跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.41) 您好!臺灣時間:2026/01/13 16:39
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃惠玲
研究生(外文):Hui-Ling Huang
論文名稱:膳食油脂與clofibrate改變大鼠鐵代謝及其相關蛋白質表現
論文名稱(外文):Influence of Dietary Lipids and Clofibrate on Iron Homeostasis and the Expression of Iron-Associated Proteins
指導教授:蕭寧馨蕭寧馨引用關係
指導教授(外文):Ning-Sing Shaw
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:農業化學研究所
學門:農業科學學門
學類:農業化學類
論文種類:學術論文
論文出版年:2001
畢業學年度:89
語文別:中文
論文頁數:186
中文關鍵詞:炸油魚油clofibrateIRPs鐵蛋白粒線體 aconitase運鐵蛋白受器
外文關鍵詞:IronOxidized frying oilFish oilClofibrateIRPsFerritinMitochondrial aconitaseTransferrin receptor
相關次數:
  • 被引用被引用:8
  • 點閱點閱:539
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:3
細胞鐵的恆定取決於鐵的獲取(uptake)、鐵的儲存與鐵的利用。鐵的獲取與細胞膜上轉鐵蛋白受器(transferrin receptor, TfR)數目有關,鐵的貯存由鐵蛋白(ferritin)負責,鐵的利用則視各種含鐵酵素的需要而定。已知細胞內鐵貯存與利用相關蛋白質主要由IRPs (iron regulatory protein):IRP1與IRP2 調控,細胞鐵量的高低會改變IRPs的活性,缺鐵時IRPs活性升高,可與鐵蛋白及粒線體aconitase(m-ACO)mRNA 5’端之IRE(iron responsive element)結合而減少兩者之蛋白質表現量,並且與TfR mRNA 3''UTR端之 IREs 結合而穩定其RNA;反之,高鐵時IRP1活性降低,IRP2降解,鐵蛋白及粒線體 aconitase(m-ACO)之表現不再受抑制,而TfR mRNA 穩定性降低。IRP1與IRP2之結構與功能雖相似,但調節機制卻有不同,除了鐵量之外,H2O2及NO等非鐵因子也會改變 IRP1與(或)IRP2的活性,進而對鐵代謝平衡有所影響,由細胞模式得知非鐵因子對IRP1與IRP2有分別調控(differential modulation)現象。
目前對非鐵因子之研究多侷限於細胞株,本研究乃以「動物實驗」探索膳食中可能影響IRPs活性之非鐵因子,研究中選擇炸油、魚油與降血脂藥物clofibrate為膳食因子,分三部份進行實驗。
第一部份以「炸油」為膳食因子,探討15% 炸油餵食時間(2-14天),並比較油脂種類(炸油和新鮮黃豆油)與膳食鐵量(控制組:35 ppm Fe與低鐵組:15 ppm Fe)對肝臟IRPs活性和鐵代謝相關蛋白質之影響。膳食低鐵會顯著降低血紅素濃度(9%),但對血清鐵、TIBC與Tf飽和度均無明顯影響;肝臟鐵濃度顯著降低,IRPs 活性上升,其中IRP1活性升高幅度未達顯著值,IRP2活性卻顯著升高62%,此時鐵蛋白含量已顯著降低,但m-ACO並無明顯下降,同時TfR mRNA含量顯著增加,有利於肝細胞鐵之攝入。
非鐵因子「炸油」餵食顯著降低大鼠血紅素、血清鐵、TIBC與Tf飽和度,且於低鐵因子並存時,鐵指標之降幅更為顯著,有增加貧血之危險性;炸油組降低肝鐵濃度,且於餵飼第2天起顯著活化IRP1,但不影響IRP2 活性,表示膳食炸油對IRP1與IRP2活性影響非同向,此現象與低鐵效應不同,乃炸油組之獨特效應。肝臟鐵蛋白濃度、總量與鐵濃度均受膳食炸油影響而降低,但m-ACO 活性與蛋白質量均顯著增加,鐵蛋白與m-ACO變化非同向表示除了IRPs之外,可能有其他未知訊息或機制參與調控。血清TIBC與肝臟Tf 降低現象一致,推測炸油餵食可能透過降低HNF-4αmRNA而負調控Tf基因表現於轉錄層次,使Tf mRNA減少。15% 炸油餵食的確會改變大鼠鐵代謝與其相關蛋白質表現,當低鐵因子並存時會劣化大鼠鐵營養狀況。
第二部份以「魚油」膳食因子。比較20% 魚油與椰子油結果顯示,肝臟鐵量與鐵蛋白濃度與總量因魚油餵食而顯著降低;15% 魚油與低鐵(15 ppm Fe)雙因子之2×2實驗顯示:魚油組之血清鐵、肝鐵與鐵蛋白總量均顯著降低,與低鐵因子並存時降幅更明顯,大鼠血紅素平均值更顯著減少了8%,表示於低鐵時,膳食魚油介入有劣化大鼠鐵營養狀況之虞。由two-way ANOVA統計結果得知IRP1活性顯著受膳食魚油影響而增加,IRP2活性不變;IRP2活性與TfR mRNA含量僅受低鐵影響而顯著增加;膳食魚油也顯著降低肝臟HNF-4αmRNA,以上魚油餵食引發大鼠肝臟鐵相關分子之變化均類似膳食炸油效應,唯一不同的是魚油組顯著升高血清銅、Cp活性與肝臟Cp mRNA 達50% 以上,不受膳食低鐵影響,此現象之生理意義有待進一步探討。
第三部份以降血脂藥「clofibrate」為非鐵因子,進行鐵量(控制組:35 ppm Fe與低鐵組:15 ppm Fe)和藥物(0 % 與0.5 % clofibrate)雙因子之2×2實驗。結果顯示clofibrate 組顯著降低血清鐵與TIBC約 50%,與肝臟 Tf mRNA表現一致,HNF-4αmRNA 亦顯著降低,推測clofibrate可能透過減少HNF-4α表現量,負調控Tf 基因表現。Clofibrate組之肝臟鐵蛋白含量不變,總鐵量顯著上升;膳食鐵量正常時,IRP1顯著受clofibrate因子影響而增加,與低鐵因子並存時,clofibrate會降低IRP2活性,同時肝臟TfR mRNA 亦顯著減少;m-ACO活性與蛋白質含量因clofibrate餵食而顯著增加一倍以上。Clofibrate處理除了影響鐵之外,也改變銅與鋅營養狀況,血清鋅、銅含量與Cp活性均顯著降低,肝臟Cp mRNA 降幅類似血清Cp活性,另外肝銅有明顯堆積現象,同時測得威爾遜氏症基因(ATP7B)mRNA顯著降低,表示銅自肝臟釋出機制有缺陷致使肝銅堆積。可見clofibrate餵食造成大鼠之鐵與銅代謝異常現象,其中以肝銅堆積最為顯著,以上結果具有臨床參考意義。
歸納低鐵與非鐵因子:炸油、魚油及clofibrate之主要結果如下:
1. 膳食低鐵明顯活化IRP2,顯著增加肝臟TfR mRNA含量,有利於細胞攝入鐵;當clofibrate與低鐵並存時,顯著抑制IRP2活性,同時TfR mRNA含量亦明顯降低,阻止細胞鐵之攝入,可緩和肝鐵堆積之程度。
2. 首次在動物體內証實︰IRP1與IRP2的確有分別調控之現象,肝臟IRP1活性受膳食非鐵因子影響,膳食炸油、魚油與藥物clofibrate均顯著活化IRP1,不影響IRP2活性;綜合膳食因子結果得知IRP2與TfR mRNA有明顯正相關,與鐵蛋白有負相關,因而推測IRP2可能是調控肝臟鐵恆定之主要因子。
3. 膳食炸油與魚油均造成大鼠缺鐵症狀,於膳食低鐵時更明顯,大鼠血紅素、血清鐵與Tf飽和度均顯著下降,肝臟總鐵量與鐵蛋白濃度和總量亦明顯降低。
4. 首次觀察到clofibrate餵食大鼠之肝臟有鐵與銅的堆積,血清Cp與Tf同時降低,兩者之肝臟 mRNA含量亦顯著減少,推測Tf與Cp同時下降可能干擾肝鐵外釋,因而導致血清鐵明顯降低。
綜合本研究結果發現:於大鼠模式中,膳食非鐵因子會影響肝臟鐵代謝及其相關蛋白質表現,而且對IRP1與IRP2有分別調控現象,其中IRP2可能是鐵相關蛋白質改變之主要調控因子,至於非鐵因子造成IRP1顯著活化的生理意義則有待進一步探討。
Intracellular iron homeostasis maintained by iron uptake, functional uses, and storage is performed by transferrin receptor (TfR), iron-containing proteins, and ferritin. Iron regulatory proteins (IRPs: IRP1 and IRP2) are cytoplasmic RNA-binding proteins that are central components of a sensory and regulatory network of iron homeostasis by binding to iron responsive element(s) (IREs) in the 5’ or 3’ untranslated region of ferritin, mitochondrial aconitase (m-ACO) or TfR mRNAs. Although structurally and functionally similar, the two IRPs are different in their model of regulation by numerous factors such as iron, hydrogen peroxide and nitric oxide. Differential modulation of this two IRPs has been proposed in cellular models. We tested this hypothesis in a rat model using dietary treatment of non-iron components: oxidized frying soybean oil, fish oil and hypolipidemic drug clofibrate. Diets were formulated according to AIN-76 but oil content was increased to 15% (w/w). In all the experiments, Wistar rats were used unless specified otherwise. Blood parameters measured included: hemoglobin, serum iron, total iron binding capacity, serum copper and ceruloplasmin (Cp). RNA binding activities of IRP1 and IRP2 were measured using electrophoretic mobility-shift assays. Ferritin and m-ACO proteins were measured using Western blot analysis. Message RNA levels of transferrin, TfR, Cp and Wilson''s disease gene (ATP7B) were measured using Northern blot analysis.
