跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.139) 您好!臺灣時間:2026/01/28 19:41
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:郭雅淳
研究生(外文):Kuo,Ya-Chun
論文名稱:研究matriptase在人類正常皮膚與慢性傷口組織中的分布與作用
論文名稱(外文):Study The Distribution And Function of Matriptase in Normal And Chronic Wound of Human Skin Tissue
指導教授:王正康
指導教授(外文):Wang,Jehng-Kang
口試委員:李恆昇李明學王正康
口試委員(外文):Lee,Herng-ShengLee,Ming-ShyueWang,Jehng-Kang
口試日期:2013-05-23
學位類別:碩士
校院名稱:國防醫學院
系所名稱:生物化學研究所
學門:生命科學學門
學類:生物化學學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:86
中文關鍵詞:皮膚蛋白酶傷口癒合慢性傷口
外文關鍵詞:matriptaseskinchronic woundwound healing
相關次數:
  • 被引用被引用:0
  • 點閱點閱:435
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
matriptase是屬於第二型的嵌膜絲胺酸蛋白酶(type II transmembrane serine protease, TTSP),廣泛表現在人類上皮組織中,其同源抑制蛋白(cognate inhibitor)為肝細胞生長因子活化劑抑制蛋白 (hepatocyte growth factor activator inhibitor 1, HAI-1),而matriptase在活化後會立即與HAI-1結合,藉以調控matriptase的活性。在過去的文獻中發現,人體內matriptase基因產生突變,會導致頭髮較為稀疏且有捲曲的現象,同時皮膚也會出現魚鱗癬的症狀;若將小鼠的matriptase基因剔除,則會導致小鼠的毛髮發育不良,無法突破表皮層生長,皮膚也會有皺縮、乾燥的現象。因此推測matriptase確實與皮膚的分化以及毛囊的正常發育有一定的相關。皮膚分化與毛囊發育過程中,目前已知有上皮幹細胞(keratinocyte stem cell)參與其中,進而調控正常的增生分化;除此之外還有些重要的訊號傳遞路徑與增生分化有相關,例如肝細胞生長因子 (hepatocyte growth factor, HGF) 與其受器c-Met。同時,傷口癒合的過程中上皮的增生與分化也是很重要的一個過程。因此本研究藉由取得正常皮膚組織與慢性傷口組織,來探討matriptase在兩者間表現的差異,最後藉由酸處理ex vivo實驗來討論matriptase是否在傷口癒合的過程中有參與。結果可以發現,(1) 在正常皮膚組織以及慢性傷口組織中,matriptase的分布皆是由表皮層的基底層向上遞減,HAI-1的分布則是位於整個表皮層。(2) 活化態matriptase在正常皮膚組織中的表皮層以及毛囊都會與c-Met、K15表現在共同的位置上。但在慢性傷口組織中,活化態matriptase表現量極低,且K15完全不表現。(3) 以酸處理HaCaT細胞、正常皮膚組織以及慢性傷口都可以看到matriptase的活化。根據實驗結果可知活化的matriptase在正常皮膚組織中與c-Met、K15的表現位置非常類似,可能有某種交互作用,同時matriptase在酸性環境中的活化,可以推測或許有參與上皮再生的過程。
Matriptase, a member of the type II transmembrane serine proteases, is widely expressed in virtually all epithelia. After activation, matriptase is bound directly by its cognate inhibitor, HAI-1 (hepatocyte growth factor activator inhibitor-1). Matriptase knock-out mice have shown abnormal development of epidermis and hair follicle. The hair of one ARIH (autosomal recessive ichthyosis and hypotrichosis) patient, whose matriptase gene is mutated, appeared curly, sparse and dry, and ichthyotic skin was observed. Based on these finding, it is suggested that matriptase plays an important role in epidermis differentiation and hair follicle development. Besides matriptase, HGF, c-Met, and stem cells could be involved in epidermis differentiation and hair follicle development. In this study, we utilize immunohistochemistry to examine the expression of matriptase in normal and chronic wound human skin tissue. We also use mild acidic condition to mimic the wound healing process from alkaline to acidic, tried to understand whether matriptase is involved in wound healing or not. According to our results, we have some conclusions. First, in normal human skin and chronic wound tissue, HAI-1 is distributed evenly in epidermis, however matriptase is highly expressed in the basal layer and decreased to none alone with the terminal differentiation in the spinous layer. Second, activated matriptase, c-Met and stem cell marker, K15, are co-localized in the basal layer of normal human skin and the outer root sheath of hair follicle. But in chronic wound, activated matriptase and c-Met are rarely observed in basal layer, and K15 totally can’t be detected in basal layer. Third, after treating with mild acidic buffer, HaCaT cells, normal skin tissue, and chronic wound exhibit highly activated matriptase. These results suggest that the distribution of activated matriptase is similar to c-Met and K15. They may have strong correlations in regulating epidermis differentiation and hair follicle development. Besides, matriptase can be activated in acidic condition, it may involve in some reactions during wound healing from alkaline to acidic.
