跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.23) 您好!臺灣時間:2025/10/25 04:07
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:羅文聰
研究生(外文):Wen-Tsung Lo
論文名稱:低溫燒結Ba2Ti9O20微波材料及其在帶通濾波器之研究
論文名稱(外文):Low Temperature Sintering of Ba2Ti9O20 Microwave Dielectrics and its Application in Bandpass Filters
指導教授:陳立軒陳立軒引用關係
指導教授(外文):Lih-Shan Chen
學位類別:碩士
校院名稱:義守大學
系所名稱:電子工程學系碩士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:118
中文關鍵詞:微波材料陶瓷基板髮夾式帶通濾波器諧波
外文關鍵詞:microwave materialceramic substratehairpin bandpass filterspurious
相關次數:
  • 被引用被引用:4
  • 點閱點閱:357
  • 評分評分:
  • 下載下載:42
  • 收藏至我的研究室書目清單書目收藏:0
由於微波材料Ba2Ti9O20擁有高介電常數、低損耗與穩定的的共振頻率溫度係數,故非常適合作為微波材料之應用。然而Ba2Ti9O20的燒結溫度過高,因此無法應用於低溫燒結的製程,在本研究中利用低溫燒結促進劑的添加來降低Ba2Ti9O20的燒結溫度,並且探討此一材料的微波特性。
在微波電路中,λ/2結構之微波帶通濾波器會產生週期性的諧波,為了消除此一週期性的諧波,因此本篇論文中使用線寬擾動的結構抑制二次諧波。同時設計一個髮夾式帶通濾波器於Ba2Ti9O20陶瓷基板,製程係利用厚膜網印技術,此一微波帶通濾波器可以製作在兩公分見方的小面積中,帶通濾波器的中心頻率為0.9.GHz,中心頻寬比為5%。使用此結構確實能抑制二次諧波,且此濾波器實際量測的插入損S21為-2.43dB,反射損S11為-15.92dB。
By using high permittivity dielectrics, the bandpass filters can be miniaturized. A bandpass filter based on high permittivity dielectrics is proposed in this study. Ba2Ti9O20, with high dielectric constant, low loss and temperature stable is available for dielectric resonators and is adopted as a material in the fabrication of high permittivity ceramic substrates.However, the sintering temperature of Ba2Ti9O20 is higher than 1000℃, which limits its application in low-temperature cofired ceramics.In this study,low temperature sintering dopants were added to reduce the sintering temperature of Ba2Ti9O20.
Bandpass filters implemented with half-wavelength resonators have inherently harmonic frequencies at the multiples of frequency. A novel multistep transmission filter based on the strip-width modulation reformulation is proposed to suppress the spurious passband at the second harmonics of the operating frequency. A three-stage Chebyshev hairpin type bandpass filter was desined and implemented on Ba2Ti9O20 ceramic substrates. The center frequency of the designed bandpass filter is at 0.9 GHz and the fractional bandwidth is 5%. With the multistep structure, the spurious passband at the second harmonics is suppressed and the center frequency of the fabricated bandpass filter is at 0.88GHz and has the characteristics: the insertion loss S21= -2.4 dB, and the return loss S11= -15.71 dB.