First, in a time-course study of the effect of oxidized frying oil on IRPs, liver IRP1 but not IRP2 activity increased rapidly from day 2 of the treatment. The interaction of oxidized frying oil and dietary iron levels on IRPs were investigated in a 2×2 design, using two iron levels (control at 35 ppm Fe and low iron at 15 ppm Fe) and fresh soybean oil as reference oil for 6-wks feeding. Rats fed the diet of low iron in combination with oxidized oil had the lowest levels of hemoglobin, serum iron and transferrin saturation among the four groups. Based on results of two-way ANOVA, IRP1 activity was significantly increased by oxidized frying oil treatment, IRP2 activity was increased at low dietary Fe level. In response to IRP2, TfR mRNA increased significantly. Hepatic Tf and HNF-4mRNA levels also decreased by oxidized oil. It is concluded that consumption of high level of oxidized frying oil will aggravate iron deficiency in rats fed low iron diet.
Second, the effect of fish oil and coconut oil on liver iron was compared in weanling male Sprague-Dawley rats, and it was observed that liver iron and ferritin concentration decreased significantly in rats fed fish oil. The interaction of fish oil and dietary iron levels on IRPs were investigated in a 2×2 design, using two iron levels (35 ppm and 15 ppm Fe) and fresh soybean oil as reference oil for 6-wks feeding. In rats fed fish oil, serum iron, hepatic iron and ferritin concentration were significantly lower; hepatic IRP1 but not IRP2 activity increased significantly; serum copper content and Cp activity were significanly elevated in consistent with the increase mRNA level of heaptic Cp regardless of iron status.
Finally, the effects and interaction of clofibrate (0.5%) and dietary iron levels (35 ppm and 15 ppm) on proteins related to iron and copper metabolism were studied in a rat model using 2 x 2 experimental design. Wistar rats (6 each group) were assigned to the four diets and fed for 6 wks. In clofibrate-treated rats, serum iron and total iron binding capacity, and serum copper and Cp were significantly reduced by 50% and 20%, respectively, which were consistant with the reduced mRNA levels of transferrin and Cp in the liver. Reduced Tf and Cp may be resposible for impaired hepatic iron release. Hepatic iron and DFO-chelatable iron concentrations were significantly elevated by clofibrate treatment. In clofibrate-treated rats, the RNA-binding activity of IRP1 but not IRP2 were significantly elevated even in the presence of increased iron concentration, indicating differential modulation of IRP1 and IRP2 activities. Hepatic TfR mRNA was increased by low dietary iron but inhibited by clofibrate. The activity and protein of m-ACO were elevated by clofibrate treatment regardless of dietary iron levels. Copper accumulated in the liver of clofibrate-treated rats, which may result from impaired coppper efflux due to reduction of Wilson’s disease gene (ATP7B) mRNA. We conclude that clofibrate treatment altered molecular regulation of iron and copper metabolism in the liver and resulted in impaired iron and copper transport. These observations may have clinical implications.
In summary, dietary factors other than iron affect RNA binding activities of hepatic IRP1 and IRP2. IRP2 but not IRP1 activity increased in response to moderately decreased dietary iron and plays an essential role in the regulation of iron homeostatsis. IRP1 activity was significantly elevated in the liver of rats fed oxidized frying oil or clofibate even though their hepatic iron concentrations were not depleted or higher than that of the normal rats. The physiological implication of this phenomenon is not understood. These results support that differential modulation of hepatic IRP1 and IRP2 activities occurs in vivo.
縮寫對照表 vii
組別代號涵義 viii
中文摘要 I
英文摘要 IV
緒言 VI
第一章 文獻回顧
第一節、細胞鐵平衡之調控
一、IRPs與IRE之特性 1
二、IRPs 作用機制與鐵代謝相關蛋白質 5
三、影響IRPs的因素 9
第二節、飲食模式:炸油 11
第三節、鐵、銅及鋅代謝受過氧化體增殖劑影響
一、過氧化體增殖劑的效應與作用機制 13
二、過氧化體增殖劑改變鐵、銅、鋅平衡 17
第四節、銅與鐵的代謝相關性 19
第一章 材料與方法
第一節、動物飼養與飼料組成 22
第二節、分析項目與方法 23
第三章 膳食炸油對大鼠 IRPs 活性的影響
第一節、實驗 A — 膳食炸油攝食時間對 IRP1 及 ferritin 之影響
一、 實驗設計 43
二、 分析項目 45
三、 結果 45
第二節、實驗 B — 膳食炸油與鐵量影響鐵代謝相關蛋白質表現
一、實驗設計 60
二、分析項目 61
三、結果 61
第三節、綜合討論 73
第四章、膳食魚油與鐵代謝調節相關分子
第一節、實驗 A - 膳食魚油改變肝臟鐵含量與鐵儲存
一、實驗設計 79
二、分析項目 80
三、結果與討論 81
第二節、實驗 B - 膳食魚油與鐵量對肝鐵調控蛋白質的影響
一、實驗設計 85
二、分析項目 86
三、結果 86
第三節、綜合討論 100
第五章 降血脂藥 clofibrate 影響大鼠鐵與銅代謝及其相關蛋白質
第一節、 實驗設計 104
第二節、 分析項目 105
第三節、 結果 106
第四節、 討論 122
第六章 討論與結論 127
第七章 參考文獻 141
附錄一 構築 rat L-ferritin cDNA 156
附錄二 實驗方法之建立與評估 162
附錄三 構築實驗所需之質體 174
謝誌 184
何素珍(1999)缺鋅及限食對大鼠肝臟Iron regulatory proteins (IRPs) 與aconitase活性之影響。台大農化所博士論文。
洪麗雅(1996)炸油餵食對BALB/c小鼠S180肉瘤生長、PGE2分泌及巨噬細胞毒殺腫瘤活性之影響。台大農化所碩士論文。
張美鈴 ( 1997a ) 低鐵對炸油餵食大白鼠肝臟 cytochrome P-450 及脂質過氧化之影響。台大農化所碩士論文。
張鈞堯(1997b)飲食油脂之質與量對大鼠肝臟中PPARα 和ACO mRNA表現之影響。台大農化所碩士論文。
戚祖沅(1996)新鮮黃豆油與炸油攝取對NZB/WF1自體免疫鼠病情之影響探討。台大農化所碩士論文。
莊榮輝(1985)水稻蔗糖合成之研究。台大農化所博士論文。
湯雅理 (1994 ) 炸油餵食對老鼠肝中維生素 A 含量及肝微粒體 cytochrome P-450 酵素活性之影響。台大農化所碩士論文。
劉珍芳 ( 1993 ) 炸油餵食對老鼠體內維生素 E 代謝之影響。台大農化所博士論文。
蕭寧馨、葉文婷、潘文涵(1999)國人鐵營養狀況與缺鐵盛行率。中華營誌 24:119 - 138。
Aebi, H. (1984) Catalase in Vitro. Methods of enzymatic Analysis. 3:273-286. Acad. Press. New York.
