跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.172) 您好!臺灣時間:2025/09/10 06:05
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:許哲源
研究生(外文):Che-Yuan Hsu
論文名稱:無電鍍複合鍍製備Ni-Al2O3太陽能選擇性複合吸收膜之性質探討
論文名稱(外文):The study of Ni-Al2O3 solar spectally selective composite absorbers manufactured by electroless composite coating technology
指導教授:蔡定侃
學位類別:碩士
校院名稱:國立虎尾科技大學
系所名稱:材料科學與綠色能源工程研究所
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:81
中文關鍵詞:無電鍍複合鍍太陽能選擇性吸收膜吸收率熱輻射率
外文關鍵詞:electroless composite coating technologyspectrally selective absorbersabsorptancethermal emittance
相關次數:
  • 被引用被引用:0
  • 點閱點閱:435
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究利用無電鍍複合鍍在鋁基材上製備Ni-Al2O3太陽光譜選擇性吸收膜(spectrally selective absorbers),並利用溶凝膠法(sol-gel)製備抗反射層,討論電介質(Al2O3)尺寸與含量、吸收層厚度以及雙層吸收膜對於太陽光吸收率(α)、熱輻射率(ε)的影響、並探討抗反射層對於吸收性之改善。使用SEM觀察吸收膜表面形貌及Al2O3粒子之分佈型態,並測量吸收層厚度,紫外光/可見光/近紅外光分光光譜儀(UV-Vis-NIR Spectrometer)量測在300nm~2500nm波長範圍之反射率,複立葉紅外線光譜儀(Fourier transform infrared spectrometer. FTIR)分析2500nm~10000nm波長範圍之反射率,所得之反射率經由公式算出吸收率與熱輻射率。當Al2O3粒子粒徑為70nm時,可以得到較佳之光學性質;當吸收層厚度為0.4μm、Al2O3含量從6 vol.% 增加到25 vol.%,α從0.50增加至0.75,ε從0.06增加至0.15;當Al2O3含量為25 vol.%時,吸收層厚度從0.4 μm增加到4.9 μm,α則從0.75減少至0.27,ε從0.15降為0.03。利用雙層不同Al2O3含量(9 vol.%與25 vol.%)之吸收膜可以得到α為0.77,ε為0.09之吸收膜性質,在此雙層吸收膜上塗上一層TiO2抗反射層,α從0.77提升到0.90,而ε則維持在0.09;Ni-Al2O3複合吸收膜經過72hr之熱穩定性與抗水性測試後,其光學性質並無太大之變化,顯示以無電鍍複合鍍製備ㄒNi-Al2O3太陽光譜選擇性吸收膜具有良好的光學性質與熱穩定性、抗水性。
In this work, the metal-dielectric composite (Ni-Al2O3) solar spectally selective absorbers have been deposited on aluminum substrate using the electroless composite coating technology and the antireflection layers for the absorbers were fabricated by sol-gel method. The effects of the size and content of dielectric (Al2O3), the thickness of absorber, the double absorption layer and the antireflection layer on the absorbance (α) and thermal emittance (ε) of Ni-Al2O3 composite solar selective absorber were studied. The surface morphology of absorber and dispersion of Al2O3 in absorber were observed by scanning electron microscopy (SEM). The measurement of reflectance in the wavelength range 300-2500 nm was carried out by UV-VIS-NIR Spectrometer and that in the wavelength range 2500-10000nm were performed by Fourier transform infrared spectrometer (FTIR) . The Al2O3 with 70nm in absorber has better optical properties than that with 300nm.The α is increasing from 0.5 to 0.75 and the ε is increasing from 0.06 to 0.15 , as the Al2O3 content in absorber is increasing from 6 vol.% to 25 vol.% . The α is decreasing from 0.75 to 0.27 and the ε is decreasing from 0.15 to 0.03, as the thickness of absorber is increasing from 0.4 to 4.9 μm. The α and ε of the double absorption layer sample with 9 vol.% and 25 vol.% Al2O3 absorbers was 0.77 and 0.09 , respectively . The TiO2 antireflection layer is useful to promote the α from 0.77 to 0.90. The Ni-Al2O3 composite solar spectally selective absorbers with TiO2 antireflection layer after thermal stability test and humidity test for 72hr were preserved almost the same optical properties as the as-deposited samples.
