1.Tamano K. Enhancing microbial metabolite and enzyme production: current strategies and challenges. Frontiers in Microbiology. 2014;5:718. doi:10.3389/fmicb.2014.00718.
2.Marahiel MA, Stachelhaus T, Mootz HD. Modular peptide synthetases involved in nonribosomal peptide synthesis. Chem Rev. 1997;97:2651-2674.
3.Strieker M, Tanovic A, Marahiel MA. Nonribosomal peptide synthetases: structures and dynamics. Curr Opin Struct Biol. 2010;20:234-240.
4.Bhetariya PJ, Madan T, Basir SF, Varma A, Usha SP. Allergens/antigens, toxins and polyketides of important Aspergillus species. Indian Journal of Clinical Biochemistry. 2011;26:104-119. doi:10.1007/s12291-011-0131-5.
5.Brakhage AA. Regulation of fungal secondary metabolism. Nat Rev Microbiol. 2013;11:21-32.
6.Marui J, Ohashi-Kunihiro S, Ando T, Nishimura M, Koike H, Machida M, et al. Penicillin biosynthesis in Aspergillus oryzae and its overproduction by genetic engineering. J Biosci Bioeng. 2010;110:8-11.
7.Marui J, Yamane N, Ohashi-Kunihiro S. Kojic acid biosynthesis in Aspergillus oryzae is regulated by a Zn(II)2Cys6 transcriptional activator and induced by kojic acid at the transcriptional level. J Biosci Bioeng. 2011;112:40-43.
8.Reen FJ, Romano S, Dobson ADW, O’Gara F. The sound of silence: activating silent biosynthetic gene clusters in marine microorganisms. Marine Drugs. 2015;13:4754-4783. doi:10.3390/md13084754.
9.Guo CJ, Wang CC. Recent advances in genome mining of secondary metabolites in Aspergillus terreus. Frontiers in Microbiology. 2014;5:717. doi:10.3389/fmicb.2014.00717.
10.Guo CJ, Knox BP, Sanchez JF, Chiang YM, Bruno KS, Wang CC, et al. Application of an efficient gene targeting system linking secondary metabolites to their biosynthetic genes in Aspergillus terreus. Organic letters. 2013;15:10.1021/ol401384v. doi:10.1021/ol401384v.
11.Yin WB, Grundmann A, Cheng J, Li SM. Acetylaszonalenin biosynthesis in Neosartorya fischeri. identification of the biosynthetic gene cluster by genomic mining and functional proof of the genes by biochemical investigation. J Biol Chem. 2009;284:100-109.
12.Ames BD, Walsh CT. Anthranilate-activating modules from fungal nonribosomal peptide assembly lines. Biochemistry. 2010;49:3351-3365. doi:10.1021/bi100198y.
13.Thakur D, Bora TC, Bordoloi GN, Mazumdar S. Influence of nutrition and culturing conditions for optimum growth and antimicrobial metabolite production by Streptomyces sp. 201. Journal de Mycologie Médicale/Journal of Medical Mycology. 2009;19:161-167.
14.Bhattacharyya PN, Jha DK. Optimation of cultural conditions growth and improved bioactive metabolite production by a subsurface Aspergillus strain 146. International Journal of Applied Biology and Pharmaceutical Technolog. 2011;2:113-141
15.Luchese RH, Harrigan WF. Biosynthesis of aflatoxin the role of nutritional factors. J Appl Bacteriol. 1993;74:5-14.
16.Keller NP, Nesbitt C, Sarr B, Phillips TD, Burow GB. pH Regulation of sterigmatocystin and aflatoxin biosynthesis in Aspergillus spp. Phytopathology. 1997;87:643-648.
17.Gruber AD. Establishment of infection models and insights into the pathogenesis of invasive aspergillosis mediated by Aspergillus terreus. Institute of veterinary pathology. 2011.
18.Lai L-ST, Tsai T-H, Wang TC, Cheng T-Y. The influence of culturing environments on lovastatin production by Aspergillus terreus in submerged cultures. Enzyme and Microbial Technology. 2005;36:737-748.
