跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.54) 您好!臺灣時間:2026/01/12 12:18
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:羅國晏
研究生(外文):Kuo Yen Lo
論文名稱:深層培養條件及發酵槽種類對桑黃菌Phellinusigniarius胞外多醣體產量及生物活性之影響
論文名稱(外文):Effect of submerged culturing conditions and types of fermentors on production and bioactivity of exopolysacchirades by Phellinus igniarius
指導教授:閻立平閻立平引用關係
指導教授(外文):Lipyng Yan
學位類別:碩士
校院名稱:東海大學
系所名稱:食品科學系
學門:農業科學學門
學類:食品科學類
論文種類:學術論文
論文出版年:2008
畢業學年度:97
語文別:中文
論文頁數:136
中文關鍵詞:深層培養桑黃發酵槽胞外多醣體
外文關鍵詞:submerged culturePhellinus igniariusfermentorexopolysaccharide
相關次數:
  • 被引用被引用:14
  • 點閱點閱:1949
  • 評分評分:
  • 下載下載:149
  • 收藏至我的研究室書目清單書目收藏:0
許多研究指出食藥用菇類之多醣體成分具有抗腫瘤、刺激免疫活性、抗氧化、降血糖等生物活性功能,本實驗選用深具療效之桑黃菌(Phellinus igniarius PI)為試驗菌種,探討深層培養條件及不同型式發酵槽對其胞外多醣體生成與發酵液之生物活性(抑菌力、分子量、抗氧化力及β-1,3-D-glucan相對含量)的影響。
研究結果顯示,最適P . igniarius PI菌絲體與胞外多醣生成之深層培養條件為:培養溫度為30℃,最適碳源為1%(w/v)glucose、最適氮源為1%(w/v)yeast extract、添加0.3%(w/v)corn steep liquor生長因子、培養液起始pH 5.4及1.0(glucose / yeast extract,w/w)之碳氮比,以上述最適條件之搖瓶培養可於第8天達到最高菌絲體乾重及(9.39 g/l)胞外多醣產量(1.93 g/l),分別為基礎培養基產量之2.4及10.1倍。
發酵參數顯示攪拌式發酵槽具有最高之比生長速率(μ=0.88 day-1),而氣泡式發酵槽則具有最高之菌絲體產率(Yx/s=122.29 mg/g)及胞外多醣生成速率(Qp=0.39 g/l/day);比多醣產率(Yp/x)及多醣產率(Yp/s)則呈現氣泡式>攪拌式>氣舉式發酵槽之趨勢。
抑菌力測定結果顯示在所使用之六種病原菌測定菌株( (Bacillus cereus BCRC 10250, Escherichia coli BCRC 10239, Micrococcus luteus BCRC 10449, Pseudomonas aeruginosa BCRC 10261, Staphylococcus aureus BCRC 10451 and Salmonella typhimurium BCRC 10241)上並沒有任何抑菌效果。

搖瓶試驗與三種發酵槽所得之胞外多醣體分子量皆相同(約4000 Da),而氣泡式發酵槽所得分子量4000 Da之部分其相對含量為三者最高。
搖瓶試驗及三種不同發酵槽之發酵液在相同濃度(10 g/l)時,以攪拌式與氣泡式發酵槽具分別具最佳之DPPH自由基清除能力(86.94%)與總抗氧化能力(93.26%),彼等抗氧化力之IC50分別為4.83與1.52 g/l。β-(1→3)-D-glucan相對含量之測定亦以氣泡式發酵槽最高(19.22μg/ml LE)。
綜上所述,以具較低剪切力及較佳混合攪拌效果之氣泡式發酵槽培養桑黃菌,最能有效地將所消耗之葡萄糖轉換成胞外多醣與菌絲體,亦較攪拌式或氣舉式發酵槽有更高產量及較佳生物活性之胞外多醣體。以較廉價之食品級培養基取代試藥級培養基模擬工業化量產,可降低業界生產桑黃菌胞外多醣體之成本,並可以提高菌絲體(5.76 g/l)及胞外多醣體(3.74 g/l)之產量,分別為試藥級培養基之1.54及1.67倍,且可提供良好之pH緩衝效果。
The exopolysaccharides (EPS) from many mushrooms have been reported to possess important biological functions including anti-tumor, immuno-stimulating, hypoglycemic and antioxidative capacities. Phellinus igniarius PI, a potently medicinal and EPS-producing mushroom, was selected in this research to study the effect of submerged culturing condition and different types of fermentors on the production and the bioactivity (molecular weight, relative β-(1→3)-D-glucan content, antimicrobial and antioxidative activities) of EPS by P. igniarius PI.
