|
參考文獻
1.行政院衛生署,台灣地區主要死因。台灣。行政院衛生署報 2005。 2.Kathryn EW, Gökhan SH. Inflammation, stress, and diabetes, review. J Clin Invest. 2005;115:1111-1119. 3.Pouliot M, Despres JP, Lemieux S, et al. Waist Circurmference and Abdominal Sagittal Diameter: Best Simple Anthropometric Indexes of Abdominal Visceral Adiposetissue Accurmulation and Related Cardiovascular Risk in Men and Women. The American Journal of Cardiology. 1994;73:460-468. 4.Pouliot M, Despres JP, Lemieux S, et al. Waist Circurmference and Abdominal Sagittal Diameter: Best Simple Anthropometric Indexes of Abdominal Visceral Adiposetissue Accurmulation and Related Cardiovascular Risk in Men and Women. The American Journal of Cardiology. 1994;73:460-468. 5.Despres JP, Purd’ hornme D, Pouliot M, et al. Estimation of Deep Abdorminal Adipose-Tissue Accumulation from Simple Anthropometric Measurements in Men, The American Journal of Clinical Nutrition. 1991;54:471-477. 6.Seidell JC, Cigolini M, Charzewska J. Androgenicity in Relation to Body Fat Distribution and Metabolosm in 38-Year-Old Women the European Fat Distribution Study. J Clin Epi. 1990;43:21-34. 7.Modan M, halkin H. Hyperinsulinemia or Inceased Sympathetic Drive as Links for Obesity and Hypertension. Diabetes Care. 1991;14:470-487. 8.Van IT. Health implication of overweight and obesity on the United States. Annals Inter Med. 1999;12:303-308. 9.Kvist H, Chowdjury B, Grangard U, et al. Total and visceral adipose-tissue volumes derived from measurements with computed tomography in adult men and women: Predictive Equation. The American Journal of Clinical Nutrition. 1988;48:1351-1361. 10. Mykkanen L, Kuusisto J, Pyorala K. Increased risk of non-insulin-dependent diabetes mellitus in elderly hypertension subjects. J of Hypertension. 1994;12:1425-1432. 11. Köhler C, Temelkova-Kurktschiev T, Schaper F, et al. Prevalence of newly diagnosed type 2 diabetes, impaired glucose tolerance and abnormal fasting glucose in a high risk population. Data from the RIAD study using new diagnostic criteria for diabetes. Dtsch Med Wochenschr. 1999;124(37):1057-61. 12. Alberti KG, Zimmet PZ. Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1: diagnosis and classification of diabetes mellitus provisional report of a WHO consultation. Diabet Med. 1998;15(7):539-53. 13. Wilson JD, Foster DW. Williams textbook of endocrinology. 1992. 14. Thorsby E, Ronningen KS. Particular HLA-DQ moleculaes play a dominant role in determining susceptibility or resistance to type I diabetes mellitus. Diabetologia. 1993;36 (5):371-377. 15. Agras PI, Kink ST, Cengiz N, et al. Type 1 diabetes mellitus associated with nephritic sydrome. Pediatr Endocrinol Metab. 2006;19(8):1045-8. 16. Hotamisligil, GS. Inflammation, TNFalpha, and insulin resistance. In Diabetes mellitus: a fundamental and clinical text. New York, USA. 1994;953–962. 17. 謝瑞玟、陳立人。糖尿病整體照護 - 視網膜病變篩檢流程之評估。中眼醫誌。 2003;42(4):404-413 頁。 18. 陳涵翔糖。尿病視網膜檢查。糖尿病拾問。2002;7(1):49-50頁。 19. Chen MS, Kao CS, Chang CJ, et al. Prevalence and risk factors of diabetes retinopathy among noninsulin- dependent diabetic subjects. American Journal of Ophthalmol, 1992;114:727-730. 20. Klein R. The Wisconsin epidemiologic study of diabetes retinopathy IX: four-year incidence and progression of diabetes retinopathy when age of diagnosis is less than 30 years. Archives of Ophthalmology. 1989;107:237-243. 21. Van Damme H, Limet R. Amputation in diabetic patients. Clin Podiatr Med Surg. 2007;24(3):569-82. 22. Hotamisligil GS, Shargill NS, Spiegelman BM. Adipose expression of tumor necrosis factor-alpha: direct role in obesity-linked insulin resistance. Science. 