跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.88) 您好!臺灣時間:2026/02/14 20:36
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃聖淵
研究生(外文):Shen-yuan Huang
論文名稱:高濃度葡萄糖對巨噬細胞 RAW 264.7 的影響
論文名稱(外文):Influence of concentration of high glucose on activation of macrophage RAW 264.7 cell
指導教授:施美份施美份引用關係
指導教授(外文):Mei-fen Shih
學位類別:碩士
校院名稱:嘉南藥理科技大學
系所名稱:生物科技系暨研究所
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:74
中文關鍵詞:糖尿病一氧化氮發炎反應高血糖症細胞激素
外文關鍵詞:IL-6 )IL-1 bcytokines ( TNF-ahyperglycemiainflammationNitric Oxide ( NO )Diabetes
相關次數:
  • 被引用被引用:3
  • 點閱點閱:2295
  • 評分評分:
  • 下載下載:173
  • 收藏至我的研究室書目清單書目收藏:0
中文摘要

長期性細菌感染以及常見性感染是糖尿病患者主要的併發症之一,這兩者皆與發炎細胞之活化具有相關聯性。然而,長期高濃度葡萄糖對於巨噬細胞活化作用,卻無太多相關性的研究。
因此,本研究以 LPS 刺激 RAW 264.7 巨噬細胞,作為一個實驗的模型,再以 15 mM 高濃度葡萄糖培養液去探討不同的培養時間,與正常 DMEM 培養下的 RAW 264.7 巨噬細胞,分別對於 LPS 刺激後的情形。實驗結果發現,RAW 264.7 巨噬細胞在15 mM 高濃度葡萄糖培養 1 天(急性), 7 天(中慢性)和 14 天(慢性) 之後,basal NO 產生量會比正常細胞的多,而 LPS 刺激的 NO 產量卻明顯不如正常細胞。然而,在 iNOS protein 與 iNOS mRNA 的表現上,經長期慢性培養後,卻有反彈性大量增加的情形。
添加 15 mM 葡萄糖培養液培養 1 天及 14 天的 RAW 264.7 巨噬細胞,於 LPS 刺激後所產的促發炎細胞激素 TNF-a,與正常 DMEM 培養的細胞相比較是沒有明顯差異。不過,LPS 刺激的 TNF-a 產量在經過 15 mM 葡萄糖培養液培養培養 7 天後的巨噬細胞卻明顯比正常 DMEM 培養的細胞的產量少。15 mM 葡萄糖培養後的 RAW 264.7 巨噬細胞,所產生的 IL-1 b 產量在 basal 值與正常 DMEM 培養的細胞相比,均有明顯大量誘發的情形。培養 1 天及 14 天 15 mM 高濃度葡萄糖,在添加 LPS 刺激後,所產生的 IL-1 b 濃度與正常 DMEM 培養的細胞相比,有較為明顯上升的情形。然而,在 IL-6 的表現量方面,經 LPS 刺激 15 mM 高濃度葡萄糖培養 1 天後的 RAW 264.7 巨噬細胞,與正常 DMEM 培養的細胞相比,有著明顯上升的情形。有趣的是,在培養 7 天後,IL-6 的產量有被抑制的情況,而 14 天高葡萄糖培養後,卻又有一個回升的現象。
然而造成這些結果的原因,可能與細胞隨著高濃度葡萄糖長期培養後,而產生適應性和一個生理弁鄐W正向調節 ( up-regulation ) 的情形。隨著葡萄糖培養之 RAW 264.7 巨噬細胞,經由 LPS 活化細胞後,所誘發的促發炎細胞激素 ( TNF-a, IL-6, IL-1 b ) 皆與 iNOS protein 和 iNOS mRNA 的表現有著正相關性。