Results showed that factors for optimal submerged-culturing condition were : incubation temperature of 30℃, glucose at 1% (w/v), yeast extract at 1% (w/v), corn steep liquor at 0.3% (w/v), initial pH of 5.4, and a C/N ratio (glucose / yeast extract) of 1.0. Under this optimized culturing condition, maximal yields of mycelial biomass (9.39 g/l) and EPS (1.93 g/l) were reached on the 8th day of incubation from shake flask culture and increased 2.4 and 10.1 times, respectively, as compared with those of the basal medium.
Among the three types of fermentors, the stirred-tank fermentor showed the highest specific growth rate (μ=0.88 day-1). The air bubble fermentor showed the highest biomass yield (Yx/s=122.29 mg/g) and EPS formation rate (QP=0.39 g/l/day). As for specific EPS yield (Yp/x) and EPS yield (Yp/s), results showed an increasing tendency of air bubble fermentor > stirred-tank fermentor > air lift fermentor.
The EPS of P. igniarius PI demonstrated no antibacterial activies against the six bacterial strains (Bacillus cereus BCRC 10250, Escherichia coli BCRC 10239, Micrococcus luteus BCRC 10449, Pseudomonas aeruginosa BCRC 10261, Staphylococcus aureus BCRC 10451 and Salmonella typhimurium BCRC 10241) tested.
Same molecular weight (4000 Da) was found in EPS from the shake flask and three different types of fermentors. The EPS from culture of air bubble fermentor had higher content of molecular weight of 4000 Da.
Under same concentration (10g/l), the fermented cultures from stirred-tank and air bubble fermentors showed the highest DPPH scavenging effect (86.94%, IC50=4.83g/l) and total antioxidant capacity (93.26%, IC50=1.52g/l), respectively, among those from shake flask and three different types of fermentors.The EPS from air bubble fermentor also had the highest relative β-(1→3)-D-glucan contents.
As mentioned above, using air bubble fermentor, which has lower shearing force and better mixing effect as compared with stirred-tank and air bubble fermentors, could produce higher yield of EPS from Phellinus igniarius PI with better bioactivity. Replacing reagent-grade medium components with food-grade components not only reduced the production cost of EPS but also increased the yields of mycelial biomass (5.76 g/l) and exopolysaccharide (3.74 g/l) 2.4 and 10.1 times, respectively. In addition, the food-grade medium components offered a better buffering effect.
