跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.88) 您好!臺灣時間:2026/02/14 17:47
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:李銘哲
研究生(外文):Ming-Zhe Lee
論文名稱:具不同HLB值之囊壁對相變化微膠囊之熱性質影響
論文名稱(外文):Effect of Different HLB Shell of Phase Change Microencapsule on Effect of Different HLB Shell of Phase Change Microencapsule on Effect of Different HLB Shell of Phase Change Microencapsule on Thermal Properties
指導教授:顏福杉
指導教授(外文):Fu-San Yen
學位類別:碩士
校院名稱:國立高雄應用科技大學
系所名稱:化學工程與材料工程系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:101
畢業學年度:100
語文別:中文
論文頁數:103
中文關鍵詞:相變化微膠囊親水-親油平衡懸浮聚合甲基丙烯酸酯交聯劑
外文關鍵詞:phase change microencapsulehydrophilc-lipophilic balancesuspension polymerizationmethacrylatecross-linking agent
相關次數:
  • 被引用被引用:0
  • 點閱點閱:1007
  • 評分評分:
  • 下載下載:73
  • 收藏至我的研究室書目清單書目收藏:0
以甲基丙烯酸酯為囊壁單體,並添加具不同HLB值之以乙二醇基(-CH2-CH2-O-)x為基之二甲基丙烯酸酯為囊壁交聯劑,並以正十八碳烷為囊芯,應用懸浮聚合法可製得包含正十八碳烷之相變化微膠囊(MicroPCMs)。
藉由不同之囊壁相/芯相之添加量,可探討不同投料比對相變化材料之包覆量之變化;而藉由添加具不同HLB值之不同(-CH2-CH2-O-)x鏈長交聯劑以形成囊壁相,可探討囊壁相HLB值對於微膠囊之包覆量之影響。
實驗中以霍氏轉換紅外線吸收光譜儀 (FT-IR)、環境式電子顯微鏡(ESEM)、熱重分析儀(TGA)及微差掃描量熱儀(DSC) 分別進行囊壁相與芯相之鑑定、相變化微膠囊之外觀形貌觀察及相變化熱行為的量測,並以反覆熱掃描測量並探討其微膠囊所呈現之熱性質。
實驗結果顯示,製備所得之相變化微膠囊之粒徑分佈相當寬廣。而以較低之囊壁相/芯相投料比製備所得之微膠囊,可獲得較高之包覆量;添加交聯劑於囊壁相之單體中,有助於以懸浮聚合法形成相變化微膠囊;囊壁相中添加較低HLB值之交聯劑,能達到較佳之包覆量;而添加較高HLB值之交聯劑於囊壁相中,將不利於懸浮聚合之進行。同時,所製得之相變化微膠囊經反覆熱掃描,其包覆量差異均不大。
Phase change microcapsules (MicroPCMs) containing n-octadecane as the microcapsule core, were prepared through a suspension polymerization method, using MMA (methyl methacrylate) monomer acting as the basic monomer, and the glycolyl-based di(meth)acrylate having various of HLB value as acting the co-monomer for cross-link formation to construct the shell of the microcapsule.
The influence of the shell/core mass ratio and HLB value of cross-linking agents on the properties and encapsulation performance of MicroPCMs have been studied.
In the study, identification of shell/core structure, surface morphology and thermal properties of MicroPCMs were investigated by fourier transform infrared spectroscopy (FT-IR), environmental scanning electron microscope (ESEM), thermogravimetric analysis (TGA), and differential scanning calorimeter (DSC). And, the thermal cycling test was used to explore the retention of thermal properties of the MicroPCMs.
The experimental results showed that particle size distribution of MicroPCMs is broad when using the conventional suspension polymerization. Adding the cross-linking agent can help the formation of MicroPCMs. The MicroPCMs prepared by using lower shell/core mass ratio and HLB value cross-linking agent can get higher efficiency of encapsulation. However, addition of higher HLB value cross-linking agent is inferior for preparing the MicroPCMs by suspension method. At the same time, thermal cycling test showed there’s no significant latent heat difference between the 1st and 100th run.