關鍵字:糖尿病、一氧化氮、發炎反應、高血糖症、細胞激素
Abstract

  One of major complications of diabetes is the frequency of infection and long-term duration of bacterial infections. Both conditions have been shown to be related to activation of inflammatory cells. However, the influences of macrophage activation by long-term exposure to high glucose, a situation that mimics the hyperglycemia of diabetics, have not been fully investigated.
  We used a lipopolysaccharide ( LPS ) activated macrophage RAW 264.7 model to investigate effects of acute ( 1 day ), sub-chronic ( 7 days ), and chronic ( 14 days ) 15 mM glucose treatment on activation of inflammatory cells. Basal NO production was higher in all glucose treated groups than that produced in normal cells. In contrast, LPS-induced NO production was sustained lower in the glucose treated cells than in the normal group. Interestingly, LPS-stimulated iNOS protein or iNOS mRNA expression in chronic glucose treated cells showed a more condensed bend than acute, sub-chronic or normal cells.
  Treatment of RAW264.7 macrophages with 15 mM glucose for 1 and 14 days did not affect LPS-stimulated tumour necrosis factor-alpha ( TNF-a ) production. However, the same treatment for 7 days suppressed TNF-a production. Basal interleukin-1 beta (IL-1b) was increased significantly in high glucose treatment groups than that in normal control group. LPS-stimulated IL-1 productions were also increased except for 7-day treated group. Acute glucose challenge induced both basal and LPS-stimulated interleukin-6 ( IL-6 ) production. These increases were both suppressed in sub-acute groups. Interestingly, chronic glucose treatment did not affect basal IL-6 production but the production was raised the LPS-stimulated condition.
  These results shown that may be due to an up-regulation or adaptation change after cells exposed to glucose chronically. Pro-inflammatory cytokines, TNF-a, IL-1b, and IL-6 that mediate the activation of macrophage via LPS stimulation, are also shown a similar adaptive pattern as iNOS protein and mRNA expression in responding to glucose treatment.

Key words: Diabetes, Nitric Oxide ( NO ), inflammation, Hyperglycemia, cytokines ( TNF-a, IL-1 b, IL-6 ).
目 錄 頁次

中文摘要………………………………………………………………I
英文摘要……………………………………………………………...III
本文目錄.……………………………………………………………...V
縮寫表……………………………………………………………….VIII

第一章、緒論………………………………………………………….1
1-1. 糖尿病相關研究………………………………………………1
1-2. 糖尿病的定義…………………………………………………2
1-2-1. 糖尿病的診斷……………………..………………………...2
1-2-2. 糖尿病的分類………………..……………………….……..3
1-2-3. 糖尿病之流行病學……………………………………...…..4
1-3. 糖尿病與感染……………………………………………….....5
1-3-1. 糖尿病與其細胞免疫調節………..………………………....6
1-3-2. 免疫反應與巨噬細胞……………..…………………………7
1-3-3. 細菌內毒素與巨噬細胞…………..…………………………7
1-3-4. 發炎反應與巨噬細胞……………..…………………………8
1-3-5. 一氧化氮 ( Nitric Oxide )…………..………………………..8
1-3-6. 腫瘤壞死因子 ( TNF-a )………….…………………………9
1-3-7. 介白素-1 ( IL-1 )…………..…..…………………………….10
1-3-8. 介白素-6 ( IL-6 )……………………..……………………...10
1-3-9. 一氧化氮合成酶 ( iNOS )…..………………..………….......11
1-4. 研究動機…………..…………………………………...………12

第二章、材料與方法……………………………………………..........14
2-1. RAW 264.7 巨噬細胞之培養……………………………........14
2-1-1. RAW 264.7 巨噬細胞之繼代培養………………………….15
2-1-2. RAW 264.7 巨噬細胞之冷凍..……………………………...16
2-1-3. RAW 264.7 巨噬細胞之解凍..…….......................................17
2-2. 15 mM 高葡萄糖 DMEM 培養 RAW 264.7 巨噬細胞...…….17
2-3. 細胞計數 / 種植細胞..……..……………………………….….18
2-4. 亞硝酸鹽產物測定……………………………………....…….19
2-5. TNF-a 濃度測定……………………...……………………….20
2-6. IL-1 b 濃度測定…………...…………….…………………….23
2-7. IL-6 濃度測定………...……….………………………….........25
2-8. 蛋白質抽取……………………………….…………….….......27
2-9. 蛋白質濃度測定…… …………..……………………….…….28
2-10. 西方墨點法 ( Western Blot )………..………..……….……...29
2-11. RNA 抽取………………..……..…………………….………31
2-12. 反轉錄-聚合酶鏈反應 ( RT-PCR )……..……………………33
2-13. DNA 瓊膠製備/ DNA 電泳…………..……………….……..34
2-14. 統計方法………………………………………………...........35