1993; 259:87-91. 23. Sethi JK, Hotamisligil GS. The role of TNF alpha in adipocyte metabolism. Semin. Cell Dev Biol. 1999;10:19-29. 24. Smitherman KO, Peacock JE Jr. Infectious emergencies in patients with diabetes mellitus. Med Clin North Am. 1995;79:53-77. 25. Deresinski S. Infections in the diabetic patient: strategies for the clinician. Infect Dis Reports. 1995;1:1-12. 26. Rubin J, Yu VL. Malignant external otitis: insights into pathogenesis, clinical manifestations, diagnosis, and therapy. Am J Med. 1988;85:391-8. 27. Chang FY, Shaio MF. Decreased cell-mediated immunity in patients with noninsulin-dependent diabetes mellitus. Diabetes Res Clin Pract 1995;28:137-46. 28. MacCulish AC, Urbaniak SJ, Cambell CJ, et al. Phytohemagglutinin transformation and circulation lymphocyte subpopulations in insulin-dependent diabetic patients. Diabetes. 1974;25:908-12. 29. Casey JI, Heeter BJ, Klyshevich KA. Impaired response of lymphocytes of diabetic subjects to antigen of Staphylococcus aureus. J Infect Dis. 1977;136:495-501. 30. Didier H, Thierry R. Initial responses to endotoxins and Gram-negative bacteria. Clinica Chimica Acta. 2002;231:59-72. 31. Fukuto JM, Chaudhuri G. Inhibition of constitutive and inducible nitric oxide synthase: potential selective inhibition. Annu Rev Pharmacol Toxicol. 1995;35:165-94. 32. MacMicking J, Xie QW, Nathan C. Nitric oxide and macrophage function. Annu Rev Immunol. 1997;15:323-50. 33. Schwacha MG, Gudewicz PW, Snyder JA, et al. Depression of macrophage respiratory burst capacity and arachidonic acid release after Fc receptor-mediated phagocytosis. J Immunol. 1993;1;150(1):236-45. 34. Sherry B, Tekamp Olson P, Gallegos C, et al. Resolution of the two components of macrophage inflammatory protein 1, and cloning and characterization of one of those components, macrophage inflammatory protein 1 beta. J Exp Med. 1988;1;168(6):2251-9. 35. Tseng CC, Hattori Y, Kasai K, et al. Decreased production of nitric oxide by LPS-treated J774 macrophages in high-glucose medium. Life Sci. 1997;60(7):99-106. 36. Hanada T, Yoshimura A. Regulation of cytokine signaling and inflammation. Cytokine Growth Factor Rev. 2002; 13(4-5):413-21. 37. Sautebin L, Prostaglandins and nitric oxide as molecular targets for anti-inflammatory therapy. Fitoterapia. 2000;:S48-57. 38. Chan ED, Morris KR, Belisle JT, et al. Induction of inducible nitric oxide synthease-NO by lipopoarabinomanan of Mycobacter tuberculosis is mediated by MEK-1-ERK MKK7-JNK, and NF-kpaB signalling pathway. Infect Immunol. 2001;69: 2001-10. 39. Pan, MH, C T, Lin JH, et al. Suppression of lipopolysaccharide-induced nuclear factor-kapaB activity by theaflavin-3, 3-digallate from black tea and other polyphenols through downregulation of I-kapaB kinase activity in macrophage. Bicohem Pharmacol. 2000;59: 357-367. 40. Stuehr DJ, Marletta, MA. Mammalain nitrite biosynthesis: mouse macrophages produce nitrite and nitrate in response to Escherichia coli lipopolysaccharide. Proc Natl Acad Sci. 1985;82: 7738-7742. 41. Ignarro LJ, Buga GM, Woon KS, et al. Endothelium-derived relaxing factor produced and released from artery and vein is nitric oxide. Proc Natl Acad Sci. 1990;84: 9265-9269. 42. Gross SS, Levi R. Tetrahdrobioterin synthesis. An absolute requirement for cytokine-induced nitric oxide generation by vascular smooth muscle. J Biol Chem 1992;267: 25122-25729. 43. Moncada S, Higgs EA. Endogenous nitric oxide: physiology, pathology and clinical relevance. Eur J Clin Invest. 