目 錄
摘 要.............................................................I
Abstract..........................................................III
壹、前 言............................................................1
貳、文獻回顧..........................................................3
一、食藥用菇類(medicinal mushrooms)簡介..............................3
(一)食藥用菇類的種類...................................................3
(二)食藥用菇類的生態特性...............................................4
(三)食藥用菇類的活性物質...............................................5
(四)食藥用菇類的利用...................................................7
二、食藥用菇類多醣簡介.................................................8
(一)多醣體之結構......................................................9
(二)β-D-glucan之免疫活性..............................................9
三、桑黃菌種介紹.....................................................14
(一)桑黃菌的簡介.....................................................14
(二)桑黃菌多醣體的組成份與相關研究.....................................16
四、食藥用菇類之深層培養..............................................22
(一)深層培養之定義...................................................22
(二)深層培養與傳統固態培養之差異.......................................23
(三)影響深層培養的因素................................................23
(四)深層發酵之應用...................................................27
參、材料與方法.......................................................33
一、試驗材料.........................................................33
(一)試驗菌種.........................................................33
(二)培養基..........................................................33
(三)重要藥品.........................................................36
二、試驗儀器.........................................................37
三、試驗方法.........................................................39
(一)試驗流程.........................................................39
(二)菌種貯存.........................................................40
(三)菌種活化.........................................................40
(四)種菌培養.........................................................40
(五)種菌懸浮液之製作..................................................40
(六)平板培養基試驗...................................................41
(七)搖瓶試驗.........................................................41
(八)發酵槽試驗.......................................................43
四、分析方法.........................................................44
(一)菌絲體乾重測定...................................................44
(二)pH值之測定.......................................................44
(三)胞外多醣之測定...................................................44
(四)殘糖分析.........................................................45
(五)發酵參數之分析...................................................46
(六)分子量之測定.....................................................47
(七)抑菌能力之測定...................................................48
(八)抗氧化力之測定...................................................49
(九)β-(1→3)-D-glucan相對含量測定....................................51
(十)統計分析.........................................................52
肆、結果與討論.......................................................53
一、平板培養基試驗 ...................................................53
(一)培養溫度及不同培養基對桑黃菌菌絲體生成之影響.........................53