第三章、結果……………………………………………………..........36
3-1. NO產量試驗……..……………………………………..…......36
3-2. iNOS protein assay by Western Blot...………………….…......37
3-3. iNOS mRNA expression by RT-PCR.………..……….…….....37
3-4. TNF-a 產量試驗.…………..…………………………….........38
3-5. IL-6 產量試驗..…...……………………………………............39
3-6. IL-1 b 產量試驗……..………….………………………..........39

第四章、討論…………………………………………………………..41

第五章、結論…………………………………………………………..45

參考文獻………………………………………………………………..46

附錄……………………………………………………………………..60
圖1.a 1 day glucose treatment on basal NO production……………......60
圖1.b 1 day glucose LPS stimulated NO production………………......61
圖1.c 7 day glucose treatment on basal NO production……………......62
圖1.d 7 day glucose LPS stimulated NO production…………..............63
圖1.e 14 day glucose treatment on basal NO production………………64
圖1.f 14 day glucose LPS stimulated NO production……………….....65
圖2.a iNOS protein on basal expression by Western Blot……………..66
圖2.b iNOS protein on LPS stimulated expression by Western Blot…..67
圖3.a iNOS mRNA expression by RT-PCR……………………………68
圖4.a Effect glucose treatment on basal TNF-a production…………...69
圖4.b Effect glucose treatment on LPS stimulated TNF-a production...70
圖5.a effects of glucose treatment on basal IL-6 production……..........71
圖5.b effects of glucose treatment on LPS-stimulated IL-6 production.72
圖6.a effects of glucose treatment on basal IL-1 b production…............73
圖6.a effects of glucose treatment on LPS stimulated IL-1 b production74
參考文獻