表目錄 IV
圖目錄 V
縮寫表 VI
摘要 VII
Abstract IX
第一章 緒論 1-24
第一節 Matriptase 1
一、Matriptase的發現 1
二、Matriptase的結構 2
三、Matriptase的分布與生理功能 3
第二節 HAI-1 5
一、HAI-1的結構 5
二、HAI-1的功能 6
第三節 Matriptase與HAI-1 7
一、Matriptase活化的過程 7
二、可能活化Matriptase的機制 8
三、Matriptase的下游反應 9
四、Matriptase與HAI-1的平衡 11
第四節 皮膚 12
一、皮膚的基本構造 12
二、表皮層的結構 13
三、皮膚的附屬器官(skin appendages) 15
四、上皮幹細胞(keratinocyte stem cell) 18
第五節 慢性傷口(chronic wound) 20
一、慢性傷口的定義 20
二、糖尿病足潰瘍 20
三、傷口癒合(wound healing) 21
四、pH值對傷口癒合的影響 23
第六節 實驗目的 24
第二章 材料與方法 25-34
第一節 實驗材料 25
ㄧ、藥品試劑 25
二、套裝實驗組 26
三、耗材 26
四、抗體 26
五、實驗儀器 27
六、檢體的取得 27
第二節 緩衝液(Buffer)與SDS-PAGE之製備 28
一、Lysis Buffer 28
二、5X loading buffer 28
三、Running buffer(pH 8.3) 28
四、Transfer buffer(pH 8.3) 29
五、SDS-PAGE(8.5%) 29
六、Sodium Phosphate buffer 29
第三節 實驗方法 30
一、檢體處理 30
二、冷凍切片 30
三、免疫組織化學染色(Immunohistochemistry) 31
四、蘇木紫與伊紅染色(Hematoxylin & Eosin stain) 32
五、體外實驗(ex vivo) 32
六、蛋白質濃度之測定 32
七、西方墨點法(western blot)樣本之製備 33
八、西方墨點法(western blot analysis) 33
九、濃縮(concentration) 34
第三章 結果 35-42
第一節 Matriptase及HAI-1在正常皮膚組織中的表現 35
一、表皮 35
二、毛囊 35
三、皮脂腺 36
四、汗腺 36
第二節 活化態Matriptase、c-Met及K15在正常皮膚組織中的表現 37
一、活化態Matriptase在正常皮膚中的分布 37
二、c-Met 在正常皮膚中的表現 38
三、K15 在正常皮膚中的表現 38
四、活化態Matriptase 與 c-Met、K15 的共同表現 39
第三節 Matriptase與慢性傷口 40
一、慢性傷口中Matriptase與HAI-1的表現 40
二、慢性傷口中活化態Matriptase、c-Met與K15的表現 40
三、慢性傷口的pH值變化對Matriptase表現的影響 41
第四章 討論 43-51
第一節 Matriptase在正常皮膚中可能扮演的角色 43
一、表皮分化 43
二、毛囊發育 44
第二節 正常皮膚組織與慢性傷口組織的表現差異 45
第三節 Matriptase可能參與傷口癒合的過程 47
第四節 Matriptase與慢性傷口的發炎反應 49
第五節 結論 50
第六節 未來實驗方向 51
第五章 參考文獻 52

1. Shi YE, Torri J, Yieh L, Wellstein A, Lippman ME, Dickson RB: Identification and characterization of a novel matrix-degrading protease from hormone-dependent human breast cancer cells. Cancer research 1993, 53(6):1409-1415.