(一)碳源對桑黃菌PI胞外多醣生成之影響...................................66
(二)氮源對桑黃菌PI胞外多醣體生成之影響..................................68
(三)生長因子對桑黃菌PI胞外多醣體生成之影響..............................70
(四)培養基起始pH值對桑黃菌PI胞外多醣體生成之影響.........................72
(五)碳氮比對桑黃菌PI胞外多醣體生成之影響................................76
(六)搖瓶培養時間對桑黃菌胞外多醣體生成之影響.............................78
三、不同型式發酵槽培養試驗.............................................81
(一)胞外多醣體生成之影響..............................................81
四、發酵液抑菌力之測定................................................90
五、多醣體分子量之測定................................................90
六、發酵液抗氧化力之測定..............................................93
(一)DPPH自由基清除能力測定............................................95
(二)總抗氧化能力測定..................................................96
七、β-(1→3)-D-glucan相對含量測定.....................................96
八、模擬工業化量產之發酵槽試驗........................................102
伍、結論...........................................................106
陸、參考文獻........................................................109
柒、附錄...........................................................119
王伯徹、陳啟楨。1994。常見食藥用菇類介紹。食品工業發展研究所 新竹 台灣。
王伯徹、陳啟楨、華傑。1998。食藥用菇類的培養與應用。食品工業發展研究所報告M-87-019:187。
王伯徹。2005。菇類的應用研發與產業推動。食品工業 37(5):1~9。
王培銘、黃定國。2001。氣動攪拌式發酵槽。食品工業 33(11):13~26。
水野卓、川合正允 編著;賴慶亮 譯。1999。菇類的化學生化學。國立編譯館 台北 台灣。
杜巍、李元瑞、袁靜。2002。食藥用菌多醣生物活性結構著的關係。中國食用菌 21(2):28~30。
呂淑芳、宮昭雲、傅偉光。2001。靈芝中之水溶性粗多醣分析方法之研究。台灣農業化學與食品科學39(2):153~161。
李微萱。2007。液態培養條件對舞菇(Grifola frondosa)菌絲體及多醣體生產的影響。私立東海大學食品科學系研究所碩士論文。
李秀、賴滋漢。1976。食品分析與檢驗。精華出版社 台中 台灣。
沈葆聖。1993。SAS統計軟體與資料分析。滄海書局 台中 台灣。
林志彬。1996。靈芝的現代研究/特性、栽培、成分、藥理、應用。北京醫科大學出版社。
周柏甫。2001。探討菌體型態對於裂褶菌多醣體生產之影響。國立中央大學化學工程研究所碩士論文。
胡琦桂。1994。真菌球狀菌絲體生長之探討。科學與技術26(9):37~45。
高木繁。2004。桑黃。青春出版社。台灣。
真野俊樹。2003。天然桑黃抗癌‧增強免疫力。安立出版社。台灣。
張毅偉。2003。靈芝中具β-(1→6)分支之 (1→3)-β-D-聚葡萄糖之性質與檢測。國立台灣大學食品科技研究所博士論文。
徐錦堂。1996。中國藥用真菌學。北京醫科大學、中國協和醫科大學聯合出版社。
陳啟禎。1998。菇類二次代謝物質及其利用。食品工業 35(5):1~11。
陳品儒。2005。桑黃菌種生物活性之初步探討。南台科技大學生物科技研究所碩士論文。
梁峙。2001。食用菌深層液體發酵參數控制之研究。食品科學22(1) : 38~41。
奧山 哲、堀江壽人。1;80。茨大農學術報告 28(1)。
傅海慶、陳紹軍、駱文燦、陳漢清、林河通。2007。桑黃液體發酵培養基研究。中國食品學報 7(3):58~63。
游英欽。1995。以搖瓶振盪及小型發酵槽培養,探討培養基組成及物理化學因子對於靈芝多醣生成及生長形態變化之影響。國立交通大學生物科技研究所碩士論文。
黃仁彰。1998。食藥用菇類保健食品之研發。食藥用菇類的培養與應用。食品工業發展研究所 新竹 台灣。
黃家樑。1997。液態培養生產靈芝菌絲體與靈芝多醣之研究。私立東海大學化學工程研究所碩士論文。
黃惠琴。2001。樟芝菌絲體深層培養之研究。私立東海大學化學工程研究所碩士論文。
黃麗娜。1996。食用菇菌絲體深層培養在食品工業上的應用。食品工業28(9):20~26。
曾念開、王秋穎、蘇明聲、王懷凱。2007。營養及環境因素對鮑氏針層孔菌菌絲生長的影響。食用菌4:6~8。
楊全、李艶輝、嚴寒靜、王琦。2004。藥用真菌桑黃液體發酵工藝的研究。廣東藥學院學報20(3):212~220。
齊藤隆、楊燿銘。2004。我們的抗癌完全勝利宣言-20種蘑菇複合菌絲體超水溶性、超抗癌作用、超強免疫調節。亞洲商務管理出版社。台灣。
劉勝宇。2001。探討培養溫度對巴西蘑菇液態醱酵之影響。國立中央大學化學工程與材料工程研究所博士論文。
賴進此。2003。菇類活性物質的分離及其應用。食品工業35(5):2~10。
蕭美玲。2007。深層培養條件與不同型式發酵槽對巴西蘑菇菌Agaricus blazei Murrill胞外多醣體生成之影響。私立東海大學食品科學系研究所碩士論文。
Alexopoulos, C. J. and C. W. Mims. 1979. Introductory Mycology. 3rd. ed., John Wiley & Sons, Inc. New York, NY. USA.
Arnao, M. B., A. Cano, J. Hernadez-Ruiz, F. Carcia-Canovas and M. Acosta. 1996. Inhibition by L-ascorbic acid and other antioxidants of 2,2’-azino-bis(3-ethylbiazoline-6-sulfonic acid)oxidation catalyzed by peroxidase:a new approach for determining total antioxidant status of food. Anal. Biochem. 236: 255-261.
Brauer, H. 1985. Stirred Vessel Reactors. Biotechnology, Vol. 2, Chap.19, pp. 395-444. Weinheim, New York, NY. USA.