1.行政院衛生署,台灣地區主要死因。台灣。行政院衛生署報 2005。
2.Kathryn EW, Gökhan SH. Inflammation, stress, and diabetes, review. J Clin Invest. 2005;115:1111-1119.
3.Pouliot M, Despres JP, Lemieux S, et al. Waist Circurmference and Abdominal Sagittal Diameter: Best Simple Anthropometric Indexes of Abdominal Visceral Adiposetissue Accurmulation and Related Cardiovascular Risk in Men and Women. The American Journal of Cardiology. 1994;73:460-468.
4.Pouliot M, Despres JP, Lemieux S, et al. Waist Circurmference and Abdominal Sagittal Diameter: Best Simple Anthropometric Indexes of Abdominal Visceral Adiposetissue Accurmulation and Related Cardiovascular Risk in Men and Women. The American Journal of Cardiology. 1994;73:460-468.
5.Despres JP, Purd’ hornme D, Pouliot M, et al. Estimation of Deep Abdorminal Adipose-Tissue Accumulation from Simple Anthropometric Measurements in Men, The American Journal of Clinical Nutrition. 1991;54:471-477.
6.Seidell JC, Cigolini M, Charzewska J. Androgenicity in Relation to Body Fat Distribution and Metabolosm in 38-Year-Old Women the European Fat Distribution Study. J Clin Epi. 1990;43:21-34.
7.Modan M, halkin H. Hyperinsulinemia or Inceased Sympathetic Drive as Links for Obesity and Hypertension. Diabetes Care. 1991;14:470-487.
8.Van IT. Health implication of overweight and obesity on the United States. Annals Inter Med. 1999;12:303-308.
9.Kvist H, Chowdjury B, Grangard U, et al. Total and visceral adipose-tissue volumes derived from measurements with computed tomography in adult men and women: Predictive Equation. The American Journal of Clinical Nutrition. 1988;48:1351-1361.
10. Mykkanen L, Kuusisto J, Pyorala K. Increased risk of non-insulin-dependent diabetes mellitus in elderly hypertension subjects. J of Hypertension. 1994;12:1425-1432.
11. Köhler C, Temelkova-Kurktschiev T, Schaper F, et al. Prevalence of newly diagnosed type 2 diabetes, impaired glucose tolerance and abnormal fasting glucose in a high risk population. Data from the RIAD study using new diagnostic criteria for diabetes. Dtsch Med Wochenschr. 1999;124(37):1057-61.
12. Alberti KG, Zimmet PZ. Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1: diagnosis and classification of diabetes mellitus provisional report of a WHO consultation. Diabet Med. 1998;15(7):539-53.
13. Wilson JD, Foster DW. Williams textbook of endocrinology. 1992.
14. Thorsby E, Ronningen KS. Particular HLA-DQ moleculaes play a dominant role in determining susceptibility or resistance to type I diabetes mellitus. Diabetologia. 1993;36 (5):371-377.
15. Agras PI, Kink ST, Cengiz N, et al. Type 1 diabetes mellitus associated with nephritic sydrome. Pediatr Endocrinol Metab. 2006;19(8):1045-8.
16. Hotamisligil, GS. Inflammation, TNFalpha, and insulin resistance. In Diabetes mellitus: a fundamental and clinical text. New York, USA. 1994;953–962.
17. 謝瑞玟、陳立人。糖尿病整體照護 - 視網膜病變篩檢流程之評估。中眼醫誌。 2003;42(4):404-413 頁。
18. 陳涵翔糖。尿病視網膜檢查。糖尿病拾問。2002;7(1):49-50頁。
19. Chen MS, Kao CS, Chang CJ, et al. Prevalence and risk factors of diabetes retinopathy among noninsulin- dependent diabetic subjects. American Journal of Ophthalmol, 1992;114:727-730.
20. Klein R. The Wisconsin epidemiologic study of diabetes retinopathy IX: four-year incidence and progression of diabetes retinopathy when age of diagnosis is less than 30 years. Archives of Ophthalmology. 1989;107:237-243.
21. Van Damme H, Limet R. Amputation in diabetic patients. Clin Podiatr Med Surg. 2007;24(3):569-82.
22. Hotamisligil GS, Shargill NS, Spiegelman BM. Adipose expression of tumor necrosis factor-alpha: direct role in obesity-linked insulin resistance. Science. 1993; 259:87-91.
23. Sethi JK, Hotamisligil GS. The role of TNF alpha in adipocyte metabolism. Semin. Cell Dev Biol. 1999;10:19-29.
24. Smitherman KO, Peacock JE Jr. Infectious emergencies in patients with diabetes mellitus. Med Clin North Am. 1995;79:53-77.
25. Deresinski S. Infections in the diabetic patient: strategies for the clinician. Infect Dis Reports. 1995;1:1-12.
26. Rubin J, Yu VL. Malignant external otitis: insights into pathogenesis, clinical manifestations, diagnosis, and therapy. Am J Med. 1988;85:391-8.
