葉怡成、吳沛儒 (2009),「基於類神經網路與交叉驗證法之田口方法」,品質學報,16卷,4期,頁261-279。
22.葉明憲、黃治文、葉家舟等 (2009),「應用經絡能量的乳癌分析」,臺灣中醫臨床醫學雜誌 ,15卷,3期,頁229-235。
23.廖述賢、溫志皓 (2009),資料採礦與商業智慧,雙葉書廊,台北。
24.劉詩彬 (2005),「良性前列腺增生」,台灣醫學,9 卷,4期,頁518-525。
25.劉嘉年 (2009),「提供者服務量與膀胱癌病患進行膀胱根除術之結果分析」,台灣衛誌,28卷,3期,頁184-192。
26.蔡宜秀、孫明輝、洪麗珍等 (2008),「影響某區域醫院缺血性腦中風初患病患住院醫療費用之相關因素」,中台灣醫學雜誌,13卷,3期,頁143-151。
27.蔡蕙如、柯明中、張偉斌等 (2007),「應用類神經網路與分類迴歸樹於肝癌分類模式」,北市醫學雜誌,4 卷,8 期,頁658-667。
28.羅華強 (2001),類神經網路Matlab的應用,清蔚出版社,新竹。
29.嚴玉華、許碩芬、方世杰等 (2009),「總額支付制度下個別醫院醫療費用預測模型建立-以某教學醫院為例」,澄清醫護管理雜誌,5卷,2期,頁15-21。
30.攝護腺保健資訊網,取自http://careprostate.com/index.php,參考日期:2011/03/24。
31.Aamodt, A., & Plaza, E. (1994). “Case-based Reasoning: Foundational Issues Methodological Variations, and System Approaches”, AI Communications, Vol. 7, No. 1, pp.39-59.
32.Astrom, F., & Koker, R. (2011). “A parallel neural network approach to prediction of Parkinson’s Disease”, Expert Systems with Applications, Vol. 38, No. 10, pp.12470-12474.
33.Begg, C.B., Riedel, E.R., Bach, P.B., et al. (2002). “Variations in morbidity after radical prostatectomy”, New England Journal of Medicine, Vol. 346, No. 1, pp.1138-1144.
34.Berry, M., & Linoff, G. (1999). Mastering Data Mining, the Art & Science of Cutomer Relation Management, John Wiley, New York.
35.Budaus, L., Morgan, M., Abdollah, F. et al. (2011). “Impact of annual surgical volume on length of stay in patients undergoing minimally invasive prostatectomy: A population-based study”, European Journal of Surgical Oncology, Vol. 37, No. 5, pp.429-434.
36.Breiman, L., Friedman, J., Olshen, R., et al. (1984). Classification and Regression Trees, Wadsworth, Belmont, CA.
37.Charlson, M.E., Pompei, P., Ales, K.L., et al. (1987). “A new method for classifying prognostic comorbidity in a longitudinal studies: Development and validation”, Journal of Chronic Diseases, Vol. 40, No. 5, pp.373-383.
38.Chen, C.S. (2008). “Comparison of ICUD, AUA and EAU Treatment Guidelines for Male LUTS/BPH”, Incontinence & Pelvic Floor Disorders, Vol. 2, No. 1, pp.11-16.
39.Choudhry, K.N., Fletcher, R.H., Soumerai, S.B. (2005). “Systematic Review: The Relationship between Clinical Experience and Quality of Health Care”, Annals of Internal Medicine, Vol. 142, No. 4, pp.260-273.
40.Chulte, C.G., Panser, L.A., Girman, C.J., et al. (1993). “The prevalence of prostatism: a population based survey of urinary symptoms”, The Journal of Urology, Vol. 150, No. 1, pp.85-89.
41.Cortes, C., & Vapnik, V. (1995). “Support-vector networks”, Machine Learning, Vol. 20, No. 3, pp.273-297.
42.Das, R. (2010). “A comparison of multiple classification methods for diagnosis of Parkinson disease”, Expert Systems with Applications, Vol. 37, No. 2, pp.1568-1572.
43.Demsar, J. (2006). “Statistical comparisons of classifiers over multiple data sets”, Journal of machine learning research, Vol. 7, No. 1, pp.1-30.
44.Deyo, R.A., Cherkin, D.C., Ciol, M.A. (1992). “Adapting a clinical comorbidity index for use with ICD-9-CM administrative databases”, Journal of Clinical Epidemiology, Vol. 45, No. 6, pp.613-619.
45.Dogantekin, E., Dogantekin, A., Avci, D. (2011). “An expert system based on Generalized Discriminant Analysis and Wavelet Support Vector Machine for diagnosis of thyroid diseases”, Expert Systems with Applications, Vol. 38, No. 1, pp.146-150.