中文摘要..........................................I
英文摘要.........................................II
誌謝............................................III
目錄.............................................IV
圖目錄.........................................VIII
表目錄..........................................XII
第一章 緒論.......................................1
1.1 研究目的與動機................................1
1.2 論文大綱......................................3
第二章 理論基礎...................................4
2.1 微波陶瓷材料簡介..............................4
2.2 微波介電理論..................................6
2.2.1 簡介........................................6
2.2.2 相對介電常數(Relative Permittivity, εr )....10
2.2.3 品質因子(Quality Factor,Q).................12
2.2.4 共振頻率溫度係數數(Temperature Coefficient of
Resonant Frequency, τf).....................15
2.3 微波介電陶瓷(Dielectric Creamics).............17
2.3.1 簡介........................................17
2.3.2 介電共振器(DR)..............................17
2.4 傳輸線理論....................................20
2.4.1 傳輸線的電路模型及參數......................20
2.4.2 傳輸線上的電波傳播..........................22
2.4.3 無損傳輸線..................................23
2.4.4 有載的無損傳輸線............................24
2.5 微帶線原理....................................27
2.5.1 微帶傳輸線介紹..............................27
2.5.2 微帶線傳輸型態..............................28
2.5.3 集膚效應....................................31
2.6 微波濾波器的設計原理..........................31
2.6.1 微波濾波器簡介..............................31
2.6.2 濾波器之規格 (Specification) ...............32
第三章 微波介電材料Ba2Ti9O20之製程與特性.........35
3.1 微波介電材料Ba2Ti9O20簡介.....................35
3.2 固態反應法(Solid State Reaction)..............37
3.3 前置藥品......................................38
3.4 實驗流程......................................39
3.4.1 Ba2Ti9O20純相固態反應法之製程...............39
3.4.2 Ba2Ti9O20添加V2O5固態反應法之製程...........41
3.4.3 Ba2Ti9O20陶瓷基板之製程.....................43
3.5 Ba2Ti9O20實驗儀器操作條件.....................45
3.5.1 阿基米德密度量測法..........................45
3.5.2 XRD繞射分析儀...............................45
3.5.3 SEM掃描式電子顯微鏡.........................45
3.5.4 微波介電特性量測............................46
3.6 量測結果與討論................................52
3.6.1 密度量測結果................................52
3.6.2 XRD量測結果.................................56
3.6.3 SEM量測結果.................................61
3.6.4 微波特性量測結果............................65
第四章 步階阻抗共振器理論與結構...................68
4.1 基本濾波器簡介................................68
4.2 步階阻抗共振器介紹(stepped impedance resonator)
SIR...........................................69
4.3 步階阻抗共振器實例............................72
4.3.1 髮夾式帶通濾波器之設計步驟說明..............72
4.3.2 利用SIR設計髮夾式帶通濾波器.................74
4.4 進階步階阻抗共振器型態........................79
4.4.1 單臂步階阻抗共振器..........................79
4.4.2 多重步階阻抗共振器..........................80
第五章 多重步階濾波器設計實例.....................81
5.1 多重步階帶通濾波器設計流程簡介................81
5.2 應用於FR4基板與Al2O3基板之微波帶通濾波器......84
5.2.1 電磁模擬....................................84
5.2.2 實作與量測..................................90
5.3 應用於Ba2Ti9O20基板平面式之微波帶通濾波.......93
5.3.1電磁模擬.....................................93
5.3.2實作與量測...................................96
第六章 結論.......................................99
參考文獻..........................................101
[1] 王怡鈞譯,電磁學,超級科技圖書股份有限公司,民國79年。
[2] Bahl, I. J. and Bhartia, P.”Microwave Solid State
Circuit Design” John Wiley&Sons,Inc. Chapter 6,1988.
[3] A. Okaya: Proc. “F-and X-Band Spectroscopy on Fe3+ in
Rutile”IRE, vol.48, p.1921, 1969.
[4] H. M. O’Brryan, JR. and J. Thomson, JR. “Phase
Equilibria in the TiO2 – rich Region of the System
BaO-TiO2”J.Am.Ceram.Soc.,57[12]. 522-526(1974)
[5] G.Wolfram and H.E.Gobel: Mat.Res.Bull. vol.16,
p.1455 , 1981.
[6] S. Nishgaki, H. Kato, S. Yano and R. Kamamura: Am.
Ceram. Soc. Bull., vol.66, p.1405, 1987.
[7] G. Burns: Solid-State Physics, 1985.
[8] 邱碧秀:電子陶瓷材料 徐氏基金會出版,p.81,1997
[9] J. R. Maldonado and A. H. Meitzler, “Ferroelectric
Ceramic Light Gates Operated in a Voltage-Controlled
Mode,” IEEE Tran. Electron Devices, 17 148-157,1970.
[10] Michel Barsoum, Fundamentals of Ceramics, New York:
McGRAW-Hill International Editions, pp.513-546, 1997.
[11] K. Wakino, T. Nishikawa, Y. Ishikawa, and H. Tamura,
“Dielectric Resonator Materials and Their
Applications for Mobile Communication System,” Br.
Ceram. Trans. J., vol.89, no.2, p39-43, 1990.
[12] 王怡鈞譯,電磁學,超級科技圖書股份有限公司,民國79年。
[13] L. A. Trinogga , G. Kaizhou , I. C. Hunter,
“Practical Microstrip Circuit Design,”Ellis Horwood,
(1991).
[14] Schneider, M. b.,”Microstrip dispersion”,Proc.
IEEE, January,p.144-146, 1972..