摘要 I
Abstract II
致謝 III
目錄 IV
流程目錄 VII
表目錄 VIII
圖目錄 IX
第一章 緒論 1
1-1 前言 1
第二章 相變化微膠囊相關理論與文獻回顧 2
2-1 相變化材料 2
2-2 微膠囊包覆技術 4
2-3 懸浮聚合法 7
2-4 懸浮穩定劑 9
2-5 相變化微膠囊的發展與應用及其文獻回顧 10
2-6 研究動機與目的 13
第三章 實驗方法 23
3-1 實驗材料 23
3-2 實驗儀器與設備 26
3-3 相變化微膠囊之製備 28
3-3-1不同(囊壁相/芯相)投料比之相變化微膠囊之製備 28
3-3-2不同交聯劑分率之相變化微膠囊之製備 29
3-3-3不同HLB值囊壁之相變化微膠囊之製備 30
3-4 相變化微膠囊之物性測試 31
3-4-1 官能基之鑑定 31
3-4-2 相變化微膠囊之表面形貌觀察 31
3-4-3 微差掃描熱分析儀測試 31
3-4-4 熱重分析儀測試 31
3-4-5 相變化微膠囊循環性能測試 32
3-5 樣品代碼及計算方式 33
第四章 結果與討論 38
4-1 相變化材料之基本物性分析 38
4-1-1 相變化材料之熱重損失分析 38
4-1-2 相變化材料之微差掃描熱分析 38
4-2 具不同相變化材料添加量之相變化微膠囊之製備 39
4-2-1 相變化材料添加量對相變化微膠囊之潛熱值影響 39
4-3 具不同囊壁相/芯相比例之相變化微膠囊製備 40
4-3-1 相變化微膠囊之囊壁相/芯相之鑑定分析 40
4-3-2 相變化微膠囊之表面形貌 40
4-3-3 相變化微膠囊熱重損失 41
4-3-4 相變化微膠囊之微差掃描熱分析 41
4-3-4固定交聯程度之不同囊壁相/囊芯投料比之相變化微膠囊外觀形貌 41
4-3-5 相變化微膠囊之循環加熱-冷卻試驗 42
4-4 固定交聯程度之不同囊壁相/囊芯投料比之相變化微膠囊製備 43
4-4-1 低交聯程度(33%)之囊壁相/芯相投料比對相變化微膠囊之影響 43
4-4-2 高交聯程度(80%)之囊壁相/芯相投料比對相變化微膠囊之影響 43
4-5 固定囊壁相/芯相之具不同交聯程度之相變化微膠囊製備 45
4-5-1 囊壁相/芯相投料比1.0:1之不同交聯程度對相變化微膠囊之影響 45
4-6 不同HLB值囊壁對相變化微膠囊之影響 46
第五章 結論 49
參考文獻 85
[1] 張鴻奇,微膠囊技術之發展及應用回顧,化工資訊月刊,2001年8月,第15卷,第8期,28–35頁。
[2] 金安兒,乳酸菌的微膠囊化,科學發展,2009年8月,第440期,36–41頁。
[3] X. L. Shan, J. P. Wang, Y. Liu, X. X. Zhang, Acta Phys. Chim. Sin, 2009, 25(12), 2590–2596.
[4] Ahmet Kürklü, Renewable Energy, 1998, Vol. 13, No. 1, 89–103.
[5] Ekkehard Jahn, Bernd Reck, US Patent 6200681 B1.
[6] D. V. Hale, M. J. Hoover, M. J. O’Neill, NASA CR-61363, 1971.
[7] Mohammed M. Farid, Amar M. Khudhair, Siddique Ali K. Razack, Said Al-Hallaj, Energy Convers Mgmt, 2004, Vol. 45, 1597–1615.
[8] S. D. Sharma, K. Sagara, International Journal of Green Energy2, 2005, 1–56.
[9] Belén Zalba, José M Marín, Luisa F. Cabeza, Harald Mehling, Appl Therm. Eng, 2003, Vol. 23, 251–283.
[10] 邵悠笛、戴謹謹,微膠囊技術及其在染整上的應用介紹,中國紡織大學學報,1997年,第23卷,第3期,79–84。
[11] J. H. Herbig, Encyclopedia of Polymer Science and Technology, Interscience, New York, 1968, 8, 719.
[12] P. R. Friend, Proc. Int. Symp. Controled Relaease Bioact. Mater, 19th, 1992, 28.
[13] G.ordon Nelson, International Journal of Pharmaceutics, 2002, 242, 55–62.
[14] Chel W . Lew, US 5364634.
[15] K. G. Das, Controlled Release Technology, John Wiley & Sons, New York, 1983.
[16] C. A. Finch, Ullman's Encyclopedia of Industrial Chemistry, 1990, Vol. A16, 575–588.
[17] J. E. Vandegaer, Phenum Press, New York, 1974.
[18] A. K. Aggarwal, A. Dayal, N. Kumar, Textile processing, 1998, 15–23.
[19] H.G. Bungenberg de Jong, Colloid Science, Elsevier Science Publishing Co, New York, 1949, 335–432.
[20] R. T. Maleeny, Spray dried perfumes, Soap & Chemical Specialties, 1958, 34, 137–145.
[21] J. A. Orsino, Fr. Patent 2648609.
[22] G. Langer, G. Yamate, US Patent 3159874.