46.Er, O., Yumusak, N., Temurtas, F. (2010). “Chest diseases diagnosis using artificial neural networks”, Expert Systems with Applications, Vol. 37, No. 12, pp.7648-7655.
47.Fei, S.W. (2010). “Diagnostic study on arrhythmia cordis based on particle swarm optimization-based support vector machine”, Expert Systems with Applications, Vol. 37, No. 10, pp.6748-6752.
48.Hanson, K., & Thornton, D. (1999). Static 99: Improving actuarial risk assessments for sex offenders, Department of the Solicitor General Canada, Ottawa, Canada.
49.Hartigan, J.A. (1975). Clustering Algorithms, John Wiley, New York.
50.Harvard University, “Harvard experts discuss surgical options for benign prostatic hyperplasia”, available at http://www.harvardprostateknowledge.org/ retrieved May 12, 2011.
51.Hollenbeck, B., Dunn, R.L., Miller, D., et al. (2007). “Volume-based referral for cancer surgery: Informing the debate”, Journal of Clinical Oncology, Vol. 25, No. 1, pp.91-96.
52.Hong Kong Urological Association, “Benign Prostatic Hyperplasia”, available at http://www.hkua.org/healthinfo01.php retrieved May 01, 2011.
53.Hsu, C.W., Chang, C.C., Lin, C.J. (2003). “A Practical Guide to Support Vector Classification Technical Report”, Department of Computer Science and Information Engineering, National Taiwan University. available at http://www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf retrieved May 12, 2011.
54.Hu, J.C., Gold, K.F., Pashos, C.L., et al. (2003). “Role of surgeon volume in radical prostatectomy outcomes”, Journal of Clinical Oncology, Vol. 21, No. 3, pp.401-405.
55.Huang, C.L., Liao, H.C., Chen, M.C. (2008). “Prediction model building and feature selection with support vector machines in breast cancer diagnosis”, Expert Systems with Applications, Vol. 34, No. 1, pp.578-587.
56.Judge, A., Evans, S., Gunnell, D.J., et al. (2007). “Patient outcomes and length of hospital stay after radical prostatectomy for prostate cancer: Analysis of hospital episodes statistics for England”, BJU International, Vol. 100, No. 5, pp.1040-1049.
57.Kreder, H.J., Grosso, P., Williams, J.I., et al. (2003). “Provider volume and other predicators of outcome after total knee arthroplasty: a population study in Ontario”, Canadian Journal of Surgery, Vol. 46, No. 1, pp.15-22.
58.Ku, T.S., Kane, C.J., Sen, S., et al. (2008). “Effects of hospital procedure volume nd resident training on clinical outcomes and resource use in radical etropubic prostatectomy surgery in the Department of Veterans Affairs”, The Journal of Urology, Vol. 179, No. 1, pp.272-278.
59.Kurt, I., Ture, M., Kurum, A.T. (2008). “Comparing performances of logistic regression, classification and regression tree, and neural networks for predicting coronary artery disease”, Expert Systems with Applications, Vol. 34, No. 1, pp.366-374.
60.Liu, C.L., Li, C.C., Yang, C.R. et al. (2011). “Trends in treatment for localized prostate cancer after emergence of robotic-assisted laparoscopic radical prostatectomy in Taiwan”, Journal of the Chinese Medical Association, Vol. 74, No. 4, pp.155-158.
61.Madersbacher, S., Alivizatos, G., Nordling, J., et al. (2004). “EAU 2004 Guidelines on Assessment, Therapy and Follow-Up of Men with Lower Urinary Tract Symptoms Suggestive of Benign Prostatic Obstruction (BPH Guidelines)”, European Urology, Vol. 46, No. 5, pp.547-554.
62.Mitra, R., & Basak, J. (2005). “Methods of Case Adaptation: A Survey”, International Journal of Intelligent Systems, Vol. 20, No. 6, pp.627-645.
63.Pandey, B., & Mishra, R.B. (2009). “Knowledge and intelligent computing system in medicine”, Computers in Biology and Medicine, Vol. 39, No. 3, pp.215-230.
64.Philbin, E.F., McCullough, P.A., Dec, G.W., et al. (2001). “Length of stay and procedure utilization are the major determinants of hospital charges for heart failure”, Clinical Cardiology, Vol. 24, No. 1, pp.56-62.
65.Quinlan, J. R. (1986). “Induction of decision tree”, Machine Learning, Vol. 1, No. 1, pp.81-106.
66.Quinlan, J. R. (1996). “Improved use of continuous attributes in C4.5”, Journal of Artificial Intelligence Research, Vol. 4, No. 1, pp.77-90.
67.Rahman, R.M., Hasan, F.R. (2011). “Using and comparing different decision tree classification techniques for mining ICDDR, B Hospital Surveillance data”, Expert Systems with Applications, Vol. 38, No. 9, pp.11421-11436.