2. Lin CY, Wang JK, Torri J, Dou L, Sang QA, Dickson RB: Characterization of a novel, membrane-bound, 80-kDa matrix-degrading protease from human breast cancer cells. Monoclonal antibody production, isolation, and localization. The Journal of biological chemistry 1997, 272(14):9147-9152.
3. Lin CY, Anders J, Johnson M, Sang QA, Dickson RB: Molecular cloning of cDNA for matriptase, a matrix-degrading serine protease with trypsin-like activity. The Journal of biological chemistry 1999, 274(26):18231-18236.
4. Lin CY, Anders J, Johnson M, Dickson RB: Purification and characterization of a complex containing matriptase and a Kunitz-type serine protease inhibitor from human milk. The Journal of biological chemistry 1999, 274(26):18237-18242.
5. Cao J, Cai X, Zheng L, Geng L, Shi Z, Pao CC, Zheng S: Characterization of colorectal-cancer-related cDNA clones obtained by subtractive hybridization screening. J Cancer Res Clin Oncol 1997, 123(8):447-451.
6. Tanimoto H, Underwood LJ, Wang Y, Shigemasa K, Parmley TH, O'Brien TJ: Ovarian tumor cells express a transmembrane serine protease: a potential candidate for early diagnosis and therapeutic intervention. Tumour Biol 2001, 22(2):104-114.
7. Kim MG, Chen C, Lyu MS, Cho EG, Park D, Kozak C, Schwartz RH: Cloning and chromosomal mapping of a gene isolated from thymic stromal cells encoding a new mouse type II membrane serine protease, epithin, containing four LDL receptor modules and two CUB domains. Immunogenetics 1999, 49(5):420-428.
8. Takeuchi T, Shuman MA, Craik CS: Reverse biochemistry: use of macromolecular protease inhibitors to dissect complex biological processes and identify a membrane-type serine protease in epithelial cancer and normal tissue. Proceedings of the National Academy of Sciences of the United States of America 1999, 96(20):11054-11061.
9. Lin CY, Tseng IC, Chou FP, Su SF, Chen YW, Johnson MD, Dickson RB: Zymogen activation, inhibition, and ectodomain shedding of matriptase. Front Biosci 2008, 13:621-635.
10. Oberst MD, Singh B, Ozdemirli M, Dickson RB, Johnson MD, Lin CY: Characterization of Matriptase Expression in Normal Human Tissues. Journal of Histochemistry & Cytochemistry 2003, 51(8):1017-1025.
11. List K, Haudenschild CC, Szabo R, Chen W, Wahl SM, Swaim W, Engelholm LH, Behrendt N, Bugge TH: Matriptase/MT-SP1 is required for postnatal survival, epidermal barrier function, hair follicle development, and thymic homeostasis. Oncogene 2002, 21(23):3765-3779.
12. List K, Bugge TH, Szabo R: Matriptase: potent proteolysis on the cell surface. Mol Med 2006, 12(1-3):1-7.
13. Basel-Vanagaite L, Attia R, Ishida-Yamamoto A, Rainshtein L, Ben Amitai D, Lurie R, Pasmanik-Chor M, Indelman M, Zvulunov A, Saban S et al: Autosomal recessive ichthyosis with hypotrichosis caused by a mutation in ST14, encoding type II transmembrane serine protease matriptase. American journal of human genetics 2007, 80(3):467-477.
14. Eigenbrot C, Ganesan R, Kirchhofer D: Hepatocyte growth factor activator (HGFA): molecular structure and interactions with HGFA inhibitor-1 (HAI-1). The FEBS journal 2010, 277(10):2215-2222.
15. Szabo R, Molinolo A, List K, Bugge TH: Matriptase inhibition by hepatocyte growth factor activator inhibitor-1 is essential for placental development. Oncogene 2007, 26(11):1546-1556.
16. Ovaere P, Lippens S, Vandenabeele P, Declercq W: The emerging roles of serine protease cascades in the epidermis. Trends Biochem Sci 2009, 34(9):453-463.
17. Benaud C, Dickson RB, Lin CY: Regulation of the activity of matriptase on epithelial cell surfaces by a blood-derived factor. Eur J Biochem 2001, 268(5):1439-1447.
18. Benaud C, Oberst M, Hobson JP, Spiegel S, Dickson RB, Lin CY: Sphingosine 1-phosphate, present in serum-derived lipoproteins, activates matriptase. The Journal of biological chemistry 2002, 277(12):10539-10546.