Chang, S. T. and P. G. Miles. 2004. Mushrooms. 2nd. ed. P. 2. CRC Press, New York, NY. USA.
Chang, S. T. and P. G. Miles. 1991. Recent trends in world production of cultivated mushrooms. Mushroom J. 503: 15-18.
Chi, J. H., T. M. Ha, Y. H. Kim and Y. D. Rho. 1996. Studies on the main factors affecting the mycelial growth of Phellinus linteus. Korean J. Mycol. 24: 214-222.
Choi, K.H. and C. W. Lee. 2000. Submerged culture of Phellinus linteus in a stirred tank fermentor and an airlift fermentor. J. Korean Inst. Chem. Eng. 38: 310-315.
Dubois, M., K. A. Gilles, J. K. Hamilton, P. A. Rebers and F. Smith. 1956. Colorimetric Method for Determination of Sugars and Related Substances. Anal. Chem. 28 (3): 350-356.
Eyal, J. 1991. Mushroom mycelium growth in submerged culture-potential food applications. In:Biotechnology and Food Ingeredints, Goldberg, I. and Williams (Ed.) pp. 31-64, R., Van Nostrand Reinhold, New York, NY. USA.
Feustel I. C. and H. Humfeld. 1946. A new laboratory fermenter for Yeast production investigations. J. Bacteriol. 52(2): 229-235.
Forage, R. G., D. E. F. Harrison and D. E. Pitt. 1985. Effect of environment on microbial activity. Compr. Biotechnol. 1: 253-279.
Han, S. B., C. W. Lee, J. S. Kang, Y. D. Yoon, K. H. Lee, K. Lee, S. K. Park and H. M. Kim. 2006. Acidic polysaccharide from Phellinus linteus inhibits melanoma cell metastasis by blocking cell adhesion and invasion. Int. Immunopharmacol. 6(4): 697-702.
Hikino, H., C. Konno, Y. Mirin and T. Hayashi. 1985. Isolation and hypoglycemic activity of ganoderans A and B, glycans of Ganoderma Iucidum fruit bodies. Planta Medica. 4: 339-340.
Hur, J. M., C. H. Yang, S. H. Han, S. H. Lee, Y. O. You, J. C. Park and K. J. Kim. 2004. Antibacterial effect of Phellinus linteus against methicillin-resistant Staphylococcus aureus. Fitoterapia. 75(6): 603-605.
Hwang, H. J., S. W. Kim, C. P. Xu, J. W. Choi and J. W. Yun. 2003a. Production and molecular characteristics of four groups of exopolysaccharides from submerged culture of Phellinus gilvus. J. Appl. Microbiol. 94: 708-719.
Hwang, H. J., S. W. Kim, C. P. Xu, J. W. Choi and J. W. Yun. 2003b. Production and characterization of exopolysaccharides from submerged culture of Phellinus linteus KCTC 6190. Enzyme Microb. Technol. 33: 309-319.
Humfeld, H. 1948. The production of mushroom mycelium (Agaricus camperstris) in submerged culture. Science. 107: 373.
Humfeld, H. 1947. An improved laboratory-scale fermenter for submerged culture investigations. J. Bacteriol. 54(6): 689-696.
Kang, T. S., D. G. Lee and S. Y. Lee. 1997. Isolation and mycelial cultivation submerged of Phellinus spp. Korean J. Mycol. 25: 257-267.
Kiho, T., J. Hui, A. Yamane and S. Ukai. 1993. Polysaccharides in fungi. XXXII. Hypoglycemic activity and chemical properties of a polysaccharide from the cultural mycelium of Cordyceps sinensis. Biol. Pharm. Bull. 16: 1291-1293.
Kim, G. Y., Y. H. Oh and Y. M. Park. 2003a. Acidic polysaccharide isolated from Phellinus linteus induces nitric oxide-mediated tumoricidal activity of macrophages through protein tyrosine kinase and protein kinase C. Biochem. Biophys. Res. Commun. 309(2): 399-407.