Amacher, D. E., Schomaker, S. J. and Burkhardt, J. E. (1998) The relationship among microsomal enzyme induction, liver weight and histological change in rat toxicology histological change in rat toxicology studies. Food Chem. Toxicol. 36: 831-839.
American Institute of Nutrition (1977) Report of American Institute of Nutrition and hoc committee on standards for nutritional studies.
Anderson, S. P., Cattley, R. C. and Corton, J. C. (1999) Hepatic expression of acute-phase protein genes during carcinogenesis induced by peroxisome proliferators. Mol. Carcinogen. 26: 226-238.
Andrews, N. C., Felming, M. D., Phil, D. and Gunshin, H. ( 1999 ) Iron transport across biologic membranes. Nutr. Rev. 57: 114-123.
Angermüller, S. and Fahimi, H. D. (1981) Selective cytochemical localization of peroxidase, cytochrome oxidase and catalase in rat liver with 3,3’-diaminobenzidine. Histochem. 71: 33-44.
Bains, S. K., Gardiner, S. M., Mannweiler, K., Gillett, D. and Gibson, G. G. (1985) Immunochemical study on the contribution of hypolipidaemic-induced cytochrome P-450 to the metabolism of lauric acid and arachidonic acid. Biochem. Pharmaco. 34: 3221- 3229.
Balla, G., Jacob, H. S., Balla, J., Rosenberg, M., Nath, K., Apple, F., Eaton, J. W. and Vercellotti, G. M. (1992) Ferritin : a cytoprotective anti-oxidant strategem of endothelium. J. Biol. Chem. 267: 18148-18153.
Ballantyne, F. C., Morrison, B. A., Ballantyne, D., Dryburgh, F. J. and Epenetos, A. A. (1978) Plasma protein concentrations in hypertriglyceridemic subjects. Effect of clofibrate and comparison with normal subjects. Clin. Chim. Acta. 87: 43-47.
Barton, H. A, Eisenstein, R.S., Bomford, A. B. and Munro, H. N. (1990) Determinants of the interaction of the iron-responsive element-binding protein and its binding site in rat L-ferritin mRNA. J. Biol. Chem. 265: 7000-7008.
Beaumont, C., Leneuve, P. and Devaux, I. (1995) Mutation in the iron responsive element of the L ferritin mRNA in a family with dominant hyperferritinemia and cataract. Nature Genet. 11: 444-446.
Beinert, H. and Kennedy, M. C. (1993) Aconitase, a two-faced protein: enzyme and iron regulatory factor. FASEB J. 7: 1442-1449.
Bentley, P., Calder, I., Elcombe, C., Grasso, D., Stringer, D. and Wiegand, H. J. (1993) Hepatic peroxisome proliferation in rodents and its significance for humans. Food Chem. Toxicol. 31: 857-907.
Bergmeyer, H. U. and Bernt, E. (1974) Lactate dehydrogenase: UV-assay with pyruvate and NADH. In Methods of enzymatic analysis (Bergmeyer, H. U., ed.), vol. 2, pp. 574-579. Verlag Chemie GmbH, Weinheim, Germany.
Biemond, P., Swaak, A. J. G., Beindorff, C. M. and Koster, J. F. ( 1986 ) Superoxide-dependent and -independent mechanisms of iron mobilization from ferritin by xanthine oxidase. Biochem. J. 239: 169-173.
Bingle, C. D., Fleming, R. E. and Gitlin, J. D. (1993) Interaction of CCAAT/enhancer-binding protein alpha and beta with the rat ceruloplasmin gene promoter. Biochem. J. 294: 473-479.
Bouton, C., Oliveira, L. and Drapier, J. (1998) Converse modulation of IRP1 and IRP2 by immunological stimuli in murine RAW 264.7 Macrophages. J. Biol. Chem. 273: 9403-9408.
Bouton, C., Raveau, M. and Drapier, J. (1996) Modulation of iron regulatory protein functions. J. Biol. Chem. 271: 2300-2306.
Brittenham, S. S. (2000) Genetic disorders affecting proteins of iron metabolism: clinical implications. Annu. Rev. Med. 51: 443-464.
Bull, P. C., Thomas, G. R., Rommens, J. M., Forbes, J. R. and Cox, D. W. (1993) The wilson disease gene is putative copper transporting P-type ATPase similar to the Menkes gene. Nat. Genet. 5: 327-337.
Cairo, G., Castrusini, E., Minotti, G. and Bernelli-Zazzera A. (1996) Superoxide and hydrogen peroxide-dependent inhibition of iron regulatory protein activity: a protective stratagem against oxidative injury. FASEB J. 10: 1326-1335.
Cairo, G., Tacchini, L., Recalcati, S., Azzimonti, B., Minotti, G. and Bernelli-Zazzera, A. (1998) Effect of reactive oxygen species on iron regulatory protein activity. Ann. N. Y. Acad. Sci. 851: 179-186.
Canonne, H. F., Gruenheid, S., Ponka, P. and Gros, P. (1999) Cellular and subcellular localization of the Nramp2 iron transporter in the intestinal brush border and regulation by dietary iron. Blood 93: 4406-4417.
Cario, G., Tacchini, L., Pogliaghi, G., Anzon, E., Tomasi, A. and Bernelli-Zazzera, A. (1995) Induction of ferritin synthesis by oxidation stress, transcriptional and post-transcriptional regulation by expension of the “ free iron pool “. J. Biol. Chem. 270: 700-703.
Carvalho, H., Bechara, E. J., Meneghini, R. and Demasi, M. (1997) Haem precursor delta- aminolavulinic acid induces activation of the cytosolic iron regulatory protein 1. Biochem. J. 328 (Pt3): 827-832.
Casey, J. L., Hentze, M. W., Koeller, D. M., Caughman, S. W., Rouault, T. A., Klausner, R. D. and Harford, J. B. (1988) Iron-responsive elements: regulatory RNA sequences that control mRNA levels and translation. Science 240: 924-928.