1991;21(4):361-74. 44. Lee BS, Kang HS, Pyun KH. Role of tyrosine kinase in the regulation of nitric oxide synthesis in murine liver cell: Modulation of KF-kapaB activity by tyrosine kinase. Hepatology 1997;25:913-919. 45. Drapier JC, Wietzerbin J, Hibbs JB Jr. Interferon-gamma and tumor necrosis factor induce the L-arginine-dependent cytotoxic effector mechanism in murine macrophages. Eur J Immunol. 1988;18(10):1587-92. 46. Morrison WI, Weiss R, Waxler-Morrison NE, Morrison BJ. Factors influencing oral health in long term care facilities. Community Dent Oral Epidemiol. 1987;15(6):314-6. 47. Hon WM, Khoo HE, Mocchhaia S. Nitric oxide in septic shock: directions for future therapy. Annals Acad Med. 1998;27:414-421. 48. Steinberg GR. nflammation in Obesity is the Common Link Between Defects in Fatty Acid Metabolism and Insulin Resistance. Cell Cycle. 2007;11(8):6. 49. Lindemann RA, Economou JS. Actinobacillus actinomycetemcomitans and Bacteroides gingivalis activate human peripheral monocytes to produce interleukin-1 and tumor necrosis factor. J Periodontol. 1988;59(11):728-30. 50. Bhakdi S, Klonisch T, Nuber P, et al. Stimulation of monokine production by lipoteichoic acids. Infect Immun. 1991;59(12):4614-20. 51. Kuwano K, Akashi A, Matsu-ura I, et al. Induction of macrophage-mediated production of tumor necrosis factor alpha by an L-form derived from Staphylococcus aureus. Infect Immun. 1993;61(5):1700-6. 52. Aggarwal BB, Natarajan K. Tumor necrosis factors: developments during the last decade. Eur Cytokine Netw. 1996;7(2):93. 53. Barnes, Karin. Nuclear factor-kappaB: a pivotal transcription factor in chronic inflammatory diseases. N Engl J Med. 1997;336(15):1066-71. 54. Locksley R M, Killeen N, Lenardo M J. The TNF and TNF reeptor superfamilies: Integrating normalian Biology. Cell. 2001;104: 487-501. 55. Tartaglia LA, Goeddel DV. Two TNF receptors. Immunol Today. 1992;(5):151-3. 56. Hu WH, Johnson H, Shu HB. Tumor necrosis factor-related apoptosis-inducing ligand receptors signal NF-kappaB and JNK activation and apoptosis through distinct pathways. J Biol Chem. 1999;274(43):30603-10. 57. Lindeman RA, Economous JS, Rothemel H. Production of interleukin-1 and tumor necrosis factor by human peripheral monocytes activated by periodontal bacteria and extracted lipopolysaccharides. J Dent Res. 1988;67(8):1131-5. 58. Matsuki Y, Yamamoto T, Hara K. Detection of inflammatory cytokine messenger RNA (mRNA)-expressing cells in human inflamed gingiva by combined in situ hybridization and immunohistochemistry. Immunology. 1992;76(1):42-7. 59. Matsuki Y, Yamamoto T, Hara K. Localization of interleukin-1 (IL-1) mRNA-expressing macrophages in human inflamed gingiva and IL-1 activity in gingival crevicular fluid. J Peridontal Res. 1993;28(1):35-42. 60. Scala G, Allavena P, Djeu JY, et al. Human large granular lymphocytes are potent producers of interleukin-1. Nature. 1984;3-9; 309(5963):56-9 61. Matsushima K, Procopio A, Abe H, Scala G, Ortaldo JR, Oppenheim JJ. Production of interleukin 1 activity by normal human peripheral blood B lymphocytes. J Immunol. 1985;135(2):1132-6. 62. Takeichi O, Saito I, Tsurumachi T, et al. Human polymorphonuclear leukocytes derived from chronically inflamed tissue express inflammatory cytokines in vivo. Cell Immunol. 1994;156(2):296-309. 63. Takada H, Mihara J, Morihashi I, et al. Production of cytokins by human gingival fibroblasts. Perodontal Disease: Pathogens and host immune responses. Quintessence Publishing. 1991;265-276. 