[15] David M. Pozar “Microwave Engineering – 2nd
Edition”,1998.
[16] J.K. Plourde, D.F. Linn, H.M.O’ Bryan Jr., and J.
Thomson Jr., “Ba2Ti9O20 as a Microwave Dielectric
Resonators,” J.Am.Ceram.Soc.58[9-10],418-20(1975)
[17] G..H. Jonker, Kwestroo“The Ternary Systems BaO-TiO2-
SnO2 and BaO-TiO2-ZrO2”, J.Am. Ceram.Soc.,41,p.390-
394,1958.
[18] H. M. O’Brryan, JR. and J. Thomson, JR.,“Phase
Equilibria in the TiO2 – rich Region of the System
BaO-TiO2”J.Am.Ceram.Soc.,57[12]. 522-526(1974)
[19] T.negas, R.S.Roth , H.S. Parker and D. Minor,
“Subsolidus Phase Relations in the BaTiO3-TiO2
System ”, J.Solid State Chem.,p.297-307
[20] H. M. O’Brryan, JR. and J. Thomson, JR.,“A New BaO-
TiO2 Compound with Temperatur Stable High
Permittivity and Low Microwave Loss”,
J.Am.Ceram.Soc.,57[10]. 450-53(1974)
[21] W. Jander, “Reaktionen im Festen Zustande bie
Hoheren Temperaturen,” Z.Anorg. Allg. Chem. (in Ger)
163 (1927).
[22] A. M. Ginstling and B. I. Brounshtein, “Concerning
the Diffusion Kinetics of Reactions in Spherical
Particles,” J. Appl. Chem. USSR, 23 , 1327(1950).
[23] G. Valensi, “Cinetique de I`Oxydation de Spherules
et de Poudres Matallics,” C.R. Hebd. Seances Acad.
Sci. (in Fr.) 203 ,309(1936).
[24] R. E. Carter, “Kinetic Model for Solid-State
Reactions,” J. Chem. Phys. 34,2010(1961).
[25] Y. Kobayashi and M. Katoh, “Microwave Measurement of
Dielectric Properties of Low-Loss Materials by the
Dielectric Rod Resonator Method,”IEEE Trans.
On Microwave Theory and Tech. MTT-33,7,(1985).
[26] Hoffmann, R. K.”Handbook of Microwave Integrated
Circuits”, Artech House,Norwood,1987.
[27] D. M. Pozar, Microwave Engineering, John Wiley &
Sons, New Tork, 2nd ED, 1998.
[28] H. K. Yoon, Y. J. Yoon, J. H. Park and S. Y. Lee,
Hairpin-line/ Half-wave Parallel-coupled-line
Narrowband Bandpass Filters Using High Temperature
Superconducting Thin Films, IEEE Trans. Appl.
Supercond. 9 ,3901-3904(1999).
[29] R. R. Mansour, IEEE Trans. Microwave Theory Tech. 50,
750 (2002).
[30] J. S. Hong, and M. J. Lancaster, “Microstrip filters
for RF/microwave applications”, John Wiley & Sons,
New York, 2001.
[31] M. J. Lancaster, “Passive Microwave Device
Applications of High Temperature Superconductors”,
Cambridge Univ. Press, Cambridge, 1997.
[32] M. Makimoto and S. Yamashita ,“Bandpass filters
using parallel coupled stripline stepped impedance
resonator,” IEEE Trans. Microwave Theory and
Tech.,vol.MTT-28,pp.1413-1417,Dec.1980.
[33] A. F. Sheta, J. P. Coupez, G. Tanne, S. Toutain, and
J. P. Bolt,“ Miniature Microstrip Stepped Impedance
Resonator Bandpass Filters and Diplexers for Mobile
Communications,” 1996 IEEE MTT-S Digest, WE2C-2, pp.
607-610, 1996.
[34] Ka Fai Chang and Kam Weng Tam,“Miniaturized Cross-
Coupled Filter With Second and Third Spurious
Responses Suppression” IEEE MICROWAVE AND WIRELESS
COMPONENTS LETTERS, VOL. 15, NO. 2, FEBRUARY ,2005
[35] Si-Weng Fok; Cheong, P.; Kam-Weng Tam; Rui Martins”
A novel microstrip bandpass filter design using
asymmetric parallel coupled-line ” IEEE
international Symposium on 23-26 ,Page(s):404 - 407
Vol. 1 May 2005.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top