Caughey, G. E., Mantzioris, E., Gibson, R. A., Cleland, L. G. and James, M. J. (1996) The effect on human tumor necrosis factor alpha and interleukin 1 beta production of diets enriched in n-3 fatty acids from vegetable oil or fish oil. Am. J. Clin. Nutr. 63: 116-122.
Chen, O. S., Blemings, K. P., Schalinske , K. L., and Eisenstein, R. S. (1998) Dietary iron intake rapidly influences iron regulatory proteins, ferritin subunits and mitochondrial aconitase in rat liver. J. Nutr. 128: 525-535.
Chen, O. S., Schalinske , K. L. and Eisenstein, R. S. (1997) Dietary iron intake modulates the activity of iron regulatory proteins and the abundance of ferritin and mitochondrial aconitase in rat liver. J. Nutr. 127: 238-248.
Clothier, B., Robinson, S., Akhtar, R. A., Francis, J. E., Peters, T. J., Raja, K. and Smith A. G. (2000) Genetic variation of basal iron status, ferritin and iron regulatory protein in mice: potential for modulation of oxidative stress. Biochem. Pharmacol. 59: 115-122.
Cook, J. (1999) The nutritional assessment of iron status. Arch. Latinoam. Nutr. 49(3 Suppl 2): 11S-14S.
Cousins, R. and Leinart, A. S. (1988) Tissue-specific regulation of zinc metabolism and metallothionein genes by interleukin 1. FASEB J. 2: 2884-2890.
Cox, L. A. and Adrian, G. S. (1993) Posttranscriptional regulation of chimeric human transferrin genes by iron. Biochemistry 32: 4738-4745.
Cox, T. C., Bawden, M. J., Abraham, N. G., Bottomley, S. S., May, B. K., Baker, E., Chen, L. Z. and Sutherland, G. R. (1990) Erythroid 5-aminolevulinate synthase is located on the X chromosome. Am. J. Hum. Genet. 46:107-111.
Craemer, D. D., Vamecq, J., Roels, F., Vallee, L., Pauwels, M. and Van den Branden C. (1994) Peroxisomes in liver, heart, and kidney of mice fed a commercial fish oil preparation : original data and review on peroxisomal changes induced by high-fat diets. J. Lipid Res. 35: 1241-1250.
Daffada, A. A. I. and Young, S. P. (1999) Coordinated regulation of ceruloplasmin and metallothionein mRNA by interleukin-1 and copper in HepG2 cells. FEBS Lett. 457: 214-218.
Daffada, A. A. I., Murray, E. J. and Young, S. P. (1994) Control of activator protein-1 and nuclear factor kappa B activity by interleukin-1, interleukin-6 and metals in HEPG2 cells. Biochim. Biophy. Acta. 1222: 234-240.
Dandekar, T., Stripecke, R., Gray, N. K., Goosen, B., Constable, A., Hohansson, H. E. and Hentz, M. W. (1991) Identification of a novel IRE in murine and human eALAS mRNA. EMBO J. 10: 1903-1909.
Desvergne, B. and Wahli, W. (1999) Peroxisome proliferator-activated receptor : nuclear control of metabolism. Endocr. Rev. 20: 649-688.
Deutsch, J. (1985) Glucose-6-phosphate dehydrogenase. In Methods of enzymatic analysis (Bergmeyer, H. U., ed.), vol. 2, pp. 190-197. Verlag Chemie GmbH, Weinheim, Germany.
Dhur, A., Galan, P. and Hercberg, S. (1989) Effects of different degrees of iron deficiency on cytochrome P450 complex and pentose phosphate pathway dehydrogenases in the rat. J. Nutr. 119: 40-47.
Dickey, L. F., Sreedharan, S., Theil, E. C., Didsbury, J. R., Wang, Y. H. and Kaufman, R. E. (1987) Differences in the regulation of messenger RNA for housekeeping and specialized-cell ferritin. A comparison of three distinct ferritin complementary DNAs, the corresponding subunits, and identification of the first processed in amphibia. J. Biol. Chem. 262: 7901-7907.
Dominguez, Z. and Bosch, V. (1994) Dietary fish oil affects food intake, growth and hematologic values of weanling rats. Arch. Latinoamericanos de Nutr. 44: 92-97.
Eagon, P. K., Teepe, A. G., Elm, M. S., Tadic, S. D., Epley, M. J., Beiler, B. E., Shinozuka, H. and Rao, K. N. (1999) Hepatic hyperplasia and cancer in rats : alterations in copper metabolism.Carcinogenesis 20: 1091-1096.
Eisenstein R. S., Tuazon P. T., Schalinske K. L., Anderson S. A. and Traugh J. A. (1993) Iron responsive element-binding protein phosphorylation by protein kinase C. J. Biol. Chem. 268: 27363-27370.
Eisenstein, R. S. (2000) Discovery of the ceruloplasmin homologue hephaestin: New insight into the copper/iron connection. Nutr. Rev. 58: 22-26.
Eisenstein, R. S. and Blemings, K. P. (1998) Iron regulatory proteins, iron responsive elements and iron homeostasis. J. Nutr. 128: 2295-2298.
Eisenstein, R. S., Barton, H. A., Pettingell, W. H. and Bomford, Jr. A. B. (1997) Isolation, characterization, and functional studies of rat liver iron regulatory protein 1. Arch. Biochem. Biophys. 343: 81-91.
Evans, G. W. and Wiederanders, R. E. (1967) Pituitary-adrenal regulation of ceruloplasmin. Nature 215: 766-767.
Evans, J. L. and Abraham, P. A. (1973) Anemia, iron storage and ceruloplsmin in copper nutrition in the growing rat. J. Nutr. 103: 196-201.
Fitch, C. A., Song, Y. and Levenson, C. W. (1999) Developmental regulation of hepatic ceruloplasmin mRNA and serum activity by exogenous thyroxine and dexamethasone. Proc. Soc. Exp. Biol. Med. 221: 27-31.
Flatmark, T., Nilsson, A., Kvannes, J., Eikhom, T. S., Fukami, M. H., Kryvi, H. and Christiansen, E. N. (1988) On the induction of the enzyme systems for peroxisomal -oxidation on fatty acids in rat livers by diets rich in partially hydrogenated fish oil. Biochim. Biophys. Acta. 962: 122-130.
Fleming, M. D., Romano, M. A. and Su, M. A. (1998) Nramp2 is mutated in the anemic Belgrade (b) rat: evidence of a role for Nramp2 in endosomal iron transport. Pro. Natl. Acad. Sci. 95: 1148-1153.
Fleming, M. D., Trenor, C. Cr. and Su, M. A. (1997) Microcytic anemia mice have a mutation in Nramp2, a candidate iron transporter gene. Nature Genet. 4: 383-386
Fleming, R. E. and Gitlin, J. D. (1989) Primary structure of rat ceruloplasmin and analysis of tissue-specific gene expression during development. J. Biol. Chem. 264: 7701-7707.
Fleming, R. E. and Gitlin, J. D. (1992) Structural and functional analysis of the 5’-flanking region of the rat ceruloplasmin gene. J. Biol. Chem. 267: 479-486.
Fleming, R. E., Migas, M. C. and Zhou, X. (1999) Mechanism of increased iron absorption in murine model of hereditary hemochromatosis: increased duodenal expression of the iron transporter DMT1. Proc. Natl. Acad. Sci. USA 96: 13143-13148.
Flohe, L. and Otting, F. (1984) Superoxide Dismutase Assays. Method in Enzymol. 105: 93-105.