Kim, S. W., H. J. Hwang, C. P. Xu, J. M. Sung, J. W. Choi and J. W. Yun. 2003b. Optimization of submerged culture process for the production of mycelial biomass and exo-polysaccharides by Cordyceps militaris C738. J. Appl. Microbiol. 94: 120-126.
Kim J. L., H. K. Kwon, G. T. Chun, K. J. Kim and K. K. Lee. 2000. Studies on cultural characteristics for high density fermentation of Phellinus linteus WI-001. Korean J. Appl. Microbiol. Biotechnol. 28: 105-110.
Kim, D. H., B. K. Yang, S. C. Jeong, J. B. Park, S. B. Cho, S. Das, J. W. Yun and C. H. Song. 2001. Production of a hypoglycemic, extracellular polysaccharide from the submerged culture of the mushroom, Phellinus linteus. Biotechnol. Lett. 23: 513-517.
Kim, H. O., J. M. Lim, J. H. Joo, S. W. Kim, H. J. Hwang, J. W. Choi and J. W. Yun. 2005. Optimization of submerged culture condition for the production of mycelial biomass and exopolysaccharides by Agrocybe cylindracea. Bioresour. Technol. 96: 1175-1182.
Kim, S. H., Y. S. Song, S. K. Kim, B. C. Kim, C. J. Lim and E. H. Park. 2004. Anti-inflammatory and related pharmacological activities of the n-BuOH subfraction of mushroom Phellinus linteus. J. Ethnopharmacol. 93(1): 141-146.
Ko, Y. T. and Y. L. Lin. 2004. 1,3-β-glucan quantification by a fluorescence microassay and analysis of its distrivution in foods. J. Agric. Food Chem. 52: 3313-3318.
Lee, J. H., S. M. Cho, K. S. Ko and I. D. Yoo. 1995. Effect of cultural condition on polysaccharide production and its monosaccharide composition in Phellinus linteus. Korean J. Mycol. 23: 325-331.
Lee, K. M., S. Y. Lee and H. Y. Lee. 1999. Bistage anotrol of pH for improving exopolysaccharide production from mycelia of Ganoderma lucidium in an air-lift fermentor. J. Biosci. Bioeng. 88: 646-650.
Lee, B. C., J. T. Bae, H. B. Pyo, T. B. Choe, S. W. Kim, H. J. Hwang and J. W. Yun. 2004. Submerged culture conditions for the production of mycelial biomass and exopolysaccharides by the edible Basidiomycete Grifola frondosa. Enzyme Microb. Technol. 35: 369-376.
Lee, I. K. and B. S. Yun. 2007. Highly oxygenated and unsaturated metabolites providing a diversity of hispidin class antioxidants in the medicinal mushrooms Inonotus and Phellinus. Bioorg. Med. Chem. 15: 3309-3314.
Li, G., D. H. Kim, T. D. Kim, B.J. Park, H. D. Park, J. I. Park, M. K. Na, H. C. Kim, N. D. Hong, K. Lim, B. D. Hwang and W. H. Yoon. 2004. Protein-bound polysaccharide from Phellinus linteus induces G2/M phase arrest and apoptosis in SW480 human colon cancer cells. Cancer Lett. 216(2): 175-181.
Li, X., L. L. Jiao, X. Zhang, W. M. Tian, S. Chen and L. P. Zhang. 2008. Anti-tumor and immunomodulating activities of proteoglycans from mycelium of Phellinus nigicans and culture medium. Int. immunopharmacol. 8: 909-915.
Lim, D. 1998. Microbiology. 2nd. (Ed.) pp. 132-133. WCB/Mcgraw-Hill, New York, NY. USA.
Litchfield, J. H. 1967. Submerged Culture of Mushroom Mycelium. In:Microbiology Technology, Peppler, H. J. (Ed.) pp. 107-144, Reinhold Publishing Corporation, New York, NY. USA.