[23] C. E. Anderson, Management Reports, Boston, Mass, 1963.
[24] G. R. Somerville, US Patent 3015128.
[25] D. E. Wurster, US Patent 2648609.
[26] D. E. Wurster, US Patent 2799241.
[27] J. Am. Pharm. Assoc., Sci. Ed, 1959, 18, 451.
[28] 潘祖仁、翁志學、黃志明,懸浮聚合,高分子化學叢書,化學工業出版社。
[29] 簡佩琪、王文獻、周文賢,高分子微粒在液晶顯示器的應用,工業材料雜誌,2008年,第258期,187–195頁。
[30] Yvonne G. Bryant, David P. Colvin, US Patent 4756958.
[31] X. X. Zhang, X. C. Wang, X. M. Tao, K. L. Yick, J Mater Sci, 2005, 40, 3729.
[32] K. Choi, G. Cho, P. Kim, Text Res J, 2004, 74, 292.
[33] J. Kim, G. Cho, Text Res J, 2002, 72, 1093.
[34] M. You, X. X. Zhang, W. Li, X. C. Wang, Thermochim Acta, 2008, 472, 20.
[35] M. You, X. X. Zhang, J. P. Wang, X. C. Wang, J Mater Sci, 2009, 44, 3141.
[36] M. L. Nuckols, Ocean Eng, 1999, 26, 547.
[37] P. Stark, SAE(Soc Automotive Eng) Trans 99, 1990, 571–588.
[38] S. K. Roy, S. Sengupta, International Communications in Heat and Mass Transfer, 1991, 18, 495–507.
[39] J.C. Mulligan, D.P. Colvin, Y.G. Bryant, J. Spacecraft and Rockets, 1996, 33, 278–284.
[40] Y. Yamagishi, T. Sugeno, H. TaKeuchi, A. Pyatenko, N. Kayukawa, Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering – OMAE 10 (1998)
[41] J. S. Cho, A. Kwon, C. G. Cho, Colloid and Polymer Science, 2002, 280, 260–266.
[42] G. L. Zou, Z. C. Tan, X. Z. Lan, L. X. Sun, T. Zhang, Chinese Chemical Letters, 2004, 15, 729–732.
[43] X. X. Zhang, Y. F. Fan, X. M. Tao, K. L. Yick, Materials Chemistry and Physics, 2004, 88, 300–307.
[44] X. X. Zhang, X. M. Tao, K. L. Yick, X. C. Wang, Colloid and Polymer Science, 2004, 282, 330–336.
[45] Luz Sánchez, Paula Sánchez, Antonio de Lucas, Manuel Carmona, Juan F. Rodríguez, Colloid Polym Sci, 2007, 285, 1377–1385.
[46] Xiaodong Wang, Huanzhi Zhang, Colloids and Surfaces A: Physicochem. Eng. Aspects, 2009, 332, 129–138.
[47] X. X. Zhang, X. L. Shan, J. P. Wang, X. C. Wang, Thermochimica Acta, 2009, 494, 104–109.
[48] Cemil Alkan, Ahmet Sarı, Ali Karaipekli, Orhan Uzun, Solar Energy Materials & Solar Cells, 2009, 93, 143–147.
[49] Luz Sánchez-Silva, Juan F. Rodríguez, Amaya Romero, Ana M. Borreguero, Manuel Carmona, Paula Sánchez, Chemical Engineering Journal, 2010, 157, 216–222.
[50] Ahmet Sarı, Cemil Alkan, Ali Karaipekli, Applied Energy, 2010, 87, 1529–1534.
[51] Ming You, Xuechen Wang, Xingxiang Zhang, Li Zhang, Jianping Wang, J Polym Res, 2011, 18, 49–58.
[52] X. X. Zhang, Y. F. Fan, X. M. Tao, K. L. Yick, J. Colloid Interface Sci, 2005, 281, 299–306.
[53] X. X. Zhang, X. M. Tao, K. L. Yick, Y. F. Fan, J. Appl. Polym. Sci, 2005, 97, 390–396.
[54] Y. F. Fan, X. X. Zhang, X. C. Wang, Q. B. Zhu, Thermochim. Acta, 2004, 413, 1–6.
[55] J. F. Su, L. X. Wang, L. Ren, Z. Huang, X. W. Meng, Journal of Applied Polymer Science, 2006, 102, 4996–5006.
[56] Rachel Clare Weston, Howard Roger Dungworth, US Patent 6716526 B2.
[57] J. T. Davies, Proc. Int. Congr. Surface Act. (2nd) Butterworths, London, 1957, 426.
[58] W. C. Griffin, J. Soc. Cosmet. Chem, 1949, 1, 311.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top