French, S. W. (1964) Succinate dehydrogenase : histochemical "Shift" in hepatic lobular distribution induced by ethanol. Lab. Investigation. 13: 1051-1056.
Frishman, D. and Hentze, M. W. (1996) Conservation of aconitase residues revealed by multiple sequence analysis. Eur. J. Biochem. 239: 197- 200.
Gambino, R., Desvadrieux, E., Orth, M., Matan, H., Ackattupathil, T., Lijoi, E., Wimmer, C., Bower, J. and Gunter, E. (1997) The relation between chemically measured total iron-binding capacity concentrations and immunologically measured transferrin concentrations in human serum. Clin. Chem. 43: 2408-2412.
Gardner, P. R. (1997) Superoxide-driven aconitase Fe-S center cycling. Bioscience Reports 17: 33-42.
Gitlin, J. D. (1988) Transcriptional regulation of ceruloplasmin gene expression during inflammation. J. Biol. Chem. 263: 6281-6287.
Gitlin, J. D. (1998) Aceruloplasmin. Pediatr. Res. 44: 271-276.
Goldstein, I. M., Kaplan, H. B., Edelson, H. S. and Weissmann, G. (1979) A new function for ceruloplasmin as an acute-phase reactant in inflammation: a scavenger of superoxide anion radicals. Trans. Assoc. Am. Physicians 92: 360-369.
Gray, N. K., Pantopoulous, K., Dandekar, T., Ackrel,l B. A. and Hentze, M.W. (1996) Translational regulation of mammalian and Drosophila citric acid cycle enzymes via iron-responsive elements. Proc. Natl. Acad. Sci. USA . 93: 4925-4930.
Gunshin, H., Mackenzie, B., Berger, U. V., Gunshin, Y., Romero, M. F., Boron, W. F., Nussberger, S., Gollan, J. L. and Hediger, M. A. (1997) Cloning and characterization of a mammalian proton-coupled metal-ion transporter. Nature 388: 482-488.
Guo, B., Phillips, J. D.,Yu, Y. and Leibold, E. A. (1995) Iron regulates the intracellular degradation of iron regulatory protein 2 by the proteasome. J. Biol. Chem. 270: 21645 — 21651.
Guo, B., Yu, Y. and Leibold, E. A. (1994) Iron regulates cytoplasmic levels of a novel iron-responsive element-binding protein without aconitase activity. J. Biol. Chem. 269: 24252-24260.
Haile, D. J., Hentze, M.W., Rouault, T. A., Harford, J. B. and Klausner, R. D. (1989) Regulation of interaction of the iron-responsive element binding protein with iron-responsive RNA elements. Mol. Cell Biol. 9: 5055-5061.
Haile, D. J., Rouault, T. A., Tang.,C. K., Chin, J., Harford, J. B. and Klausner, R. D. (1992) Reciprocal control of RNA-binding and aconitase activity in the regulation of the iron-responsive element binding protein: role of the iron-sulfur cluster. Proc. Natl. Acad. Sci. USA 89: 7536-7540.
Hanson, E. S. and Leibold, E. A. (1998) Regulation of iron regulatory protein 1 during hypoxia and hypoxia / reoxygenation. J. Biol. Chem. 273: 7588-7593.
Hanson, E. S. and Leibold, E. A. (1999) Regulation of the iron regulatory proteins by reactive nitrogen and oxygen species. Gene Expr. 7: 367-376.
Harris, Z. L. and Gitlin, J. D. (1996) Genetic and molecular basis for copper toxicity. Am. J. Clin. Nutr. 63: 836S-841S.
Harris, Z. L., Durley, A. P., Man, T. K. and Gitlin, J. D. (1999) Targeted gene disruption reveals an essential role for ceruloplasmin in cellular iron efflux. Proc. Natl. Acad. Sci. 96: 10812-10817.
Harris, Z. L., Klomp, L. W. J. and Gitlin, J. D. (1998) Aceruloplasminemia : an inherited neurodegenerative disease with impairment of iron homeostasis. Am. J. Clin. Nutr. 67: 972S-977S.
Harrison, P. M. and Arosio, P. (1996) The ferritins: molecular properties, iron storage function and cellular regulation. Biochem. Biophy. Acta. 1275: 161-203.
Hart, E. B., Steenbock, H., Waddell, J. and Elvehjem, C. A. (1928) Iron in nutrition. VII. Copper as a supplement to iron for hemoglobin building in the rat. J. Biol. Chem. 77: 797-812.
Hayashi, Y., Wang, W., Ninomiya, T., Nagano, H., Ohta, K. and Itoh, H. (1999) Liver enriched transcription factors and differentiation of hepatocellular carcinoma. Mol. Pathol. 52: 19-24.
Henderson, B. R and Kuhn, L. C. (1995) Differential modulation of the RNA-binding proteins IRP-1 and IRP-2 in response to iron. IRP-2 inactivation requires translation of another protein. J. Biol. Chem. 270: 20509-20515.
Hentze, M. W. (1996) Iron-sulfer clusters and oxidant stress responses. TIBS 21: 282-283.
Hentze, M.W. and Kühn, L. C. (1996) Molecular control of vertebrate iron metabolism: mRNA-based regulatory circuits operated by iron, nitric oxide, and oxidative stress. Proc. Natl. Acad. Sci. USA 93: 8175-8182.
Hertz, R. and Bar-Tana, J. (1998) Peroxisome proliferator-activated receptor ( PPAR ) alpha activation and its consequences in humans. Toxicol. Lett. 102-103: 85-90.
Hertz, R., Bishara-Shieban, J. and Bar-Tana J. (1995) Mode of action of peroxisome proliferators as hypolipidemic drugs, suppression of apolipoprotein C-III. J. Biol. Chem. 270: 13470-13475.
Hertz, R., Seckbach, M., Zakin, M. M. and Bar-Tana, J. (1996) Transcriptional suppression of the transferrin gene by hypolipidemic peroxisome proliferators. J. Biol. Chem. 271: 218-224.
Hirling, H., Henderson, B. R. and Kuhn, L. C. (1994) Mutational analysis of the [4Fe-4S]-cluster converting iron regulatory factor from its RNA-binding form to cytoplasmic aconitase. EMBO J. 13: 453-461.
Hoshino, A., Hisayasu, S. and Shimada, T. (1996) Complete sequence analysis of rat transferrin and expression of transferrin but not lactoferrin in the digestive glands. Comp. Biochem. Physiol. 113B: 491-497.
Idzerda, R. L., Huebers, H., Finch, C. A. and McKnight, G. S. (1986) Rat transferrin gene expression: Tissue-specific regulation by iron deficiency. Biochemistry 83: 3723-3727.
Isseman, I. and S, Green. (1990) Activation of a member of the steroid hormone receptor superfamily by peroxisome proliferators. Nature 47: 645-650.
Isseman, I., Prince, R. A., Tugwood, J. D. and Green, S. (1993) The peroxisome proliferator-activated receptor: retinoic X receptor heterodimer is activated by fatty acids and fibrate hypolipidaemic drugs. J. Mol Endocrinol. 11: 37-47.
Iwai, K., Drake, S. K., Wehr, N. B., Weissman, A. M., LaVaute, T., Minato, N., Klausner, R. D. and Levine, R. L. (1998) Rouault TA. Iron-dependent oxidation, ubiquitination, and degradation of iron regulatory protein 2: implications for degradation of oxidized proteins. Proc. Natl. Acad. Sci. USA 95: 4924-4928.
Iwai, K., Klausner, R. D. and Rouault, T. A. (1995) Requirements for iron-regulated degradation of the RNA binding protein, iron regulatory protein 2. EMBO J.14: 5350 — 5357.