27. Chang FY, Shaio MF. Decreased cell-mediated immunity in patients with noninsulin-dependent diabetes mellitus. Diabetes Res Clin Pract 1995;28:137-46.
28. MacCulish AC, Urbaniak SJ, Cambell CJ, et al. Phytohemagglutinin transformation and circulation lymphocyte subpopulations in insulin-dependent diabetic patients. Diabetes. 1974;25:908-12.
29. Casey JI, Heeter BJ, Klyshevich KA. Impaired response of lymphocytes of diabetic subjects to antigen of Staphylococcus aureus. J Infect Dis. 1977;136:495-501.
30. Didier H, Thierry R. Initial responses to endotoxins and Gram-negative bacteria. Clinica Chimica Acta. 2002;231:59-72.
31. Fukuto JM, Chaudhuri G. Inhibition of constitutive and inducible nitric oxide synthase: potential selective inhibition. Annu Rev Pharmacol Toxicol. 1995;35:165-94.
32. MacMicking J, Xie QW, Nathan C. Nitric oxide and macrophage function. Annu Rev Immunol. 1997;15:323-50.
33. Schwacha MG, Gudewicz PW, Snyder JA, et al. Depression of macrophage respiratory burst capacity and arachidonic acid release after Fc receptor-mediated phagocytosis. J Immunol. 1993;1;150(1):236-45.
34. Sherry B, Tekamp Olson P, Gallegos C, et al. Resolution of the two components of macrophage inflammatory protein 1, and cloning and characterization of one of those components, macrophage inflammatory protein 1 beta. J Exp Med. 1988;1;168(6):2251-9.
35. Tseng CC, Hattori Y, Kasai K, et al. Decreased production of nitric oxide by LPS-treated J774 macrophages in high-glucose medium. Life Sci. 1997;60(7):99-106.
36. Hanada T, Yoshimura A. Regulation of cytokine signaling and inflammation. Cytokine Growth Factor Rev. 2002; 13(4-5):413-21.
37. Sautebin L, Prostaglandins and nitric oxide as molecular targets for anti-inflammatory therapy. Fitoterapia. 2000;:S48-57.
38. Chan ED, Morris KR, Belisle JT, et al. Induction of inducible nitric oxide synthease-NO by lipopoarabinomanan of Mycobacter tuberculosis is mediated by MEK-1-ERK MKK7-JNK, and NF-kpaB signalling pathway. Infect Immunol. 2001;69: 2001-10.
39. Pan, MH, C T, Lin JH, et al. Suppression of lipopolysaccharide-induced nuclear factor-kapaB activity by theaflavin-3, 3-digallate from black tea and other polyphenols through downregulation of I-kapaB kinase activity in macrophage. Bicohem Pharmacol. 2000;59: 357-367.
40. Stuehr DJ, Marletta, MA. Mammalain nitrite biosynthesis: mouse macrophages produce nitrite and nitrate in response to Escherichia coli lipopolysaccharide. Proc Natl Acad Sci. 1985;82: 7738-7742.
41. Ignarro LJ, Buga GM, Woon KS, et al. Endothelium-derived relaxing factor produced and released from artery and vein is nitric oxide. Proc Natl Acad Sci. 1990;84: 9265-9269.
42. Gross SS, Levi R. Tetrahdrobioterin synthesis. An absolute requirement for cytokine-induced nitric oxide generation by vascular smooth muscle. J Biol Chem 1992;267: 25122-25729.
43. Moncada S, Higgs EA. Endogenous nitric oxide: physiology, pathology and clinical relevance. Eur J Clin Invest. 1991;21(4):361-74.
44. Lee BS, Kang HS, Pyun KH. Role of tyrosine kinase in the regulation of nitric oxide synthesis in murine liver cell: Modulation of KF-kapaB activity by tyrosine kinase. Hepatology 1997;25:913-919.
45. Drapier JC, Wietzerbin J, Hibbs JB Jr. Interferon-gamma and tumor necrosis factor induce the L-arginine-dependent cytotoxic effector mechanism in murine macrophages. Eur J Immunol. 1988;18(10):1587-92.
46. Morrison WI, Weiss R, Waxler-Morrison NE, Morrison BJ. Factors influencing oral health in long term care facilities. Community Dent Oral Epidemiol. 1987;15(6):314-6.
47. Hon WM, Khoo HE, Mocchhaia S. Nitric oxide in septic shock: directions for future therapy. Annals Acad Med. 1998;27:414-421.
48. Steinberg GR. nflammation in Obesity is the Common Link Between Defects in Fatty Acid Metabolism and Insulin Resistance. Cell Cycle. 2007;11(8):6.
49. Lindemann RA, Economou JS. Actinobacillus actinomycetemcomitans and Bacteroides gingivalis activate human peripheral monocytes to produce interleukin-1 and tumor necrosis factor. J Periodontol. 1988;59(11):728-30.