19.Miranda RU, Gomez-Quiroz LE, Mejia A, Gonzalez JB. Oxidative state in idiophase links reactive oxygen species (ROS) and lovastatin biosynthesis: differences and similarities in submerged and solid state fermentations. Fungal Biol. 2013;117:85-93.
20.Faseleh Jahromi M, Liang JB, Ho YW, Mohamad R, Goh YM, Shokryazdan P, et al. Lovastatin production by Aspergillus terreus using agro biomass as substrate in solid state fermentation. Journal of Biomedicine and Biotechnology. 2012;20:196-264. doi:10.1155/2012/196264.
21.Banos JG, Tomasini A, Szakacs G, Gonzalez JB. High lovastatin production by Aspergillus terreus in solid state fermentation on polyurethane foam: an artificial inert support. J Biosci Bioeng. 2009;108:105-110.
22.Papagianni M, Joshi N, Young MM. Comparative studies on extracellular protease secretion and glucoamylase production by free and immobilized Aspergillus niger cultures. J Ind Microbiol Biotechnol. 2002;29:259-263.
23.Arabatzis M, Velegraki A. Sexual reproduction in the opportunistic human pathogen Aspergillus terreus. Mycologia. 2013;105:71-79.
24.Baddley JW, Pappas PG, Smith AC, Moser SA. Epidemiology of Aspergillus terreus at a University Hospital. Journal of Clinical Microbiology. 2003;41:5525-5529. doi:10.1128/JCM.41.12.5525-5529.2003.
25.Schimmel TG, Coffman AD, Parsons SJ. Effect of butyrolactone I on the producing fungus, Aspergillus terreus. Applied and Environmental Microbiology. 1998;64:3707-3712.
26.Casas López JL, Sánchez Pérez JA, Fernández Sevilla JM, Acién Fernández FG, Molina Grima E, Chisti Y, et al. Production of lovastatin by Aspergillus terreus: effects of the C:N ratio and the principal nutrients on growth and metabolite production. Enzyme and Microbial Technology. 2003;33:270-277.
27.Hajjaj H, Niederberger P, Duboc P. Lovastatin Biosynthesis by Aspergillus terreus in a Chemically Defined Medium. Applied and Environmental Microbiology. 2001;67:2596-2602. doi:10.1128/AEM.67.6.2596-2602.2001.
28.Kaur N. An insight into medicinal and biological significance of privileged scaffold: 1,4-Benzodiazepine. Int J Pharm Bio Sci. 2013;4:318-337.
29.Leonard K, Marugan JJ, Raboisson P. Novel 1,4-benzodiazepine-2,5-diones as Hdm2 antagonists with improved cellular activity. Bioorg Med Chem Lett. 2006;16:463-3468.
30.Singh RK, Prasad DN, Bhardwaj TR. Design, synthesis and in vitro cytotoxicity study of benzodiazepine-mustard conjugates as potential brain anticancer agents. Journal of Saudi Chemical Society. 2013.
31.Walsh CT, Haynes SW, Ames BD, Gao X, Tang Y. Short pathways to complexity generation: fungal peptidyl alkaloid multicyclic scaffolds from anthranilate building blocks. ACS chemical biology. 2013;8:1366-1382. doi:10.1021/cb4001684.
32.Koblish HK, Zhao S, Franks CF. Benzodiazepinedione inhibitors of the Hdm2: p53 complex suppress human tumor cell proliferation in vitro and sensitize tumors to doxorubicin in vivo. Mol Cancer Ther. 2006;5:160-169.
33.Fader LD, Landry S, Morin S. Optimization of a 1,5-dihydrobenzo[b][1,4]diazepine-2,4-dione series of HIV capsid assembly inhibitors 1: addressing configurational instability through scaffold modification. Bioorg Med Chem Lett. 2013;23:3396-3400.