目錄      
中文摘要 ……………………………… i
英文摘要 ……………………………… iii
致謝 ……………………………… v
目錄 ……………………………… vi
表目錄 ……………………………… viii
圖目錄 ………………………………… ix
第一章 緒論………………………… 1
第二章 文獻探討…………………… 4
2.1 太陽能選擇性吸收膜………………………………… 4
2.1.1 選擇性吸收膜之光學特性…………………………… 4
2.1.2 選擇性吸收膜之性質測量…………………………… 6
2.1.3 太陽能選擇性吸收膜之分類………………………… 9
2.1.4 金屬–電介質複合吸收膜的製備方式……………… 15
2.2 無電鍍複合鍍………………………………………… 18
2.2.1 無電鍍複合鍍原理…………………………………… 18
2.2.2 表面活性劑在無電鍍複合鍍中的應用原理………… 19
2.2.3 無電鍍複合鍍鍍液穩定性…………………………… 20
第三章 實驗步驟與分析方法………………………… 22
3.1 實驗製程……………………………………………… 22
3.1.1 試片前處理…………………………………………… 24
3.1.2 太陽能選擇性吸收膜之製備………………………… 24
3.1.3 抗反射層之製備……………………………………… 24
3.2 光學性質分析………………………………………… 25
3.2.1 吸收率(α)之量測………………………………… 25
3.2.2 熱輻射率(ε)之量測.………………………… 25
3.3 吸收膜之觀察分析….…………………………… 25
3.3.1 試片表面形貌與截面之觀察..…………………… 25
3.3.2 表面粗糙度之觀察.……………………………… 25
3.4 試片環境測試.…………………………………… 26
3.4.1 熱穩定測試.……………………………………… 26
3.4.2 抗水性測試.……………………………………… 26
3.5 實驗流程.………………………………………… 27
第四章 實驗結果與討論……………………………………… 33
4.1 Al2O3粒子粒徑對於吸收膜之光學性質影響分析… 33
4.2 Al2O3含量對於吸收膜之光學性質影響分析……… 42
4.3 吸收膜厚度對於吸收膜之光學性質影響分析.……… 47
4.4 雙層吸收膜之光學性質分析.………………………… 53
4.5 AR Layer對於吸收膜之光學性質影響……………… 57
4.5.1 不同AR Layer成份對於吸收膜之光學性質影響… 57
4.5.2 不同AR Layer厚度對於吸收膜之光學性質影響… 62
4.6 吸收膜之環境測試分析…………………………… 66
4.6.1 熱穩定性測試.………………………………………… 66
4.6.2 抗水性測試………………………………………… 70
第五章 結論…………………………………………………74
參考文獻 ………………………………………………………… 76
1.王革華,新能源概論, 五南文化出版 (2008).
2.P. Oelhafen, A. Schüler, Solar Energy 79(2005)110.
3.Qi.Chu Zhan "Recent progress in high temperature solar selective coatings.",Solar Energy Materials & Solar Cells,(2000).
4.黃秉鈞「生生不息的再生能源」,科學發展學報,(2002).
5.C E Kennedy. Review of Mid. to High. Temperature Solar Selective Absorber Materials. National Renewable Energy Laboratory,2002, 7: 2.
6.O. P. Agnihotri, B. K. Gupts, Solar Selective Surfaces, Wiley, New York, 1981.
7.G. A. Niklasson and C. G. Granqvist, in Materials Science for Solar Energy Conversion Systems, C. G. Granqvist, Ed. (Pergamon, Oxford, UK, 1991) .
8.T. Tesfamichael, S. Andersson, T. Chibuye, and E. Wäckelgård, “Study of oxidation kinetics for metal.dielectric films using IR optical measurements,” C. M. Lampert, C. G. Granqvist, M. Grätzel, S. K. Deb, eds., SPIE, 3138, (1997) 146.
9.Enrique Barrera, Tomas Viveros, Ascencion Montoya, et al . Titanium . tin oxide protective films on a black cobalt photothermal absorber. Solar Energy Materials and Solar Cells, 57 (1999) 127.
10.G.A. Niklasson, C.G. Granqvist. Ultrafine nickel particles for photothermal conversion of solar energy [J]. J. Appl. Phys., 1979, 50(8): 5500.
11.Saher Shawk, Sana Mikhail. Black Nickel coating for solar collectors. Materials and Manufacturing Processes, 2000, 15 (5): 737.
12.Mo′nica Lira-Cantu , Solar Energy Materials & Solar Cells 87 (2005) 685.
13.K. Hirotan, K. Kanatani, M. Osumi, Solar Engery 22(1979)535.