19. Kiyomiya K, Lee MS, Tseng IC, Zuo H, Barndt RJ, Johnson MD, Dickson RB, Lin CY: Matriptase activation and shedding with HAI-1 is induced by steroid sex hormones in human prostate cancer cells, but not in breast cancer cells. Am J Physiol Cell Physiol 2006, 291(1):40-49.
20. Lee MS, Kiyomiya K, Benaud C, Dickson RB, Lin CY: Simultaneous activation and hepatocyte growth factor activator inhibitor 1-mediated inhibition of matriptase induced at activation foci in human mammary epithelial cells. Am J Physiol Cell Physiol 2005, 288(4):932-941.
21. Tseng IC, Xu H, Chou FP, Li G, Vazzano AP, Kao JP, Johnson MD, Lin CY: Matriptase activation, an early cellular response to acidosis. The Journal of biological chemistry 2010, 285(5):3261-3270.
22. Lee SL, Dickson RB, Lin CY: Activation of hepatocyte growth factor and urokinase/plasminogen activator by matriptase, an epithelial membrane serine protease. The Journal of biological chemistry 2000, 275(47):36720-36725.
23. Nakamura T, Sakai K, Matsumoto K: Hepatocyte growth factor twenty years on: Much more than a growth factor. Journal of gastroenterology and hepatology 2011, 26 Suppl 1:188-202.
24. Lindner G, Menrad A, Gherardi E, Merlino G, Welker P, Handjiski B, Roloff B, Paus R: Involvement of hepatocyte growth factor/scatter factor and met receptor signaling in hair follicle morphogenesis and cycling. FASEB journal : official publication of the Federation of American Societies for Experimental Biology 2000, 14(2):319-332.
25. Chmielowiec J, Borowiak M, Morkel M, Stradal T, Munz B, Werner S, Wehland J, Birchmeier C, Birchmeier W: c-Met is essential for wound healing in the skin. The Journal of cell biology 2007, 177(1):151-162.
26. Takeuchi T, Harris JL, Huang W, Yan KW, Coughlin SR, Craik CS: Cellular localization of membrane-type serine protease 1 and identification of protease-activated receptor-2 and single-chain urokinase-type plasminogen activator as substrates. The Journal of biological chemistry 2000, 275(34):26333-26342.
27. Lee M-S: Matrix-Degrading Type II Transmembrane Serine Protease Matriptase: Its Role in Cancer Development and Malignancy. Journal of Cancer Molecules 2006, 2(5):183-190.
28. Oberst MD, Chen LY, Kiyomiya K, Williams CA, Lee MS, Johnson MD, Dickson RB, Lin CY: HAI-1 regulates activation and expression of matriptase, a membrane-bound serine protease. Am J Physiol Cell Physiol 2005, 289(2):462-470.
29. Zeng L, Cao J, Zhang X: Expression of serine protease SNC19/matriptase and its inhibitor hepatocyte growth factor activator inhibitor type 1 in normal and malignant tissues of gastrointestinal tract. World journal of gastroenterology : WJG 2005, 11(39):6202-6207.
30. Kang JY, Dolled-Filhart M, Ocal IT, Singh B, Lin CY, Dickson RB, Rimm DL, Camp RL: Tissue microarray analysis of hepatocyte growth factor/Met pathway components reveals a role for Met, matriptase, and hepatocyte growth factor activator inhibitor 1 in the progression of node-negative breast cancer. Cancer research 2003, 63(5):1101-1105.
31. Vogel LK, Saebo M, Skjelbred CF, Abell K, Pedersen ED, Vogel U, Kure EH: The ratio of Matriptase/HAI-1 mRNA is higher in colorectal cancer adenomas and carcinomas than corresponding tissue from control individuals. BMC Cancer 2006, 6:176.
32. Riddick AC, Shukla CJ, Pennington CJ, Bass R, Nuttall RK, Hogan A, Sethia KK, Ellis V, Collins AT, Maitland NJ et al: Identification of degradome components associated with prostate cancer progression by expression analysis of human prostatic tissues. Br J Cancer 2005, 92(12):2171-2180.
33. Jin JS, Hsieh DS, Loh SH, Chen A, Yao CW, Yen CY: Increasing expression of serine protease matriptase in ovarian tumors: tissue microarray analysis of immunostaining score with clinicopathological parameters. Mod Pathol 2006, 19(3):447-452.
