跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.19) 您好!臺灣時間:2025/09/05 02:52
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張睿程
研究生(外文):Chang, Jui-Chung
論文名稱:應用於腦波意念判斷之多通道線上遞迴 獨立成份分析晶片設計
論文名稱(外文):A System-on-Chip Design of Multi-channel Online Recursive Independent Component Analysis for Brain Computer Interface
指導教授:方偉騏
指導教授(外文):Fang, Wai-Chi
口試委員:闕河鳴林伯昰黃俊銘
口試委員(外文):Chiueh, Her-mingLin,Bor-ShyhHuang, Chun-Ming
口試日期:2015-10-02
學位類別:碩士
校院名稱:國立交通大學
系所名稱:電子工程學系 電子研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:104
語文別:英文
論文頁數:89
中文關鍵詞:線上遞迴獨立成份分析腦波訊號處理數位信號處理系統晶片設計腦機介面
外文關鍵詞:Online recursiveICAEEG signal processingEEG signal processingSystem on chip designBrain computer interface
相關次數:
  • 被引用被引用:0
  • 點閱點閱:327
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
近年來,腦機介面(BCI)蓬勃發展。這類的介面使人可以經過大腦直接控制機器。為了增加此類介面的發展性,以及其運作的穩定性、正確性,即時的擷取到乾淨的腦電訊號是個重要的課題。
此研究主要設計高效能且低功耗的腦機介面系統晶片,整合腦波獨立通道成分析處理器以及腦波特徵識別處理器。腦波訊號取得後經由獨立成份分析處理,再將腦波特徵做即時性的辨識。本研究之晶片設計所採用的是線上遞迴獨立通道成分分析演算法,此演算法提供一種遞迴歸納最小平方近似之線上分析,其特點是一次運算只利用每個通道的一個取樣訊號即可做訓練,其輸出延遲短。比起先前的演算法,不需要做大量的資料暫存,也更具有資料處理的即時性,更適合以晶片的方式來呈現。然而,系統運算過程中必須要大量且重複使用奇異值分解來完成矩陣逆運算。由於奇異值分解為整個系統中運算量最為龐大的處理單元,在高精準度和即時輸出的前提下,奇異值分解的運算時間和效能都會直接影響系統之結果。此整合腦機介面與線上遞迴獨立通道成分分析處理器已被我們實現於TSMC 40nm COMS 製程,其核心所占的面積為975×975 μm2。此晶片已透過Agilent 93000 SoC tester完成功能測試,在100M Hz操作頻率與0.9伏核心電壓之下,功率消耗為10.895 mW。經由此晶片的處理,每個腦波訊號能於其取樣後的0.0078125秒內及時得到分離乾淨的腦波訊號。

Recently, brain computer interfaces (BCIs) are developed to control machines through EEG directly. In order to enhance the feasibility, reliability, and accuracy of BCIs, EEG signals used for BCI applications should be acquired from human without artifacts in real-time.
This thesis aims to design an effective and low power system on chip (SoC) of multi-channel EEG signal processor for real-time brain-computer interface (BCI) system. The architecture of the SoC comprises an independent component analysis (ICA) processor with a brain wave identity processor based on canonical correlation analysis (CCA) algorithm. Biomedical signals acquired from front-end sensor modules will be processed in ORICA processor and brain wave identity processor in real-time. In this thesis, a chip was designed based on an online recursive ICA (ORICA) algorithm, which provided an online analysis for recursive least square approximation. This type of ICA features that the output delay can be reduced and the capacity to train data by using a single sample signal extracted from each channel. Compared with other algorithms, ORICA enables real-time data processing, implemented on a chip, and does not require a lot of temporary data storage. However, the singular value decomposition (SVD) processor is widely used to complete the matrix inverse calculation during the system operation in this work. Because the SVD processor spends the most massive amount of computation in the whole system, its computation time and performance will directly affect the result of the system on the premise of the real-time and high accuracy requirements. The System-On-Chip design proposed in this thesis was implemented by using TSMC 40 nm CMOS technology. The core area of the chip is 975*975 μm2. The performance evaluation is done through Agilent 93000 SoC tester. The result shows that the power consumption is 10.895mW with 100 MHz operation frequency and 0.9 V core power. The separated EEG signals are acquired in 0.0078125s after each EEG sample. This work includes a high accuracy ICA processing and a brain wave identification to provide a more accurate EEG information extraction to various BCI systems in real-time.