James, M. J., Gibson, R. A. and Cleland, L. G. (2000) Dietary polyunsaturated fatty acids and inflammatory mediator production. Am. J. Clin. Nutr. 71(1 Suppl): 343S-348S.
Johannesen, K. A. M. and DePierre, J. W. (1978) Measurement of cytochrome P-450 in the presence of large amounts of contaminating hemoglobin and methemoglobin . Anal. . Biochem. 86: 725-732.
Juckett, M. B., Weber, M., Balla, J., Jacob, H. S. and Vercellotti, G. M. (1996) Nitric oxide donors modulate ferritin and protect endothelium from oxide injury. Free Radic. Biol. Med. 20: 63-73.
Kato, J., Kobune, M., Kohgo, Y., Sugawara, N., Hisai, H., Nakamura, T., Sakamaki, S., Sawada, N. and Niitsu, Y. (1996) Hepatic iron deprivation prevents spontaneous development of fulminant hepatitis and liver cancer in Long-Evans Cinnamon rats. J. Clin. Invest. 98: 923-929.
Kato, J., Kohgo, Y., Sugawara, N., Katsuki, S., Shintani, N.,Fujikawa, K., Miyazaki, E., Kobune, M., Takeichi, N. and Niitsu, Y. (1993) Abnormal hepatic iron accumulation in LEC rats. Jpn. J. Cancer Res. 84: 219-222.
Ke, Y., Wu, J., Leibold, E. A., Walden, W. E. and Theil, E. C. (1998) Loops and bulge/loops in iron-responsive element isoforms influence iron regulatory protein binding. Fine-tuning of mRNA regulation? J. Biol. Chem. 273: 23637-23640.
Kersten, S., Desvergne, B. and Wahli, W. (2000) Roles of PPARs in health and disease. Nature 405: 421-424.
Kim, H. Y., LaVaute, T., Iwai, K., Klausner, R. D. and Rouault, T. A. (1996) Identification of a conserved and functional iron-responsive element in the 5‘-untranslated region of mammalian mitochondrial aconitase. J. Biol. Chem. 271: 24226-24230.
Klausner, R. D., Rouault, T. A. and Harfor, J. B. (1993) Regulating the fate of mRNA: The control of cellular iron metabolism. Cell 72: 19-28.
Klein, D., Michaelsen, S., Sato, S., Luz, A., Stampfl, A. and Summer, K. H. (1997) Binding of Cu to metallothionein in tissues of the LEC rat with inherited abnormal copper accumulation. Arch. Toxicol. 71: 340-343.
Konijn, A. M. (1994) Iron metabolism in inflammation. Baillieres Clin. Haematol. 7:829-849.
Kuriyama-Matsumura, K., Sato, H., Yamaguchi, M. and Bannai, S. (1998) Regulation of ferritin synthesis and iron regulatory protein-1 by oxygen in mouse peritoneal macrophages. Biochem. Biophys. Res. Commun. 249: 241-246.
Kwak, E. L., Larochelle, D. A., Beaumont, C., Torti, S. V. and Torti, F. M. (1995) Role for NF-B in the regulation of ferritin H by tumor necrosis factor- J. Biol. Chem. 270: 15285-15293.
Land, T. and Rouault, T. A. (1998) Targeting of a human iron-sulfur cluster assembly enzyme, nifs, to different subcellular compartments is regulated through alternative AUG utilization. Mol. Cell 2: 807-815.
Lee, G. R., Nacht, S., Lukens, J. N. and Cartwright, G. E. (1968) Iron metabolism in copper-deficient swine. J. Clin. Invest. 47: 2058.
Lee, H. C., Yin, P. H., Lu, C.Y., Chi, C.W. and Wei, Y. H. (2000) Increase of mitochondria and mitochondrial DNA in response to oxidative stress in human cells. Biochem. J. 348 (Pt 2): 425-432.
Lee, P. L., Gelbart, T. and West, C. (1998) The human Nramp2 gene: characterization of the gene structure, alternative splicing, promoter region and polymorphisms. Blood Cells Mol. Dis. 24: 199-215.
Leibold, E. A. and Guo, B. (1992) Annu. Rev. Nutr. 12: 343-368.
Leibold, E. A., Laudano, A. and Yu, Y. (1990) Structural requirements of iron-responsive elements for binding of the protein involved in both transferrin receptor and ferritin mRNA post-transcriptional regulation. Nucleic Acids Res. 18: 1819-1824.
Li, Y., Togashi, Y., Sato, S., Emoto, T., Kang, J. H., Takeichi, N., Kobayashi, H., Kojima, Y., Une, Y. and Uchino, J. (1991) Spontaneous hepatic copper accumulation in Long-Evans Cinnamon rats with hereditary hepatitis. A model of Wilson''s disease. J. Clin. Invest. 87: 1858-1861.
Lowry, O. H., Rosebrough, N. J., Farr, A. L. and Randall, R. T. (1951) Protein measurement with Folin phenol reagent. J. Biol. Chem. 193: 265.
Martin, E. A. L., Robalinho, R. L. and Meneghini, R. (1995) Oxidative stress induces activation of cytosolic protein responsible for control of iron uptake. Arch. Biocem. Biophys. 316: 128-134.
Martin, J. C., Joffre, F., Siess, M. H., Vernevaut, M. F., Collenot, P., Genty, M. and Sébédio, J. L. (2000) Cyclic fatty acid monomers from heated oil modify the activities of lipid synthesizing and oxidizing enzymes in rat liver. J. Nutr. 130: 1524-1530.
Masters, C. J. (1995) The peroxisome: a vital organelle / Colin Masters and Denis Crane. pp 100.
May, B.K., Bhasker, C. R., Bawden, M. J. and Cox, T. C. (1990) Molecular regulation of 5-aminolevulinate synthase. Diseases related to heme biosynthesis. Mol. Biol. Med. 7: 405-421.
McKnight, G. S., Lee, D. C. and Palmiter, R. D. (1980) Transferrin gene expression. Regulation of mRNA transcription in chick liver by steroid hormones and iron deficiency. J. Biol. Chem. 255: 148-153.
Melefors, O., Goossen, B., Johansson, H. E., Stripecke, R., Gray, N. K. and Hentze, M. W. (1993) Translational control of 5-aminolevulinate synthase mRNA by iron-responsive elements in erythroid cells. J. Biol. Chem. 268: 5974-5978.
Meneghini, R. (1997) Iron homeostasis, oxidative stress, and DNA damage. Free. Radic. Biol. Med. 23: 783-792.
Menotti, E., Henderson, B. R. and Kuhn, L. C. (1998) Translational regulation of mRNAs with distinct IRE sequences by iron regulatory proteins 1 and 2. J. Biol. Chem. 273: 1821-1824.
Motojima, K., Peters, J. M. and Gonzalez, F. J. (1997) PPARα mediates peroxisome proliferator-induced transcriptional repression of nonperoxisoma gene in mouse. Biochem. Biophys. Res. Comm. 230: 155-158.
Mukhopadhyay, C. K., Attieh, Z. K. and Fox, P. L. (1998) Role of ceruloplasmin in cellular iron uptake. Science 279: 714-717.
Müllner, E. W., Neupert, B. and Kühn, L. C. (1989) Cell 58: 373-382.
Munro, H. (1993) The ferritin genes: their response to iron status. Nutr. Rev. 51: 65-73.
Nakamura, K., Endo, F., Ueno, T., Awata, H., Tanoue, A., Matsuda, I. (1995) Excess copper and ceruloplasmin biosynthesis in long-term cultured hepatocytes from long-Evans Cinnamon (LEC) rats, a model of wilson disease. J. Biol. Chem. 270: 7656-7660.