64. Rupp EA, Cameron PM, Ranawat CS, et al. Specific bioactivities of monocyte-derived interleukin 1 alpha and interleukin 1 beta are similar to each other on cultured murine thymocytes and on cultured human connective tissue cells. J Clin Invest. 1986;78(3):836-9. 65. Page RC, Kornman KS. The pathogenesis of human periodontitis: an introduction. Periodontol 2000. 1997;14:9-11. 66. Kunkel SL, Chensue SW. Arachidonic acid metabolites regulate interleukin-1 production. Biochem Biophys Res Commun. 1985;128(2):892-7. 67. Lindemann RA, Economou JS. Actinobacillus actinomycetemcomitans and Bacteroides gingivalis activate human peripheral monocytes to produce interleukin-1 and tumor necrosis factor. J Periodontol. 1988;59(11):728-30. 68. Lindemann RA, Economou JS, Rothermel H. Production of interleukin-1 and tumor necrosis factor by human peripheral monocytes activated by periodontal bacteria and extracted lipopolysaccharides. J Dent Res. 1988;67(8):1131-5. 69. Duarte PM, de Oliveira MC, Tambeli CH, et al. Overexpression of interleukin-1beta and interleukin-6 may play an important role in periodontal breakdown in type 2 diabetic patients. J Periodontal Res. 2007;42(4):377-81. 70. Hermann C, Krikovszky D, Fust G, et al. Association between interleukin-6 polymorphism and age-at-onset of type 1 diabetes. Epistatic influences of the tumor necrosis factor-alpha and interleukin-1beta polymorphisms. Eur Cytokine Netw. 2005;16(4):277-81. 71. Kishimoto T. The biology of interleukin-6. Blood. 1989;74:1. 72. Kishimoto T, Akira S, Taga T. Interleukin-6 and its receptor: a paradigm for cytokines. Science. 1992;258(5082):593-7. 73. Akira S, Taga T, Kishimoto T. Interleukin-6 in biology and medicine. Adv Immunol. 1993;54:1-78. 74. Ishihara K, Hirano T. IL-6 in autoimmune disease and chronic inflammatory proliferative disease. Cytokine Growth Factor Rev. 2002;13(4-5):357-68. 75. Kerr R, Stirling D, Ludlam CA. Interleukin 6 and haemostasis. Br J Haematol. 2001;115(1):3-12. 76. Akira S, Taga T, Kishimoto T. nterleukin-6 in biology and medicine. Adv Immunol. 1993;54:1-78. 77. Elias JA, Lentz V. L-1 and tumor necrosis factor synergistically stimulate fibroblast IL-6 production and stabilize IL-6 messenger RNA. J Immunol. 1990;145(1):161-6. 78.Van Damme J, Cayphas S, Van Snick J, et al. Lenaerts JP, Simpson RJ, Billiau A. Purification and characterization of human fibroblast-derived hybridoma growth factor identical to T-cell-derived B-cell stimulatory factor-2 (interleukin-6). Eur J Biochem. 1987;168(3):543-50. 79. Braquet P, Pignol B, Maisonnet T, et al. Platelet-activating factor modulates interleukin-6 production by mouse fibroblasts. Int Arch Allergy Appl Immunol. 1991;94(1-4):165-6. 80. Roth M, Nauck M, Yousefi S, et al. Platelet-activating factor exerts mitogenic activity and stimulates expression of interleukin 6 and interleukin 8 in human lung fibroblasts via binding to its functional receptor. J Exp Med. 1996;184(1):191-201. 81. Alexandraki K, Piperi C, Kalofoutis C, et al. Inflammatory process in type 2 diabetes: The role of cytokines. Ann N Y Acad Sci. 2006;1084:89-117. 82. Mocan MC, Kadayifcilar S, Eldem B. Elevated intravitreal interleukin-6 levels in patients with proliferative diabetic retinopathy. Can J Ophthalmol. 2006;41(6):747-52. 83. Plesner A, Greenbaum C J, Guar L K, et al. Macrophages from High-Risk HLA-DQB1*0201/*0302 Type 1 Diabetes Mellitus Patients are Hypersensitive to Lipopolysaccharide Stimulation. Scandinavian Journal of Immunology. 2002;56(5):522-529(8). 