50. Bhakdi S, Klonisch T, Nuber P, et al. Stimulation of monokine production by lipoteichoic acids. Infect Immun. 1991;59(12):4614-20.
51. Kuwano K, Akashi A, Matsu-ura I, et al. Induction of macrophage-mediated production of tumor necrosis factor alpha by an L-form derived from Staphylococcus aureus. Infect Immun. 1993;61(5):1700-6.
52. Aggarwal BB, Natarajan K. Tumor necrosis factors: developments during the last decade. Eur Cytokine Netw. 1996;7(2):93.
53. Barnes, Karin. Nuclear factor-kappaB: a pivotal transcription factor in chronic inflammatory diseases. N Engl J Med. 1997;336(15):1066-71.
54. Locksley R M, Killeen N, Lenardo M J. The TNF and TNF reeptor superfamilies: Integrating normalian Biology. Cell. 2001;104: 487-501.
55. Tartaglia LA, Goeddel DV. Two TNF receptors. Immunol Today. 1992;(5):151-3.
56. Hu WH, Johnson H, Shu HB. Tumor necrosis factor-related apoptosis-inducing ligand receptors signal NF-kappaB and JNK activation and apoptosis through distinct pathways. J Biol Chem. 1999;274(43):30603-10.
57. Lindeman RA, Economous JS, Rothemel H. Production of interleukin-1 and tumor necrosis factor by human peripheral monocytes activated by periodontal bacteria and extracted lipopolysaccharides. J Dent Res. 1988;67(8):1131-5.
58. Matsuki Y, Yamamoto T, Hara K. Detection of inflammatory cytokine messenger RNA (mRNA)-expressing cells in human inflamed gingiva by combined in situ hybridization and immunohistochemistry. Immunology. 1992;76(1):42-7.
59. Matsuki Y, Yamamoto T, Hara K. Localization of interleukin-1 (IL-1) mRNA-expressing macrophages in human inflamed gingiva and IL-1 activity in gingival crevicular fluid. J Peridontal Res. 1993;28(1):35-42.
60. Scala G, Allavena P, Djeu JY, et al. Human large granular lymphocytes are potent producers of interleukin-1. Nature. 1984;3-9; 309(5963):56-9
61. Matsushima K, Procopio A, Abe H, Scala G, Ortaldo JR, Oppenheim JJ. Production of interleukin 1 activity by normal human peripheral blood B lymphocytes. J Immunol. 1985;135(2):1132-6.
62. Takeichi O, Saito I, Tsurumachi T, et al. Human polymorphonuclear leukocytes derived from chronically inflamed tissue express inflammatory cytokines in vivo. Cell Immunol. 1994;156(2):296-309.
63. Takada H, Mihara J, Morihashi I, et al. Production of cytokins by human gingival fibroblasts. Perodontal Disease: Pathogens and host immune responses. Quintessence Publishing. 1991;265-276.
64. Rupp EA, Cameron PM, Ranawat CS, et al. Specific bioactivities of monocyte-derived interleukin 1 alpha and interleukin 1 beta are similar to each other on cultured murine thymocytes and on cultured human connective tissue cells. J Clin Invest. 1986;78(3):836-9.
65. Page RC, Kornman KS. The pathogenesis of human periodontitis: an introduction. Periodontol 2000. 1997;14:9-11.
66. Kunkel SL, Chensue SW. Arachidonic acid metabolites regulate interleukin-1 production. Biochem Biophys Res Commun. 1985;128(2):892-7.
67. Lindemann RA, Economou JS. Actinobacillus actinomycetemcomitans and Bacteroides gingivalis activate human peripheral monocytes to produce interleukin-1 and tumor necrosis factor. J Periodontol. 1988;59(11):728-30.
68. Lindemann RA, Economou JS, Rothermel H. Production of interleukin-1 and tumor necrosis factor by human peripheral monocytes activated by periodontal bacteria and extracted lipopolysaccharides. J Dent Res. 1988;67(8):1131-5.
69. Duarte PM, de Oliveira MC, Tambeli CH, et al. Overexpression of interleukin-1beta and interleukin-6 may play an important role in periodontal breakdown in type 2 diabetic patients. J Periodontal Res. 2007;42(4):377-81.
70. Hermann C, Krikovszky D, Fust G, et al. Association between interleukin-6 polymorphism and age-at-onset of type 1 diabetes. Epistatic influences of the tumor necrosis factor-alpha and interleukin-1beta polymorphisms. Eur Cytokine Netw. 2005;16(4):277-81.
71. Kishimoto T. The biology of interleukin-6. Blood. 1989;74:1.
72. Kishimoto T, Akira S, Taga T. Interleukin-6 and its receptor: a paradigm for cytokines. Science. 1992;258(5082):593-7.
73. Akira S, Taga T, Kishimoto T. Interleukin-6 in biology and medicine. Adv Immunol. 1993;54:1-78.