68.Schank, R.C., & Abelson, R.P. (1977). Scripts, Plans, Goals and Understanding, Erlbaum, Hillsdale, Mahwah, NJ.
69.Siu, W., Daignault, S., Miller, D., et al. (2008). “Understanding differences between high and low volume hospitals for radical prostatectomy”, Urologic Oncology, Vol. 26, No. 3, pp.260-265.
70.Soohoo, N.F., Zingmond, D.S., Lieberman, J.R., et al. (2006). “Primary total knee arthroplasty in California 1991 to 2001: does hospital volume affect outcomes”, The Journal of Arthroplasty, Vol. 21, No. 2, pp.199-205.
71.Su, C.T., & Yang, C.H. (2008). “Feature selection for the SVM: An application tohypertension diagnosis”, Expert Systems with Applications, Vol. 34, No. 1, pp.754-763.
72.Sugihara, T., Yasunaga, H., Horiguchi, H. (2011). “Impact of Hospital Volume and Laser Use on Postoperative Complications and In-Hospital Mortality in Cases of Benign Prostate Hyperplasia”, The Journal of Urology, Vol. 185, No. 6, pp.2248-2253.
73.Ting, S.L., Wang, W.M., Kwok, S.K., et al. (2010). “RACER: Rule-Associated Case-based Reasoning for supporting General Practitioners in prescription making”, Expert Systems with Applications, Vol. 37, No. 12, pp.8079-8089.
74.Vincent, K.R., Vincent, H.K., Lee, L.W., et al. (2006). “Outcomes in total knee arthroplasty patients after inpatient rehabilitation: influence of age and gender”, American Journal of Physical Medicine Rehabilitation, Vol. 85, No. 6, pp.482-489.
75.Woods, K., & Bowyer, K.W. (1997). “Generating ROC Curves for Artificial Neural Networks”, IEEE Transactions on Medical Imaging, Vol. 16, No. 3, pp.329-337.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 3. 王人澍、張寶源、熊雅意 (2008),「應用決策樹理論於中醫辨證-以慢性咳嗽為例」,中西整合醫學雜誌,10 卷,2 期,頁25-33。
2. 4. 王庭荃、陳長興 (2008),「醫師年資、醫療服務量與消化性潰瘍治療效果之相關研究」,台灣衛誌,27卷,1期,頁57-66。
3. 9. 林明傑、董子毅 (2008),「危險評估中ROC曲線在預測2×2表上與敏感度及特異度之關係」,亞洲家庭暴力與性侵害期刊,4卷,2期,頁64-74。
4. 12. 苑守慈、王詩翔、張瑋倫 (2008),「智慧型老人居家照護-以替換調適模式之案例式推理為基礎」,資訊管理學報, 15卷,2期,頁1-25。
5. 13. 范牧蘭、楊瓊珠、劉崇祥等 (2008),「基層醫療診所病患流失之預警-倒傳遞神經網路之運用」,醫務管理期刊,9卷,4期,頁286-298。
6. 14. 張偉斌、吳振龍、紀櫻珍等 (2006),「案例推理法增進乳癌診斷率」,北市醫學雜誌 ,3卷,11期,頁78-84。
7. 15. 陳銘樹、王建智、王麗雁 (2008),「應用決策樹演算法以探究高科技員工潛在的糖尿病之危險因子」,健康管理學刊,6 卷,2 期,頁135-146。
8. 16. 彭奕欣、姚敏瓊、黃秋宗 (2009),「急性心肌梗塞醫療品質與費用的探討」,安泰醫護雜誌,15卷,2期,頁97-110。
9. 19. 楊登凱、簡國龍 (2009),「良性前列腺肥大的診斷與治療」,台灣醫學,13卷,6期,頁625-631。
10. 21. 葉怡成、吳沛儒 (2009),「基於類神經網路與交叉驗證法之田口方法」,品質學報,16卷,4期,頁261-279。
11. 22. 葉明憲、黃治文、葉家舟等 (2009),「應用經絡能量的乳癌分析」,臺灣中醫臨床醫學雜誌 ,15卷,3期,頁229-235。
12. 24. 劉詩彬 (2005),「良性前列腺增生」,台灣醫學,9 卷,4期,頁518-525。
13. 25. 劉嘉年 (2009),「提供者服務量與膀胱癌病患進行膀胱根除術之結果分析」,台灣衛誌,28卷,3期,頁184-192。
14. 26. 蔡宜秀、孫明輝、洪麗珍等 (2008),「影響某區域醫院缺血性腦中風初患病患住院醫療費用之相關因素」,中台灣醫學雜誌,13卷,3期,頁143-151。
15. 27. 蔡蕙如、柯明中、張偉斌等 (2007),「應用類神經網路與分類迴歸樹於肝癌分類模式」,北市醫學雜誌,4 卷,8 期,頁658-667。