84. Furfine ES, Harmon MF, Paith JE, et al. Potent and selective inhibition of human nitric oxide synthases. Selective inhibition of neuronal nitric oxide synthase by S-methyl-L-thiocitrulline and S-ethyl-L-thiocitrulline. J Biol Chem. 1994;269(43):26677-26683. 85. Bredt DS, Snyder SH. Nitric oxide, a novel neuronal messenger. Neuron. 1992;8(1):3-11. 86. Yan SF, Ramasamy R, Naka Y, et al. Glycation, inflammation, and RAGE. A scaffold for the macrovascular complications of diabetes and beyond. Circ Res. 2003;93:1159- 1169. 87. Lin WW, Chen BC, Hsu YW, et al. Modulation of inducible nitric oxide synthase induction by prostaglandin E2 in macrophages: distinct susceptibility in murine J774 and RAW 264.7 macrophages. Prostaglandins Other Lipid Mediat. 1999;58(2-4):87-101. 88. Chiou WF, Chen CF, Lin JJ. Mechanisms of suppression of inducible nitric oxide synthase (iNOS) expression in RAW 264.7 cells by andrographolide. Br J Pharmacol. 2000;129(8):1553-60. 89. Burney S, Tamir S, Gal A, Tannenbaum SR. A mechanistic analysis of nitric oxide-induced cellular toxicity. Nitric Oxide. 1997;1(2):130-44. 90. Stefanovic Racic M, Stadler J, Evans CH. Nitric oxide and arthritis. Arthritis Rheum. 1996;10(1):38-42. 91. Chen YJ, Hsu KW, Chen YL. Acute glucose overload potentiates nitric oxide production in lipopolysaccharide-stimulated macrophages: the role of purinergic receptor activation. Cell Biol Int. 2006;30(10):817-22. 92. Tseng CC, Hattori Y, Kasai K. et al. Decreased production of nitric oxide by LPS-treated J774 macrophages in high-glucose medium. Life Sci. 1997;60(7):PL99-106. 93. Lee HY, Noh HJ, Gang JG, et al. Inducible nitric oxide synthase (iNOS) expression is increased in lipopolysaccharide (LPS)-stimulated diabetic rat glomeruli: effect of ACE inhibitor and angiotensin II receptor blocker. Yonsei Med J. 2002;43(2):183-92. 94. Pcheco ME, Beltran A, Redondo J, et al. High glucose enhances inducible nitric oxide synthase expression. Role of protein kinase C-betaII. Eur J Pharmacol. 2006;24;538(1-3):115-23. 95. Nakai K, Kubota Y, Kosaka H. Inhibition of nuclear factor kappa B activation and inducible nitric oxide synthase transcription by prolonged exposure to high glucose in the human keratinocyte cell line HaCaT. Br J Dermatol. 2004;150(4):640-6. 96. Hirasawa K, Jun HS, Han HS, et al. Prevention of Encephalomyocarditis Virus-Induced Diabetes in Mice by Inhibition of the Tyrosine Kinase Signalling Pathway and Subsequent Suppression of Nitric Oxide Production in Macrophages. J Virol. 1999;73(10):8541-8548. 97. el Nawawy A, Soliman AT, el Azzouni O, et al. Interleukin-1-beta, tumour necrosis factor-alpha, islet-cell antibody, and insulin secretion in children with thalassemia major on long-term blood transfusion. J Trop Pediatr. 1996;42(6):362-4. 98. Kilbourn RG, Griffith OW. Inhibition of inducible nitric oxide synthase with inhibitors of tetrahydrobiopterin biosynthesis. J Natl Cancer Inst. 1992;84(21):1672. 99. Tang Y, Li GD. Chronic exposure to high glucose impairs bradykinin-stimulated nitric oxide production by interfering with the phospholipase-C-implicated signalling pathway in endothelial cells: evidence for the involvement of protein kinase C. Diabetologia. 2004;47(12):2093-104. 100.Vadlamani L, Iyengar S. Tumor necrosis factor alpha polymorphism in heart failure/ cardiomyopathy. Congest Heart Fail. 2004;10(6):289-92. 101.Yerneni KK, Bai W, Khan BV, et al. Hyperglycemia- induced activation of nuclear transcription factor kappaB in vascular smooth muscle cells. Diabetes. 1999;48:855-864 102. Mohamed AK, Bierhaus A, Schiekofer S, et al. The role of oxidative stress and NF-kappaB activation in late diabetic complications. Biofactors. 