34.Eamvijarn A, Gomes NM, Dethoup T. Bioactive meroditerpenes and indole alkaloids from the soil fungus Neosartorya fischeri (KUFC 6344), and the marine derived fungi Neosartorya laciniosa (KUFC 7896) and Neosartorya tsunodae (KUFC 9213). Tetrahedron. 2013;69:8583-8591.
35.Weldhagen GF, du Plooy M, Clay CG, Havenga Y. Molecular identification and mitochondrial cytochrome b gene analysis of a clinical isolate of Neosartorya fischeri. Clin Microbiol Newsl. 2008;30:100-104.
36.Sun Q, Wang H, Zhang H, et al. Heterologous production of an acidic thermostable lipase with broad-range pH activity from thermophilic fungus Neosartorya fischeri P1. J Biosci Bioeng. 2016.
37.Viragh M, Voros D, Kele Z, et al. Production of a defensin-like antifungal protein NFAP from Neosartorya fischeri in Pichia pastoris and its antifungal activity against filamentous fungal isolates from human infections. Protein Expr Purif. 2014;94:79-84.
38.Kovacs L, Viragh M, Tako M, Papp T, Vagvolgyi C, Galgoczy L. Isolation and characterization of Neosartorya fischeri antifungal protein (NFAP). Peptides. 2011;32:1724-1731.
39.Hanahan D, Weinberg RA. The hallmarks of cancer. Cell. 2000;100:57-70.
40.Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D, et al. Global cancer statistics. CA Cancer J Clin. 2011;61:69-90.
41.Anand P, Kunnumakara AB, Sundaram C. Cancer is a Preventable Disease that Requires Major Lifestyle Changes. Pharmaceutical Research. 2008;25:2097-2116. doi:10.1007/s11095-008-9661-9.
42.Risau W. Mechanisms of angiogenesis. Nature. 1997;386:671-674.
43.Folkman, J. Clinical applications of research on angiogenesis. N. Engl. J. Med. 1995;333:1757-1763.
44.Chaffer CL, Weinberg RA. A perspective on cancer cell metastasis. Science. 2011;331:1559-1564.
45.Thiery JP. Epithelial-mesenchymal transitions in tumour progression. Nat Rev Cancer. 2002;2:442-454.
46.Raymond WS, Aidan F, Ramaswamy S. Genome-wide views of cancer metastasis. Drug Discov. 2005;2:165-169.
47.Jain RK. Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science. 2005;307:58-62.
48.Brooks PC, Montgomery AM, Rosenfeld M. Integrin αvβ3 antagonists promote tumor regression by inducing apoptosis of angiogenic blood vessels. Cell. 1994;79:1157-1164.
49.Bischoff J. Approaches to studying cell adhesion molecules in angiogenesis. Trends Cell Biol. 1995;5:69-74.
50.Ferlay J, Parkin DM, Steliarova Foucher E. Estimates of cancer incidence and mortality in Europe in 2008. Eur J Cancer. 2010;46:765-781.
51.Ferlay J, Foucher ES, Tieulent JL. Cancer incidence and mortality patterns in Europe: estimates for 40 countries in 2012. Eur J Cancer. 2013;49:1374-1403.
52.Le Marchand L, Hankin JH, Wilkens LR, Kolonel LN, Englyst HN, Lyu LC, et al. Dietary fiber and colorectal cancer risk. Epidemiology. 1997;8:658-665.
53.Shen Y, Zou J, Xie D, Ge H, Cao X, Dai J, et al. Butyrolactone and cycloheptanetrione from mangrove-associated fungus Aspergillus terreus. Chem Pharm Bull (Tokyo). 2012;60:1437-1441.
54.Zhu T, Chen Z, Liu P, Wang Y, Xin Z, Zhu W, et al. New rubrolides from the marine derived fungus Aspergillus terreus OUCMDZ-1925. J Antibiot (Tokyo). 2014;67:315-318.
55.Porameesanaporn Y, Uthaisang Tanechpongtamb W, Jarintanan F, Jongrungruangchok S, Thanomsub Wongsatayanon B. Terrein induces apoptosis in HeLa human cervical carcinoma cells through p53 and ERK regulation. Oncol Rep. 2013;29:1600-1608.