Martin, S. M. 1964. Conservation of microorganisms. Ann. Rev. Microbiol. 18: 1-16
Miller, N. J., C. Rice-Evans, M. J. Davies, V. Gopinathan and A. Milner. 1993. A novel method for measuring antioxidant status in premature neonates. Clin. Sci. 84: 407-412.
Margaritis, A. and J. E. Zajic. 1978. Biotechnology Review-mixing, mass transfer, and scale-up of polysaccharide fermentations. Biotechnol. Bioeng. 2: 939-1001.
Metz, B. and N. W. F. Kossen. 1977. The growth of molds in the form of pellets:Literature review. Biotechnol. Bioeng. 19: 781-799.
Mizuno, T. 1995. Bioactive biomolecules of mushrooms: Food function and medicinal effect. Food Rev. Int. 11: 151-161.
Morigiwa, A., K. Kitabatake, Y. Fujimoto and N. Ikekawa. 1986. Angiotensin converting enzyme-inhibitory triterpenes from Ganoderma lucidum. Chem. Pharm. Bull 34(7): 3025-3028.
Park, J. P., S. W. Kim, H. J. Hwang and J. W. Yun. 2001. Optimization of submerged culture conditions for the mycelial growth and exo-biopolymer production by Cordyceps militaris. Lett. Appl. Microbiol. 33: 6-81.
Rau, U., E. Gura, E. Olszewski and F. Wagner. 1992. Enhanced glucan formation of filamentous fungi by effective mixing, oxygen limitation and fed-batch processing. J. Ind. Microbiol. 9: 19-26.
Sakagami, H., M. Ikeda and K. Konno. 1989. Stimulation of tumor necrosis factor-induced human myelogenous leukemic cell differentiation by high molecular weight PSK subfraction. Biochem. Biophys. Res. Commun. 162: 597-603.
Seviour, R. J. and B. Kristiansen. 1983. Effect of ammonium ion concentration on polysaccharide production by Aureobasidium pullulans in batch culture. European J. Appl. Microbiol. Biotechnol. 17: 178-181.
Shimada, K., K. Fujikawa, K. Yahara and T. Nakamura. 1992. Antioxidative properties of xanthan on the autoxidation of soybean oil in cyclodextrin emulsion. J. Agric. Food Chem. 40: 945-948.
Shon, M. Y., T. H. Kim and N. J. Sung. 2003. Antioxidants and free radical scavenging activity of Phellinus baumii (Phellinus of Hymenochaetaceae) extracts. Food Chem. 82: 593-597.
Shu, C. H. and M. Y. Lung. 2004. Effect of pH on the production and molecular weight distribution of exopolysaccharide by Antrodia camphorata in batch cultures. Process Biochem. 39(8): 931-937.
Song, Y. S., S. H. Kim, J. H. Sa, C. Jin, C. J. Lim and E. H. Park. 2003. Anti-angiogenic, antioxidant and xanthine oxidase inhibition activities of the mushroom Phellinus linteus. J. Ethnopharmacol. 88(1): 113-116.
Song, K. S., S. M. Cho, J. H. Lee, H. M. Kim, S. B. Han, K. S. Ko and I. D. Yoo. 1995. B-lymphocyte-stimulating polysaccharides from mushroom Phellinus linteus. Chem. Pharm. Bull. 43(12): 2105-2108.
Wang, Y. and B. McNeil. 1995. Effect of temperature on scleroglucan synthesis and organic acid production by Sclerotium glucanicum. Enzyme Microbiol. Technol. 17: 893-899.
Xu, C. P., S. W. Kim, H. J. Hwang, J. W. Choi and J. W. Yun. 2003. Optimization of submerged culture conditions for mycelial growth and exo-biopolymer production by Paecilomyces tenuipes C240. Process Biochem. 38: 1025-1030.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top