14.T. Möller, D. Hönicke. Solar selective properties of electrodeposited thin layers on aluminium. Energy Mater. Solar Cells, 54 (1998) 397.
15.S. Süzer, F. Kadirgan. et al. Spectroscopic characterization of Al2O3.Ni selective absorbers for solar collectors [J]. Energy Mater. Solar Cells, 52 (1998) 55.
16.M. Farooq, A. A. Green, M. G. Hutchins, Solar Engery Mater. Solar Cells 54(1998)67.
17.Q. C. Zhang, Solar Engery Mater. Solar Cells 52(1998)95.
18.A Berghaus, A Djahanbakhsh, L K Thomas. Characterisation of CVD . tungsten . alumina cermets for high – temperature selective absorbers. Solar Energy Materials and Solar cells, 54 (1998) 19.
19.G. E. Carver, E. E. Chain, J. Physique, Collogue C1. Suppl. 1, 42, C1.203(1981).
20.T Tesfamichael, A Roos. Treatment of antireflection on tin oxide coated anodized aluminum selective absorber surface. Solar Energy Materials and Solar Cells, 54 (1998) 213.
21.S. Süzer, F. Kadirgan, H. M. Söhmen, A. J. Wetherilt, I. E. Türe, Solar Engery Mater. Solar Cells 52(1998)55.
22.T. Tesfamichael, W. E. Vargas, E. Wäckelgård, G. A. Niklasson, Solar Engery Mater. Solar Cells 55(1998)251.
23.J. Vince, A. Surca.Vuk, O. Opara.Krasovec, B. Orel, M. Kohl, M. Heck, Solar Engery Mater. Solar Cells 79(2003)313.
24.T. Boström, E. Wäckelgård, G. Westin, Solar Engery Mater. Solar Cells 84(2004)183.
25.T. Boström, E. Wäckelgård, G. Westin, Solar Engery Mater. Solar Cells 74(2003)497.
26.Valery M. Dubin , “Selective Electroless Ni-Cu(P) Deposition for Via Hole Filling and Conductor Pattern Cladding in VLSI Multilevel Interconnection Structure” , J. Electrochem. Soc. , Vol. 139 , No. 2 , (1992) 633.
27.V. M. Dubin , S. D. Lopatin , “Selective Electroless Ni Deposition on a TiW Underlayer for Integrated Circuit Fabrication” , Thin Solid Films , 226 , (1993) 87.
28.G..O. Mallory, J.B. Hajdu, “Electroless Plating: Fundamentals and Applications”, AESF, Orlando, Florida, USA, 1990.
29.沈輝, 太陽能光電技術, 五南文化出版,(2008).
30.C. Seiffert, T. Eisenhammer, M. Lazarov, R. Sizmann, and R. Blessing, “Test facility for solar selective materials,” ISES Solar World Congress, 2, (1993) 321.
31.J. A. Duffie, W. A. Beckman, Solar Engineering of Thermal Processes, Wiley.Interscience, New York, 1991.
32.J. Richard Christman, Fundamentals of Solid State Physics, (October 27, 1987).
33.O.P. Agnihotri and B.K.Gupta, Solar Selective Surfaces, (Wiley.Interscience Pub, New York, NY, 1981), p.126.
34.Q C Zhang, K Zhao, B C Zhang, et al. New cermet solar coatings for solar thermal electricity applications. Solar Energy, 1998, 64(1.3): 109.
35.玻恩﹐M.、E.沃耳夫著﹐楊葭蓀等譯校﹕《光學原理》﹐上冊), 電子工業出版社(2005).
36.J. Vince, A. Surca.Vuk, O. Opara.Krasovec, B. Orel, M. Kohl, M. Heck, Solar Engery Mater. Solar Cells 79(2003)313.
37.M. Nishimura, T. Ishiguro, Mater. Trans. 43(2002)2073.
38.M. Lazarov, P. Raths, H. Metzger, W. Spirkl, J. Applied Phy. 77(1995)2133.
39.Claes G. Granqvist, Volker Wittwer. Materials for solar energy conversion: An overview. Energy Mater. Solar Cells, 54 (1998) 39.
40.M. Kussmaul, M. J. Mirtich, and A. Curren, “Ion beam treatment of potential space materials at the NASA Lewis Research Center,” Surface & Coatings Technol. 51, 299 (1992).
