|
[1] Nunez PL (2002) EEG. In VS Ramachandran (Ed) Encyclopedia of the Human Brain, La Jolla: Academic Press, 169-179 [2] R. Vigario, “Extraction of ocular artifacts from EEG using independent component analysis,” Electroencephalogr. Clin. Neurophysiol., vol. 103, pp. 395–404, 1997. [3] Rankine, L.; Stevenson, N.; Mesbah, M.; Boashash, B., “A Nonstationary Model of Newborn EEG,” Biomedical Engineering, IEEE Transactions on , vol.54, no.1, pp.19-28, Jan. 2007. [4] J. R. Wolpaw, N. Birbaumer, D. J. McFarland, G. Pfurtscheller, and T. M. Vaughan, “Brain-computer interfaces for communication and control,” Clinical Neurophysiol., vol. 113, no. 6, pp. 767–791, Jun. 2002 [5] E. E. Sutter, “The brain response interface: Communication through visually-induced electrical brain response,” J. Microcomput. Appl., vol. 15, pp. 31–45, 1992. [6] K. Abdelhalim, V. Smolyakov, and R. Genov, “Phase- synchronization early epileptic seizure detector VLSI architecture,” IEEE Trans. Biomed. Circuits Syst., vol. 5, no. 5, pp. 430–438, Oct. 2011. [7] M. T. Salam, M. Sawan, and D. K. Nguyen, “A novel low-power-implantable [8] epileptic seizure-onset detector,” IEEE Trans. Biomed. Circuits Syst., vol. 5, no. 6, pp. 568–578, Dec. 2011. [9] M. Mirzaei, M. T. Salam, D. K. Nguyen, and M. Sawan, “A fully-asynchronous low-power implantable seizure detector for self-triggering treatment,” IEEE Trans. Biomed. Circuits Syst., vol. 7, no. 5, pp. 563–572, Oct. 2013. [10] W.-M. Chen et al., “A fully integrated 8-Channel closed-loop neuralprosthetic SoC for real-time epileptic seizure control,” in Proc. Int. Solid State Circuits Conf., Dig. Tech. Papers, Feb. 2013, pp. 286–287. [11] T.-J. Chen, S.-C. Lee, C.-H. Yang, C.-F. Chiu, and H. Chiueh, “A 28.6 mixed-signal processor for epileptic seizure detection,” in Proc. Int. Symp. VLSI Circuits, Jun. 2013, pp. 52–53. [12] A. Hyvärinen, J. Karhunen, and E. Oja, Independent Component Analysis. New York, NY, USA: Wiley, 2001. [13] A. Hyvärinen and E. Oja, “A fast fixed-point algorithm for independent component analysis,” Neural Comput., vol. 9, no. 7, pp. 1483–1492, Oct. 1997. [14] S.-F. Liang, Y.-C. Chen, Y.-L. Wang, P.-T. Chen, C.-H. Yang, and H. Chiueh, “A hierarchical approach for on-line temporal lobe seizure detection in long-term intracranial EEG recordings,” J. Neural Eng., vol. 10, no. 4, pp. 1–14, May 2013, NIC Special Issue. [15] Y.-C. Chen, “An ICA-based Hierarchical Approach for on-line Seizure Detection in Long-term EEG Recodings,” M.S. thesis, National Cheng Kung Univ., Tainan City, Taiwan, 2010. [16] A. Hyvärinen, “Fast and robust fixed-point algorithms for independent component analysis,” IEEE Trans. Neural Netw., vol. 10, no. 3, pp. 626–634, May 1999. [17] Akhtar, M.T.; T-P Jung; Makeig, S.; Cauwenberghs, G.; Recursive independent component analysis for online blind source separation,” Circuits and Systems (ISCAS), 2012 IEEE International Symposium on , vol., no., pp.2813-2816, 20-23 May 2012. [18] C-W Feng; T-K Hu; J-C Chang; W-C Fang, "A reliable brain computer interface implemented on an FPGA for a mobile dialing system," in Circuits and Systems (ISCAS), 2014 IEEE International Symposium on , vol., no., pp.654-657, 1-5 June 2014 [19] C. Jutten and J. Herault, “Blind separation of sources, part 1: An adaptive algorithm based on neuromimetic architecture,” Signal Processing, vol. 24 no. 1, pp 1–10, 1991. [20] S. Amari, “Natural gradient works efficiently in learning,” Neural Computation, vol. 10, no. 2, pp. 251–276, 1998. [21] A. J. Bell and T. J. Sejnowski, An information-maximization approach to blind separation and blind deconvolution,” Neural Computation, vol. 7, pp. 1129–1159, 1995. [22] T. Lee, M. Girolami, and