56.Shen L, Zhu L, Luo Q. Fumigaclavine I, a new alkaloid isolated from endophyte Aspergillus terreus. Chin J Nat Med. 2015;13:937-941.
57.Yang T, Yao H, He G. Effects of lovastatin on MDA-MB-231 breast cancer cells: an antibody microarray analysis. Journal of Cancer. 2016;7:192-199. doi:10.7150/jca.13414.
58.Sun T, Zheng W, Peng H. A small molecule IFB07188 inhibits proliferation of human cancer cells by inducing G2/M cell cycle arrest and apoptosis. Biomed Pharmacother. 2012;66:512-518.
59.Okayasu R, Takahashi S, Yamada S, Hei TK, Ullrich RL. Asbestos and DNA double strand breaks. Cancer research. 1999;59:298-300.
60.Bowling AC, Beal MF. Bioenergetic and oxidative stress in neurodegenerative diseases. Life Sci. 1995;56:1151-1171.
61.Hoffmann MR, Martin ST, Choi W, Bahnemann DW. Environmental applications of semiconductor photocatalysis chemical reviews. 1995;95(1):69-96 DOI: 10.1021/cr00033a004
62.Jenner P, Dexter DT, Sian J, Schapira AH, Marsden CD. Oxidative stress as a cause of nigral cell death in Parkinson's disease and incidental Lewy body disease. The royal kings and queens parkinson's disease research group. Ann Neurol. 1992;32:82-87.
63.Broe GA, Henderson AS, Creasey H. A case control study of Alzheimer's disease in Australia. Neurology. 1990;40:1698-1707.
64.Nicholson JK, Connelly J, Lindon JC, Holmes E. Metabonomics: a platform for studying drug toxicity and gene function. Nat Rev Drug Discov. 2002;1:153-161.
65.Sherrington R, Rogaev EI, Liang Y. Cloning of a gene bearing missense mutations in early-onset familial Alzheimer's disease. Nature. 1995;375:754-760.
66.Gutteridge JM, Mitchell J. Redox imbalance in the critically ill. Br Med Bull. 1999;55:49-75.
67.Larson RA. The antioxidants of higher plants. Phytochem. 1988;27:969-978.
68.Papas AM. Diet and antioxidant status. Food Chem Toxicol. 1999;37:999-1007.
69.Dewi RT, Tachibana S, Itoh K, Ilyas M. Isolation of Antioxidant Compounds from Aspergillus terreus LS01. J Microbial Biochem Technol. 2012;4:010-014. doi:10.4172/1948-5948.1000065
70.Dewi RT, Tachibana S, Darmawan A. Effect on α-glucosidase inhibition and antioxidant activities of butyrolactone derivatives from Aspergillus terreus MC751. Medicinal Chemistry Research. 2014;23:454-460.
71.Guo C-J, Yeh H-H, Chiang Y-M. Biosynthetic Pathway for Epipolythiodioxopiperazine acetylaranotin in Aspergillus terreus revealed by genome-based deletion analysis. Journal of the American Chemical Society. 2013;135:7205-7213. doi:10.1021/ja3123653.
72.Gerke J, Bayram Ö, Feussner K. Breaking the silence: protein stabilization uncovers silenced biosynthetic gene clusters in the fungus Aspergillus nidulans. Applied and Environmental Microbiology. 2012;78:8234-8244. doi:10.1128/AEM.01808-12.
73.Frisvad JC. Taxonomy, chemodiversity, and chemoconsistency of Aspergillus,Penicillium, and Talaromyces species. Frontiers in Microbiology. 2014;5:773. doi:10.3389/fmicb.2014.00773.
74.Subramaniyam R, Vimala R. Solid state and submerged fermentation for the production of bioactive substances: a comparative study. International Journal of Science and Nature. 2012;3:480-486.
75.Jia Z, Zhang X, Zhao Y, Cao X. Enhancement of lovastatin production by supplementing polyketide antibiotics to the submerged culture of Aspergillus terreus. Appl Biochem Biotechnol. 2010;160:2014-2025.