41.J. J. Cuomo, J.F. Ziegler, and J.M. Woodall, “A new concept for solar energy thermal conversion,” Appl. Phys. Letters, 26, 10, (1975) 557.
42.R. B. Bannerot, “Moderately concentrating (not focusing) solar energy collectors,” S. L. Sargent, ed., Proceedings of the Workshop on Solar Collectors for Heating and Cooling of Buildings, (ASME, New York, NY, 1974) p. 306.
43.M. Koltun, G. Gukhman, A. Gavrilina, Solar Engery Mater. Solar Cells 33(1994)41.
44.E. Wäckelgård, Solar Engery Mater. Solar Cells 56(1998)35
45.G. E. McDonald, Solar Engery 17(1975)119.
46.A.R. Shashikala, A.K. Sharma., Solar Energy Materials & Solar Cells., 91 (2007) 629.
47.Vishal Saxena, R. Uma Rani., Surface & Coatings Technology., 201 (2006) 855.
48.Mo′ nica Lira.Cantu′, Angel Morales Sabiob, Solar Energy Materials & Solar Cells 87 (2005) 685.
49.Vasudevan N., William Grips V.K., Rajagopal I., Surf. Technol., 14, (1981) 119.
50.May P.O., Inal O.T., Guindiler I.H., Sol. Energy Mater., 9, (1983) 253.
51.Visitserngtrakul S., Sol. Energy Mater., 21, (1990), 1
52.William Grips V.K., Rajagopal I., Laxmeshwar B., Metal Mater. Process., 5, (1994) 269.
53.Jhon S., Nagarani N., Rajendran S., Sol. Energy Mater., 22, (1991) 293.
54.Barrera E., Gonzalex I., Viversos T., Sol. Energy Mater., 51, (1998) 69.
55.Saher Shawk, Sana Mikhail. Black Nickel coating for solar collectors. Materials and Manufacturing Processes, 2000, 15 (5): 737.
56.T Tesfamichael, A Roos. Treatment of antireflection on tin oxide coated anodized aluminum selective absorber surface. Solar Energy Materials and Solar Cells, 54 (1998) 213.
57.H. S. Varol, A. Hinsch, Solar Engery Mater. Solar Cells 40(1996)273.
58.M. Mwamburi, E. Wäckelgård, A. Roos, Thin Solid Films 374(2000)1.
59.G. E. Carver, E. E. Chain, J. Physique, Collogue C1. Suppl. 1, 42, C1.203(1981).
60.A. Berghaus, A. Djahanbakhsh, L K Thomas. Characterisation of CVD . tungsten . alumina cermets for high . temperature selective absorbers. Solar Energy Materials and Solar cells, 54 (1998) 19.
61.T. Möller, D. Hönicke. Solar selective properties of electrodeposited thin layers on aluminium. Energy Mater. Solar Cells, 54 (1998) 397.
62.S. Süzer, F. Kadirgan. et al. Spectroscopic characterization of Al2O3.Ni selective absorbers for solar collectors [J]. Energy Mater. Solar Cells, 1998, 52: 55.
63.M. Adsten, R. MJoerger, K. Jäyyendahl, E. Wäckelgård, Solar Engery 68(2000)325.
64.Gelin, T. Boström, E. Wäckelgård, Solar Engery 77(2004)115.
65.Farooq,M. O,Green A A,Huchins M G . Solar Energy Materials & Solar Cells.54( 1998) 67.
66.Zhang Qi chu, Solar Energy Materials & Solar Cells, 45(1997) 65.
67.J. Vince, A. Surca.Vuk, O. Opara.Krasovec, B. Orel, M. Kohl, M. Heck, Solar Engery Mater. Solar Cells 79(2003)313.
68.T. Boström, E. Wäckelgård, G. Westin, Solar Engery Mater. and Solar Cells 84(2004)183.
69.Alexander S Mukasyan, Dynamics of structure formation during electroless plating of thin metal.ceramic composite membranes, (1998).
70.F. N. Rhines, “Phase Diagrams in Metallurgy: Their Development and Applications”,1980,New York.
71.Mo′ nica Lira.Cantu′, Solar Energy Materials & Solar Cells, 87 (2005) 685.
72.C. A. Arancibia.Bulnes, C. A. Estrada, and J. C. Ruiz.Suárez, “Solar absorptance and thermal emittance of cermets with large particles,” J. Phys. D: Appl. Phys., 33, (2000) 248.
73.Tobias K. Boström, Solar Energy Materials & Solar Cells, 84 (2004) 183.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