T. J. Sejnowski, “Independent component analysis using an extended Infomax algorithm for Mixed subgaussian and supergaussian sources,” Neural Computation, vol. 11, pp. 417–441, 1997. [23] J. F. Cardoso and A. Souloumiac, “Blind beamforming for non-Gaussian signals,” IEE Proc. F, vol. 140, no. 6, pp. 362–370, Dec., 1993. [24] A. Hyv¨arinen and E. Oja, “A fast fixed-point algorithm for independent component analysis,”Neural Computation, vol. 9, no. 7, pp. 1483–1492, 1997. [25] X. Zhu, X. Zhang, and J. Ye, “Natural gradient-based recursive least squares algorithm for adaptive blind source separation,” Science in China Series F: Information Sciences, vol. 47, no. 1, pp. 55–65, 2004. [26] G. Yin, “Adaptive filtering with averaging,” in Adaptive Control, Filtering, and Signal Processing,K. J. Astrom, G. C. Goodwin, and P. R. Kumar, Eds. New York:Springer-Verlog,1995. [27] Chih-Wei Feng; Ting-Kuei Hu; Jui-Chung Chang; Wai-Chi Fang, "A reliable brain computer interface implemented on an FPGA for a mobile dialing system," in Circuits and Systems (ISCAS), 2014 IEEE International Symposium on , vol., no., pp.654-657, 1-5 June 2014 [28] Hsu, Y.-H., Fu, C.-C., Fang, W.-C., Sang, T.-H.: A VLSI-inspired image reconstruction algorithm for continuous-wave diffuse optical tomography systems. In: IEEE/NIH Life Science Systems and Applications Workshop, LiSSA 2009, April 9-10, pp. 88–91 [29] J. S.Walther, “The story of unified CORDIC,” J. VLSI Signal Process.,vol. 25, no. 2, pp. 107–112, June 2000. [30] J.-M. Muller, Elementary Functions: Algorithms and Implementation. Boston, MA: Birkhauser Boston, 2006. [31] J. E. Volder, “The CORDIC trigonometric computing technique,” IRETrans. Electron. Computers, vol. EC-8, pp. 330–334, Sept. 1959. [32] K-J Huang; W-Y Shih; J-C Liao; W-C Fang, "A VLSI design of singular value decomposition processor used in real-time ICA computation for multi-channel EEG system," in Circuits and Systems (ISCAS), 2013 IEEE International Symposium on , vol., no., pp.413-416, 19-23 May 2013. [33] EEGLAB - Open Source MATLAB Toolbox for Electrophysiological Research URL: http://sccn.ucsd.edu/eeglab/ [34] C. M. Kim, H. M. Park, T. Kim, Y. K. Choi, and S. Y. Lee,“FPGA implementation of ICA algorithm for blind signal separation and adaptive noise canceling,” IEEE Trans. Neural Netw., vol. 14, no. 5,pp. 1038–1046, Sep. 2003. [35] K. K. Shyu, M. H. Lee, Y. T. Wu, and P. L. Lee, “Implementation of pipelined fastICA on FPGA for real-time blind source separation,” IEEE Trans. Neural Netw., vol. 19, no. 6, pp. 958–970, Jun. 2008. [36] H. Du and H. Qi, “A reconfigurable FPGA system for parallel independent component analysis,” EURASIP J. Embedded Syst., vol. 2006, no. 23025, pp. 1–12, 2006. [37] H. Du, H. Qi, and G. D. Peterson, “Parallel ICA and its hardware implementation in hyperspectral image analysis,” Proc. SPIE, vol. 5439, pp. 74–83, Apr. 2004. [38] W. C. Huang, S. H. Hung, J. F. Chung, M. H. Chang, L. D. Van, and C. T. Lin, “FPGA implementation of 4-channel ICA for on-line EEG signal separation,” in Proc. IEEE BioCAS, Nov. 2008, pp. 65–68. [39] C-K Chen, E Chua, C-C Fu, S-Y Tseng, and W-Ch Fang, “ A Hardware-Efficient VLSI Implementation of a 4-Channel ICA Processor for Biomedical Signal Measurement,” in Proc. IEEE Int. Conf. on Consumer Electronics, Jan. 2011, pp. 607–608. [40] L-D Van, D-Y Wu, and C-S Chen, “Energy-Efficient FastICA Implementation for Biomedical Signal Separation,” IEEE Trans. Neural Networks, vol.22, no.11, pp.1809-1822, Nov. 2011. [41] N. Shirazi, A. Walters, and P. Athanas, “Quantitative analysis of floating point arithmetic on FPGA based custom computing machines,”in Proc. IEEE Symp. FPGAs Custom Comput. Mach., 1995,pp. 155–162.
|