Neat, C. E., Thomassen, M. S. and Harald, O. (1980) Induction of peroxisomal β-oxidation in rat liver by high-fat diets. Biochem. J. 186: 369-371.
Neupert, E. A. 3d. and Wright, J. M. (1989) Regional odontodysplasia presenting as a soft tissue swelling. Oral Surg Oral Med Oral Pathol. 67: 193-196.
Nicholls, P. and Petersen, L. C. (1974) Haem-haem interactions in cytochrome aa3 during the anaerobic-aerobic transition. Biochim. Biophys. Acta. 357: 462-467.
Nims, R. W., Devor, D. E., Henneman, J. R. and Lubet, R. A. (1987) Induction of alkoxyresorufin o-dealkylases, epoxide hydrolase, and liver weight gain : correlation with liver tumor-promoting protential in a series of barbiturates. Carcinogenesis 8: 67-71.
Ohhira, M., Ono, M., Ohhira, M., Sekiya, C., Namiki, M., Fujimoto, Y., Nagao, M. and Mori, M. (1995) Changes in free radical-metabolizing enzymes and lipid peroxides in the liver of Long-Evans with cinnamon-like coat color rats. J Gastroenterol. 30: 619-623.
Oliveira, L., Bouton, C. and Drapier, J. C. (1999) Thioredoxin activation of iron regulatory proteins: redox regulation of RNA binding after exposure to nitric oxide. J. Biol. Chem. 274: 516-521.
Omura, T., Sato, R., Cooper, D. Y., Rosenthal, O. and Estabrook, R. W. (1965) Function of cytochrome P-450 of microsomes. Fed. Proc. 24: 1181-1189.
Oser, B. L. (1965) Hawk''s Physiological Chemistry. 14th ed. pp.1096. McGraw-Hill, New York.
Paglia, D. E. and Valentine, W. N. (1967) Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. J. Lab.&Clin Med. 70(1): 158-169.
Pantopoulos, K. and Hentze, M. W. (1995) Rapid responses to oxidative stress mediated by iron regulatory protein. EMBO J. 14: 2917-2924.
Pantopoulos, K. and Hentze, M. W. (1998) Activation of iron regulatory protein-1 by oxidative stress in vitro. Proc. Natl. Acad. Sci. USA. 95: 10559-10563.
Pantopoulos, K., Mueller, S., Ateberger, A., Ansorge, W., Sremmel , W. and Hentze, M. W. (1997) Differences in the regulation of iron regulatory protein- 1 ( IRP- 1 ) by extra- and intracellular oxidative stress. J. Biol. Chem. 272: 9802-9808.
Pantopoulos, K., Weiss, G. and Hentze, M. W. (1996) Nitric oxide and oxidative stress ( H2O2 ) control mammalian iron metabolism by different pathways. Mol. Cellular Biol. 16: 3781-3788.
Pennington, R. J. (1961) Biochemistry of Dystrophic muscle - mitochondrial succinate-tetrazolium reductase and adenosine triphosphatase. Biochem. J. 80: 649-654.
Petropoulos, I. and Zakin, M. M. (1993) Transferrin gene as a model for liver-specific gene expression. Biol. Cell 77:63-65.
Posch, M., Sutterluety, H., Skern, T. and Seiser, C. (1999) Characterization of translation-dependent step during iron-regulated decar of transferrin receptor mRNA. J. Biol. Chem. 274: 16611-16618.
Powanda, M. C., Blackburn, B. S., Bostian, K. A., Fowler, J. P., Hauer E. C. and Pekarek, R. S. (1978) Clofibrate-induced alterations in zinc, iron and coper metabolism. Biochem. Pharmacol. 27: 125-127.
Powanda, M. C., Henriksen, E. L., Ayala, E. and Canonico, P. G. (1976) Clofibrate-induced alterations in serum protein patterns. Biochem. Pharmaco. 25: 785-788.
Prohaska, J. R. (1983) Change in tissue growth, concentrations of copper iron, cytochrome oxidase and superoxidase dismutase subsequent to dietary or genetic copper deficiency in mice. J. Nutr. 113: 2148-2158.
Purchase, I. F. (1994) Current knowledge of mechanisms of carcinogenicity: genotoxins versus non-genotoxins. Hum. Exp. Toxicol. 13: 17-28.
Rabbani, P. I., Sheikh, N. M., Chirtel, S. J., Jackson, R. and Ruffin, G. (1999) Effects of long-term consumption of high doses of fish oil concentrates on clinical parameters in male and female rats. J. Nutr. Sci. Vitaminol. 45: 553-565.
Ragan, H. A., Nacht, S., Lee, G. R., Bishop, C. R. and Cartwright, G. E. (1969) Effect of ceruloplasmin on plasma iron in copper-deficient swine. Am. J. Physiol. 217: 1320-1323.
Recalcati, S., Conte, D. and Cairo, G. (1999) Preferential activation of iron regulatory protein-2 in cell lines as a result of higher sensitivity to iron. Eur. J. Biochem. 259: 304-309.
Remmer, H. and Merker, H. J. (1963) Drug-induced changes in the liver endoplasmic reticulum: association with drug-metabolizing enzymes. Science 142: 1657-1658.
Riedel, H-D., Remus, A. J., Fitscher, B. A. and Stremmel, W. (1995) Characterization and partial purification of a ferrireductase from human duodenal microvillus membranes. Biochem. J. 309: 745-748.
Roberts, K. P. and Griswold, M. D. (1990) Characterization of rat transferrin receptor cDNA : the regulation of transferrin receptor mRNA in testes and in sertoli cells in culture. Mol. Endo. 4: 531-542.
Roeser, H. P., Lee, G. R., Nacht, S. and Cartwright, G. E. (1970) The role of ceruloplasmin in iron metabolism. J. Clin. Invest. 49: 2408.
Rose, I. A. and O’Connell, E. L. (1967) Mechanism of aconitase action. I. The hydrogen transfer reaction. J. Biol. Chem. 242: 1870-1879.
Rouault, T. A. and Klausner R. D. ( 1996 ) Iron-sulfer clusters as biosensors of oxidants and iron. TIBS 21: 174-177.
Rouault, T. A., Tang, C. K., Kaptain, S., Burgess, W. H., Haile, D. J., Samaniego, F., McBride, O. W., Harford, J. B. and Klausner, R. D. (1990) Cloning of the cDNA encoding an RNA regulatory protein - the human iron-responsive element-binding protein. Proc. Natl. Acad. Sci. USA 87: 7958-7962.
Roxborough, H. E., Mercer, C., McMaster, D., Maxwell, A. P. and Young, I. S. (2000) The ferroxidase activity of ceruloplasmin is reduced in haemodialysis patients. Nephron 84: 211-217.
Rustan, A. C., Christiansen, E. N. and Drevon, C. A. (1992) Serum lipids, hepatic glycerolipid metabolism and peroxisomal fatty acid oxidation in rats fed -3 and -6 fatty acids. Biochem. J. 283: 333-339.
Ryden, L. and Bjork, I. (1976) Reinvestigation of some physicochemical and chemical properties of human ceruloplasmin (ferroxidase). Biochemistry. 15: 3411-3417.
Samaniego, F., Chin, J., Iwai, K., Rouault, T. A. and Klausner, R. D. (1994) Molecular characterization of a second iron-responsive element binding protein, iron regulatory protein 2. J. Biol. Chem. 269: 30904-30910.
Sanjay, R. and Bruce, R. B. (1998) Hemochromatosis: advances in molecular genetics and clinical diagnosis. J. Clin. Gastroenterol. 27: 41-46.