76.Faseleh Jahromi M, Liang JB, Ho YW, Mohamad R, Goh YM, Shokryazdan P, et al. Lovastatin production by Aspergillus terreus using agro-biomass as substrate in solid state fermentation. Journal of Biomedicine and Biotechnology. 2012;12:196-264. doi:10.1155/2012/196264.
77.Nielsen MT, Nielsen JB, Anyaogu DC. Heterologous reconstitution of the intact geodin gene cluster in Aspergillus nidulans through a simple and versatile PCR based approach. Virolle M-J, ed. PLoS ONE. 2013;71:872-871. doi:10.1371/journal.pone.0072871.
78.Bizukojc M, Pawlak M, Boruta T, Gonciarz J. Effect of pH on biosynthesis of lovastatin and other secondary metabolites by Aspergillus terreus ATCC 20542. J Biotechnol. 2012;162:253-261.
79.Mahmoud GA, Koutb MM, Morsy FM, Bagy MK. Characterization of lipase enzyme produced by hydrocarbons utilizing fungus Aspergillus terreus. European Journal of Biological Research. 2015;5:70-77.
80.趙昱揚,費氏麴菌二次代謝物之培養最適化條件與生物活性研究,碩士論文。2012。81.Shameem M, Kumar R, Krishna S. Synthetic modified pyrrolo[1,4] benzodiazepine molecules demonstrate selective anticancer activity by targeting the human ligase 1 enzyme: An in silico and in vitro mechanistic study. Chem Biol Interact. 2015;237:115-124.
82.Choi EJ, Park JS, Kim YJ. Apoptosis-inducing effect of diketopiperazine disulfides produced by Aspergillus sp. KMD 901 isolated from marine sediment on HCT116 colon cancer cell lines. J Appl Microbiol. 2011;110:304-313.
83.Wijeratne EM, Turbyville TJ, Zhang Z. Cytotoxic constituents of Aspergillus terreus from the rhizosphere of opuntia versicolor of the sonoran desert. J Nat Prod. 2003;66:1567-1573.
84.Wang F, Li Y, Ma Z, Wang X, Wang Y. Structural determinants of benzodiazepinedione/peptide-based p53-HDM2 inhibitors using 3D-QSAR, docking and molecular dynamics. J Mol Model. 2012;18:295-306.
85.Loudni L, Roche J, Potiron V. Design, synthesis and biological evaluation of 1,4-benzodiazepine-2,5-dione-based HDAC inhibitors. Bioorg Med Chem Lett. 2007;17:4819-4823.
86.Lazarova DL, Bordonaro M. Vimentin, colon cancer progression and resistance to butyrate and other HDACis. J Cell Mol Med. 2016;20:989-993.
87.Chen Y, Le V, Xu X, Shao X, Liu J, Li Z, et al. Discovery of novel 1,5-benzodiazepine-2,4-dione derivatives as potential anticancer agents. Bioorg Med Chem Lett. 2014;24:3948-3951.
88.Braccioa MD, Grossia G, Cerutib M, Roccob F, Loddoc R, Sannac G, Busonerac B, Murredduc M, Marongiuc ME, et al. 1,5-Benzodiazepines XIV. Synthesis of new substituted 9H-bis-[1,2,4]triazolo[4,3-a:3′,4′-d] [1,5]benzodiazepines and relate compounds endowed with in vitro cytotoxic properties. Il Farmaco.2005;60:113-125.
89.Dewi RT, Tachibana S, Fajriah S, Hanafi M. α-Glucosidase inhibitor compounds from Aspergillus terreus RCC1 and their antioxidant activity. Medicinal Chemistry Research. 2015;24:737-743.
90.Zhang P, Li XM, Wang JN, Li X, Wang BG. New butenolide derivatives from the marine-derived fungus Paecilomyces variotii with DPPH radical scavenging activity. Phytochemistry Letters. 2015;11:85-88.