1999;10(2-3):157-67. 103. Kang DH, Hong YS, Lim HJ, et al I. High glucose solution and spent dialysate stimulate the synthesis of transforming growth factor-beta1 of human peritoneal mesothelial cells: effect of cytokine costimulation. Perit Dial Int. 1999;19(3):221-30. 104. Arias-Negrete S, Keller K, Chadee K. Proinflammatory cytekines regulate cyclooxigenase-2 mRNA expression in human macrophages. Biochem Biophys Res Commun. 1995;208:582-589. 105. Di Rosa M, Ialenti A, Ianaro A, et al. Interaction between nitric oxide and cyclooxygenase pathways. Prostaglandins. Leukot. Essent. Fatty Acids. 1996;54:229-238 106. Dandona P, Aljada A, Bandyopadhyay A. Inflammation: the link between insulin resistance, obesity and diabetes. Trends Immunol. 2004;25:4 –7. 107. McCarty MF. Interleukin-6 as a central mediator of cardiovascular risk associated with chronic inflammation, smoking, diabetes, and visceral obesity: down-regulation with essential fatty acids, ethanol and pentoxifylline. Med Hypotheses. 1999;52:465 –477. 108. Lindmark E, Diderholm E, Wallentin L, et al. Relationship between interleukin 6 and mortality in patients with unstable coronary artery disease: effects of an early invasive or noninvasive strategy. JAMA. 2001;286:2107 –2113. 109. Pradhan AD, Manson JE, Rossouw JE, et al. Inflammatory biomarkers, hormone replacement therapy, and incident coronary heart disease: prospective analysis from the Women’s Health Initiative observational study. JAMA. 2002;288:980 –987. 110. Ridker PM, Rifai N, Stampfer MJ, et al. Plasma concentration of interleukin-6 and the risk of future myocardial infarction among apparently healthy men. Circulation. 2000;101:1767 –1772. 111. Jain SK, Kannan K, Lim G, et al. Elevated blood interleukin-6 levels in hyperketonemic type 1 diabetic patients and secretion by acetoacetate-treated cultured U937 monocytes. Diabetes Care. 2003;26:2139 –2143. 112. Devaraj S, Jialal I. Alpha tocopherol supplementation decreases serum C-reactive protein and monocyte interleukin-6 levels in normal volunteers and type 2 diabetic patients. Free Radic Biol Med. 2000;29:790 –792. 113. Liu YJ, Saini A, Cohen DJ, et al. Moduation of macrophages roliferation by hyperglycemia. Mol Cell Endocrinol. 1995;114:187-192. 114. Morohoshi M, Fujisawa K, Uchumura I, et al. The effect of glucose and advanced glycosylation end products on IL-6 production by human monocytes. Ann NY Acad Sci. 1995;748:562-570. 115. Morohoshi M, Fujisawa K, Uchumura I, et al. Glucose-dependent interleukin-6 and tumour necrosis factor production by human periheral blood monocytes in vitro. Diabetes 1996;45:954-959. 116. Hermann C, Krikovszky D, Fust G, et al. Eur Cytokine Netw. 2005;16(4):277-81. 117. Kowluru RA, Odenbach S. Role of interleukin-1beta in the pathogenesis of diabetic retinopathy. Br J Ophthalmol. 2004;88(10):1343-7. 118. Lagathu C, Yvan-Charvet L, Bastard JP, et al. Long-term treatment with interleukin-1beta induces insulin resistance in murine and human adipocytes. Diabetologia. 2006;49(9):2162-73. 119. Kang DH, Hong YS, Lim HJ, et al. High glucose solution and spent dialysate stimulate the synthesis of transforming growth factor-beta1 of human peritoneal mesothelial cells: effect of cytokine costimulation. Perit Dial Int. 1999;19(3):221-30. 120. Engebretson S, Chertog R, Nichol A, et al. Plasma levels of tumour necrosis factor-alpha in patients with chronic periodontitis and type 2 diabetes. J Clin Periodontol. 2007;34(1):18-24.
|