Sasaki, M., Yoshida, M. C., Kagami, K., Takeichi, N., Kobayashi, H., Dempo, K. and Mori, M. (1985) Spontaneous hepatitis in an inbred strain of Long-Evans rats. Rat News Lett. 14: 4-6.
Sato, M. and Gitlin, J. D. (1991) Mechanisms of copper incorporation during the biosynthesis of human cerulpplasmin. J. Biol. Chem. 266: 5128-5134.
Schaefer, M., Hopkins, R. G., Failla, M. L. and Gitlin, J. D. (1999) Hepatocyte-specific localization and copper-dependent trafficking of the Wilson’s disease protein in the liver. Am. J. Physiol. 276: G639-G646.
Schaeffer, E., Guillou, F., Part, D. and Zakin, M. M. (1993) A different combination of transcription factors modulates the expression of the human transferrin promoter in liver and Sertoli cells. J. Biol. Chem. 268: 23399-23408.
Schalinske, K. L. and Eisenstein, R. S. (1996) Phosphorylation and activation of both iron regulatory proteins 1 and 2 in HL-60 cells. J. Biol. Chem. 271: 7168-7176.
Schalinske, K. L., Chen, O. S. and Eisenstein, R. S. (1998) Iron differentially stimulates translation of mitochondrial aconitase and ferritin mRNAs in mammalian cells. J. Biol. Chem. 273: 3740-3746.
Schmidt, E. (1974) glutamate dehydrogenase : UV-assay . In : Methods of enzymatic analysis (Bergmeyer, H. U., ed.), vol. 2, pp. 651-656. Verlag Chemie GmbH, Weinheim, Germany.
Schneider, B. D. and Leibold, E. A. (2000) Regulation of mammalian iron homeostasis. Curr. Opin. Clin. Nutr. Metab. Care 3: 267-273.
Schön, H. J., Grgurin, M., Klune, G., Prager, C., Marz, R., Legenstein, E. and Böck, P. (1994) Effects of hypolipidaemics cetaben and clofibrate on mitochondrial and peroxisomal enzymes of rat liver. J. Pharm. Pharmacol. 46: 144-147.
Schoonjans, K., Peinado-Onsurbe, J., Lefebure, AM, Heyman, RA., Briggs, M., Deeb, S., Staels, B. and Auwerx, J. (1996) PPARalpha and PPARgamma activators direct a distinct tissue-specific transcriptional response via a PPRE in the lipoprotein lipase gene. EMBO J. 15: 5336-5348.
Schosinsky, K. H., Lehmann, H. P. and Beeler, M. F. (1974) Measurement of Ceruloplasmin from Its Oxidase Activity in Serum by Use of o-Dianisdine Dihydrochloride.Clin. Chem. 20: 1556-1563.
Schrefer, J. (2000) Mosby''s GenRx Mosby, Inc.
Seiser, C., Posch, M., Thompson, N. and Kuhn, L. C. (1995) Effect of transcription inhibitors on the iron-dependent degradation of transferrin receptor mRNA. J. Biol. Chem. 270: 29400-29406.
Seiser, C., Teixeira, S. and Kuhn, L. C. (1993) Interleukin-2-dependent transcriptional and post-transcriptional regulation of transferrin receptor mRNA. J. Biol. Chem. 268: 13074-13080.
Sheth, S. and Brittenham, G. M. (2000) Genetic disorders affecting proteins of iron metabolism: clinical implications. Annu. Rev. Med. 51: 443-464.
Sheth, S. and Brittenham, G. M. (2000) Genetic disorders affecting proteins of iron metabolism: clinical implications. Annu. Rev. Med. 51: 443-464.
Shibahara, S., Muller, R., Taguchi, H. and Yoshida, T. (1985) Cloning and expression of cDNA for rat heme oxygenase. Proc. Natl. Acad. Sci. USA 82: 7865-7869.
Shih, D. Q., Dansky, H. M., Fleisher, M., Assmann, G., Fajans, S. S. and Stoffel, M. (2000) Genotype/phenotype relationships in HNF-4alpha/MODY1: haploinsufficiency is associated with reduced apolipoprotein (AII), apolipoprotein (CIII), lipoprotein(a), and triglyceride levels. Diabetes 49: 832-837.
Sladek, F. M., Zhong, W., Lai, E. and Darnell, Jr. and J. E. (1990) Liver-enriched transcription factor HNF-4 is a novel member of the steroid hormone receptor superfamily. Genes. Dev. 4: 2353-2365.
Theil, E. C. (2000) Targeting mRNA to regulate iron and oxygen metabolism. Biochem. Pharmacol. 59: 87-93.
Toth, I. and Bridges, K. R. (1995) Ascorbic acid enhances ferritin mRNA translation by an IRP / aconitase switch. J. Biolo. Chem. 270: 19540-19544.
Tugwood, J. D., Issemann, I., Anderson, R. G., Bundell, K. R., McPheat, W. L. and Green, S. (1992) The mouse peroxisome proliferator activated receptor recognizes a response element in the 5'' flanking sequence of the rat acyl CoA oxidase gene. EMBO J. 11: 433-439.
Van Lenten B. J., Prieve, J., Navab, M., Hama, S., Lusis, A. J. and Fogelman, A. M. (1995) Lipid-induced changes in intracellular iron homeostasis in vitro and in vivo. J. Clin. Invest. 95: 2104-2110.
Walden, W. E., Daniels-McQueen, S., Brown, P. H., Gaffield, L., Russell, D. A., Bielser, D., Bailey, L. C. and Thach, R. E. (1988) Translational repression in eukaryotes: partial purification and characterization of a repressor of ferritin mRNA translation. Proc. Natl. Acad. Sci. USA 85: 9503-9507.
Willian, J. H. G., Ailson, L. K. and Timothy, M. C. (1999) Inherited disorders of iron storage and transport. Mol. Med. 5: 431-438.
Wu, J., Forbes, J. R., Chen, H. S. and Cox, D. W. (1994) The LEC rat has a deletion in the copper transporting ATPase gene homologous to the Wilson disease gene. Nature Genet. 7: 541-545.
Wysynski, A. M., Baldwin, L. A., Leonard, D. A. and Calabrese, E. J. (1993) Interactive potential of omega-3 fatty acids with clofibrate or DEHP on hepatic peroxisome proliferation in male wistar rats. Hum. Exp. Toxicol. 12: 337-340.
Yamaguchi, Y., Heiny, M.E. and Gitlin, J.D., (1993) Isolation and characterization of a human liver cDNA as a candidate gene for Wilson disease. Biochem. Biophys. Res. Commun. 30: 197.
Yan, L. J., Levine, R. L. and Sohal, R. S. (1997) Oxidative damage during aging targets mitochondrial aconitase. Proc. Natl. Acad. Sci. USA 94: 11168-11172.
Yegorov et al. (1993) Simultaneous determination of Fe(III) and Fe(II) in water solutions and tissue homogenates using desferal and 1,10-phenanthroline. Free Radic. Biol. Med. 15: 565-574.
Yoshida, M. C., Masuda, R., Sasaki, M., Takeichi, N., Kobayashi, H., Dempo, K. and Mori, M. (1987) New mutation causing hereditary hepatitis in the laboratory rat. J. Hered. 78: 361-365.
Yu, Y., Radisky, E. and Leibold, E. A. (1992) The iron-responsive element binding protein: purification, cloning, and regulation in rat liver. J. Biol. Chem. 267: 19005-19010.
Zakin, M. M. (1992) Regulation of transferrin gene expression. FASEB J. 6: 3253-3258.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