摘要 i
Abstract ii
致謝    iv
List of Tables vii
List of Figures viii
Chapter 1 Introduction 1
1.1 Electroencephalography 1
1.2 The Motivations for an Chip implementation of Real-time EEG System based on ORICA 7
1.3 Scope and Contributions 8
1.4 Organization of the Thesis 9
Chapter 2 Algorithms 11
2.1 Algorithm of On-line Recursive ICA 11
2.2 Algorithm of Canonical Correlation Analysis 16
2.3 Algorithm of Singular Value Decomposition 17
2.3.1 Iterative Decomposition of Angle of Rotation 21
2.3.2 Scale-factor 22
Chapter 3 System Architecture 24
3.1 Overall Architecture of the ORICA Processor 26
3.1.1 Preprocessing Unit 28
3.1.2 ORICA training Unit 31
3.2 Shared Resource Unit 39
3.2.1 SVD 39
3.2.2 Floating Matrix Multiplier Unit 50
Chapter 4 Chip Implementation 53
4.1 Chip Design Flow 53
4.1.1 Logic Synthesis and Design Constrains 55
4.1.2 Chip IO Definition 56
4.1.3 SOC Encounter Design Flow 58
4.1.4 DRC and LVS Verification 62
4.1.5 DFM Verification 64
4.2 Chip Layout and Specification 64
4.3 Chip Tape-out and Testing 66
Chapter 5 Experimental Result 68
5.1 Performance Analysis of the 8-Channel ORICA Processor 68
5.1.1 Simulation Result of Simulated EEG Patterns 70
5.1.2 Simulation Result of the Real EEG Patterns 75
5.2 Comparison 80
Chapter 6 Conclusion 84
6.1 Conclusion 84
Reference 86

[1] Nunez PL (2002) EEG. In VS Ramachandran (Ed) Encyclopedia of the Human Brain, La Jolla: Academic Press, 169-179
[2] R. Vigario, “Extraction of ocular artifacts from EEG using independent component analysis,” Electroencephalogr. Clin. Neurophysiol., vol. 103, pp. 395–404, 1997.
[3] Rankine, L.; Stevenson, N.; Mesbah, M.; Boashash, B., “A Nonstationary Model of Newborn EEG,” Biomedical Engineering, IEEE Transactions on , vol.54, no.1, pp.19-28, Jan. 2007.
[4] J. R. Wolpaw, N. Birbaumer, D. J. McFarland, G. Pfurtscheller, and T. M. Vaughan, “Brain-computer interfaces for communication and control,” Clinical Neurophysiol., vol. 113, no. 6, pp. 767–791, Jun. 2002
[5] E. E. Sutter, “The brain response interface: Communication through visually-induced electrical brain response,” J. Microcomput. Appl., vol. 15, pp. 31–45, 1992.
[6] K. Abdelhalim, V. Smolyakov, and R. Genov, “Phase- synchronization early epileptic seizure detector VLSI architecture,” IEEE Trans. Biomed. Circuits Syst., vol. 5, no. 5, pp. 430–438, Oct. 2011.
[7] M. T. Salam, M. Sawan, and D. K. Nguyen, “A novel low-power-implantable
[8] epileptic seizure-onset detector,” IEEE Trans. Biomed. Circuits Syst., vol. 5, no. 6, pp. 568–578, Dec. 2011.
[9] M. Mirzaei, M. T. Salam, D. K. Nguyen, and M. Sawan, “A fully-asynchronous low-power implantable seizure detector for self-triggering treatment,” IEEE Trans. Biomed. Circuits Syst., vol. 7, no. 5, pp. 563–572, Oct. 2013.
[10] W.-M. Chen et al., “A fully integrated 8-Channel closed-loop neuralprosthetic SoC for real-time epileptic seizure control,” in Proc. Int. Solid State Circuits Conf., Dig. Tech. Papers, Feb. 2013, pp. 286–287.
[11] T.-J. Chen, S.-C. Lee, C.-H. Yang, C.-F. Chiu, and H. Chiueh, “A 28.6 mixed-signal processor for epileptic seizure detection,” in Proc. Int. Symp. VLSI Circuits, Jun. 2013, pp. 52–53.