34. Fuchs E, Horsley V: More than one way to skin. Genes & development 2008, 22(8):976-985.
35. Levy V, Lindon C, Zheng Y, Harfe BD, Morgan BA: Epidermal stem cells arise from the hair follicle after wounding. FASEB journal : official publication of the Federation of American Societies for Experimental Biology 2007, 21(7):1358-1366.
36. Webb A, Li A, Kaur P: Location and phenotype of human adult keratinocyte stem cells of the skin. Differentiation 2004, 72(8):387-395.
37. Pincelli C, Marconi A: Keratinocyte stem cells: friends and foes. Journal of cellular physiology 2010, 225(2):310-315.
38. Tang JC, Marston WA, Kirsner RS: Wound Healing Society (WHS) venous ulcer treatment guidelines: what's new in five years? Wound Repair Regen 2012, 20(5):619-637.
39. Demidova-Rice TN, Hamblin MR, Herman IM: Acute and impaired wound healing: pathophysiology and current methods for drug delivery, part 2: role of growth factors in normal and pathological wound healing: therapeutic potential and methods of delivery. Adv Skin Wound Care 2012, 25(8):349-370.
40. Boulton AJM, Vileikyte L, Ragnarson-Tennvall G, Apelqvist J: The global burden of diabetic foot disease. The Lancet 2005, 366(9498):1719-1724.
41. Boulton AJ: The pathogenesis of diabetic foot problems: an overview. Diabet Med 1996, 13(1):S12-16.
42. Gantwerker EA, Hom DB: Skin: histology and physiology of wound healing. Clinics in plastic surgery 2012, 39(1):85-97.
43. Schneider LA, Korber A, Grabbe S, Dissemond J: Influence of pH on wound-healing: a new perspective for wound-therapy? Archives of dermatological research 2007, 298(9):413-420.
44. Hachem JP, Crumrine D, Fluhr J, Brown BE, Feingold KR, Elias PM: pH directly regulates epidermal permeability barrier homeostasis, and stratum corneum integrity/cohesion. The Journal of investigative dermatology 2003, 121(2):345-353.
45. Eberlein-Konig B, Schafer T, Huss-Marp J, Darsow U, Mohrenschlager M, Herbert O, Abeck D, Kramer U, Behrendt H, Ring J: Skin surface pH, stratum corneum hydration, trans-epidermal water loss and skin roughness related to atopic eczema and skin dryness in a population of primary school children. Acta Derm Venereol 2000, 80(3):188-191.
46. Wilson IA HM, Quill RD, Byrne PJ.: The pH of varicose ulcer surfaces and its relationship to healing. Journal for vascular diseases 1979, 8(4):339-342.
47. Liu Y, Lyle S, Yang Z, Cotsarelis G: Keratin 15 promoter targets putative epithelial stem cells in the hair follicle bulge. The Journal of investigative dermatology 2003, 121(5):963-968.
48. Nayeri F, Olsson H, Peterson C, Sundqvist T: Hepatocyte growth factor; expression, concentration and biological activity in chronic leg ulcers. Journal of dermatological science 2005, 37(2):75-85.
49. Conway K, Ruge F, Price P, Harding KG, Jiang WG: Hepatocyte growth factor regulation: an integral part of why wounds become chronic. Wound Repair Regen 2007, 15(5):683-692.
50. Greener B, Hughes AA, Bannister NP, Douglass J: Proteases and pH in chronic wounds. J Wound Care 2005, 14(2):59-61.
51. Nakanishi K, Uenoyama M, Tomita N, Morishita R, Kaneda Y, Ogihara T, Matsumoto K, Nakamura T, Maruta A, Matsuyama S et al: Gene transfer of human hepatocyte growth factor into rat skin wounds mediated by liposomes coated with the sendai virus (hemagglutinating virus of Japan). Am J Pathol 2002, 161(5):1761-1772.
52. Kishibe M, Bando Y, Tanaka T, Ishida-Yamamoto A, Iizuka H, Yoshida S: Kallikrein-related peptidase 8-dependent skin wound healing is associated with upregulation of kallikrein-related peptidase 6 and PAR2. The Journal of investigative dermatology 2012, 132(6):1717-1724.
53. Falanga V: Wound healing and its impairment in the diabetic foot. The Lancet 2005, 366(9498):1736-1743.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