[12] A. Hyvärinen, J. Karhunen, and E. Oja, Independent Component Analysis. New York, NY, USA: Wiley, 2001.
[13] A. Hyvärinen and E. Oja, “A fast fixed-point algorithm for independent component analysis,” Neural Comput., vol. 9, no. 7, pp. 1483–1492, Oct. 1997.
[14] S.-F. Liang, Y.-C. Chen, Y.-L. Wang, P.-T. Chen, C.-H. Yang, and H. Chiueh, “A hierarchical approach for on-line temporal lobe seizure detection in long-term intracranial EEG recordings,” J. Neural Eng., vol. 10, no. 4, pp. 1–14, May 2013, NIC Special Issue.
[15] Y.-C. Chen, “An ICA-based Hierarchical Approach for on-line Seizure Detection in Long-term EEG Recodings,” M.S. thesis, National Cheng Kung Univ., Tainan City, Taiwan, 2010.
[16] A. Hyvärinen, “Fast and robust fixed-point algorithms for independent component analysis,” IEEE Trans. Neural Netw., vol. 10, no. 3, pp. 626–634, May 1999.
[17] Akhtar, M.T.; T-P Jung; Makeig, S.; Cauwenberghs, G.; Recursive independent component analysis for online blind source separation,” Circuits and Systems (ISCAS), 2012 IEEE International Symposium on , vol., no., pp.2813-2816, 20-23 May 2012.
[18] C-W Feng; T-K Hu; J-C Chang; W-C Fang, "A reliable brain computer interface implemented on an FPGA for a mobile dialing system," in Circuits and Systems (ISCAS), 2014 IEEE International Symposium on , vol., no., pp.654-657, 1-5 June 2014
[19] C. Jutten and J. Herault, “Blind separation of sources, part 1: An adaptive algorithm based on neuromimetic architecture,” Signal Processing, vol. 24 no. 1, pp 1–10, 1991.
[20] S. Amari, “Natural gradient works efficiently in learning,” Neural Computation, vol. 10, no. 2, pp. 251–276, 1998.
[21] A. J. Bell and T. J. Sejnowski, An information-maximization approach to blind separation and blind deconvolution,” Neural Computation, vol. 7, pp. 1129–1159, 1995.
[22] T. Lee, M. Girolami, and T. J. Sejnowski, “Independent component analysis using an extended Infomax algorithm for Mixed subgaussian and supergaussian sources,” Neural Computation, vol. 11, pp. 417–441, 1997.
[23] J. F. Cardoso and A. Souloumiac, “Blind beamforming for non-Gaussian signals,” IEE Proc. F, vol. 140, no. 6, pp. 362–370, Dec., 1993.
[24] A. Hyv¨arinen and E. Oja, “A fast fixed-point algorithm for independent component analysis,”Neural Computation, vol. 9, no. 7, pp. 1483–1492, 1997.
[25] X. Zhu, X. Zhang, and J. Ye, “Natural gradient-based recursive least squares algorithm for adaptive blind source separation,” Science in China Series F: Information Sciences, vol. 47, no. 1, pp. 55–65, 2004.
[26] G. Yin, “Adaptive filtering with averaging,” in Adaptive Control, Filtering, and Signal Processing,K. J. Astrom, G. C. Goodwin, and P. R. Kumar, Eds. New York:Springer-Verlog,1995.
[27] Chih-Wei Feng; Ting-Kuei Hu; Jui-Chung Chang; Wai-Chi Fang, "A reliable brain computer interface implemented on an FPGA for a mobile dialing system," in Circuits and Systems (ISCAS), 2014 IEEE International Symposium on , vol., no., pp.654-657, 1-5 June 2014
[28] Hsu, Y.-H., Fu, C.-C., Fang, W.-C., Sang, T.-H.: A VLSI-inspired image reconstruction algorithm for continuous-wave diffuse optical tomography systems. In: IEEE/NIH Life Science Systems and Applications Workshop, LiSSA 2009, April 9-10, pp. 88–91
[29] J. S.Walther, “The story of unified CORDIC,” J. VLSI Signal Process.,vol. 25, no. 2, pp. 107–112, June 2000.
[30] J.-M. Muller, Elementary Functions: Algorithms and Implementation. Boston, MA: Birkhauser Boston, 2006.
[31] J. E. Volder, “The CORDIC trigonometric computing technique,” IRETrans. Electron. Computers, vol. EC-8, pp. 330–334, Sept. 1959.
[32] K-J Huang; W-Y Shih; J-C Liao; W-C Fang, "A VLSI design of singular value decomposition processor used in real-time ICA computation for multi-channel EEG system," in Circuits and Systems (ISCAS), 2013 IEEE International Symposium on , vol., no., pp.413-416, 19-23 May 2013.
[33] EEGLAB - Open Source MATLAB Toolbox for Electrophysiological Research URL: http://sccn.ucsd.edu/eeglab/
[34] C. M. Kim, H. M. Park, T. Kim, Y. K. Choi, and S. Y. Lee,“FPGA implementation of ICA algorithm for blind signal separation and adaptive noise canceling,” IEEE Trans. Neural Netw., vol. 14, no. 5,pp. 1038–1046, Sep. 2003.
[35] K. K. Shyu, M. H. Lee, Y. T. Wu, and P. L. Lee, “Implementation of pipelined fastICA on FPGA for real-time blind source separation,” IEEE Trans. Neural Netw., vol. 19, no. 6, pp. 958–970, Jun. 2008.
[36] H. Du and H. Qi, “A reconfigurable FPGA system for parallel independent component analysis,” EURASIP J. Embedded Syst., vol. 2006, no. 23025, pp. 1–12, 2006.
[37] H. Du, H. Qi, and G. D. Peterson, “Parallel ICA and its hardware implementation in hyperspectral image analysis,” Proc. SPIE, vol. 5439, pp. 74–83, Apr. 2004.
[38] W. C. Huang, S. H. Hung, J. F. Chung, M. H. Chang, L. D. Van, and C. T. Lin, “FPGA implementation of 4-channel ICA for on-line EEG signal separation,” in Proc. IEEE BioCAS, Nov. 2008, pp. 65–68.
[39] C-K Chen, E Chua, C-C Fu, S-Y Tseng, and W-Ch Fang, “ A Hardware-Efficient VLSI Implementation of a 4-Channel ICA Processor for Biomedical Signal Measurement,” in Proc. IEEE Int. Conf. on Consumer Electronics, Jan. 2011, pp. 607–608.
[40] L-D Van, D-Y Wu, and C-S Chen, “Energy-Efficient FastICA Implementation for Biomedical Signal Separation,” IEEE Trans. Neural Networks, vol.22, no.11, pp.1809-1822, Nov. 2011.
[41] N. Shirazi, A. Walters, and P. Athanas, “Quantitative analysis of floating point arithmetic on FPGA based custom computing machines,”in Proc. IEEE Symp. FPGAs Custom Comput. Mach., 1995,pp. 155–162.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
1. 基於穩態視覺誘發電位之多通道腦機介面電話撥號系統實作
2. 基於總體經驗模態分解之 有效PPG訊號處理系統的實現及驗證
3. 基於總體經驗模態分解演算法的晶片系統設計及其於光電容積描記法訊號處理系統的應用
4. 擴散光學斷層掃描之三維非線性六邊形重建演算法系統晶片設計
5. 應用於乳房腫瘤影像之擴散光學斷層掃描三維多層重建演算法系統晶片設計與實現
6. 具有自動雜訊去除機制之32多通道腦波擷取系統晶片設計
7. 應用於心臟監護系統之即時偵測心律不整與睡眠呼吸中止症之演算法實現
8. 基於遞迴最小平方自適應濾波器演算法的無線式光容積描計訊號之多項生理參數監測系統實作
9. 基於錯誤相關電位應用於線上與非線上混合腦機介面系統
10. 整合心電圖訊號與光電容積描記法訊號之基於總體經驗模態分解訊號處理暨多項生理資訊監測系統實現及驗證
11. 基於低功耗動脈光容積描計法訊號調變與解調變晶片設計之可攜式生理監測系統實作
12. 應用於無線床邊監護系統之高集成度多核生醫信號處理晶片設計與系統實作
13. 應用於十六通道腦波即時處理系統之高效能奇異值分解處理器與線上遞迴獨立通道成分分析之系統晶片設計與實作
14. 基於希爾伯特-黃轉換之應用於生醫音頻訊號處理系統晶片設計
15. 高效率多通道線上遞迴獨立成份分析晶片設計及其於可攜式即時腦波系統的應用