74. Ishihara K, Hirano T. IL-6 in autoimmune disease and chronic inflammatory proliferative disease. Cytokine Growth Factor Rev. 2002;13(4-5):357-68.
75. Kerr R, Stirling D, Ludlam CA. Interleukin 6 and haemostasis. Br J Haematol. 2001;115(1):3-12.
76. Akira S, Taga T, Kishimoto T. nterleukin-6 in biology and medicine. Adv Immunol. 1993;54:1-78.
77. Elias JA, Lentz V. L-1 and tumor necrosis factor synergistically stimulate fibroblast IL-6 production and stabilize IL-6 messenger RNA. J Immunol. 1990;145(1):161-6.
78.Van Damme J, Cayphas S, Van Snick J, et al. Lenaerts JP, Simpson RJ, Billiau A. Purification and characterization of human fibroblast-derived hybridoma growth factor identical to T-cell-derived B-cell stimulatory factor-2 (interleukin-6). Eur J Biochem. 1987;168(3):543-50.
79. Braquet P, Pignol B, Maisonnet T, et al. Platelet-activating factor modulates interleukin-6 production by mouse fibroblasts. Int Arch Allergy Appl Immunol. 1991;94(1-4):165-6.
80. Roth M, Nauck M, Yousefi S, et al. Platelet-activating factor exerts mitogenic activity and stimulates expression of interleukin 6 and interleukin 8 in human lung fibroblasts via binding to its functional receptor. J Exp Med. 1996;184(1):191-201.
81. Alexandraki K, Piperi C, Kalofoutis C, et al. Inflammatory process in type 2 diabetes: The role of cytokines. Ann N Y Acad Sci. 2006;1084:89-117.
82. Mocan MC, Kadayifcilar S, Eldem B. Elevated intravitreal interleukin-6 levels in patients with proliferative diabetic retinopathy. Can J Ophthalmol. 2006;41(6):747-52.
83. Plesner A, Greenbaum C J, Guar L K, et al. Macrophages from High-Risk HLA-DQB1*0201/*0302 Type 1 Diabetes Mellitus Patients are Hypersensitive to Lipopolysaccharide Stimulation. Scandinavian Journal of Immunology. 2002;56(5):522-529(8).
84. Furfine ES, Harmon MF, Paith JE, et al. Potent and selective inhibition of human nitric oxide synthases. Selective inhibition of neuronal nitric oxide synthase by S-methyl-L-thiocitrulline and S-ethyl-L-thiocitrulline. J Biol Chem. 1994;269(43):26677-26683.
85. Bredt DS, Snyder SH. Nitric oxide, a novel neuronal messenger. Neuron. 1992;8(1):3-11.
86. Yan SF, Ramasamy R, Naka Y, et al. Glycation, inflammation, and RAGE. A scaffold for the macrovascular complications of diabetes and beyond. Circ Res. 2003;93:1159- 1169.
87. Lin WW, Chen BC, Hsu YW, et al. Modulation of inducible nitric oxide synthase induction by prostaglandin E2 in macrophages: distinct susceptibility in murine J774 and RAW 264.7 macrophages. Prostaglandins Other Lipid Mediat. 1999;58(2-4):87-101.
88. Chiou WF, Chen CF, Lin JJ. Mechanisms of suppression of inducible nitric oxide synthase (iNOS) expression in RAW 264.7 cells by andrographolide. Br J Pharmacol. 2000;129(8):1553-60.
89. Burney S, Tamir S, Gal A, Tannenbaum SR. A mechanistic analysis of nitric oxide-induced cellular toxicity. Nitric Oxide. 1997;1(2):130-44.
90. Stefanovic Racic M, Stadler J, Evans CH. Nitric oxide and arthritis. Arthritis Rheum. 1996;10(1):38-42.
91. Chen YJ, Hsu KW, Chen YL. Acute glucose overload potentiates nitric oxide production in lipopolysaccharide-stimulated macrophages: the role of purinergic receptor activation. Cell Biol Int. 2006;30(10):817-22.
92. Tseng CC, Hattori Y, Kasai K. et al. Decreased production of nitric oxide by LPS-treated J774 macrophages in high-glucose medium. Life Sci. 1997;60(7):PL99-106.
93. Lee HY, Noh HJ, Gang JG, et al. Inducible nitric oxide synthase (iNOS) expression is increased in lipopolysaccharide (LPS)-stimulated diabetic rat glomeruli: effect of ACE inhibitor and angiotensin II receptor blocker. Yonsei Med J. 2002;43(2):183-92.
94. Pcheco ME, Beltran A, Redondo J, et al. High glucose enhances inducible nitric oxide synthase expression. Role of protein kinase C-betaII. Eur J Pharmacol. 2006;24;538(1-3):115-23.
95. Nakai K, Kubota Y, Kosaka H. Inhibition of nuclear factor kappa B activation and inducible nitric oxide synthase transcription by prolonged exposure to high glucose in the human keratinocyte cell line HaCaT. Br J Dermatol. 2004;150(4):640-6.
96. Hirasawa K, Jun HS, Han HS, et al. Prevention of Encephalomyocarditis Virus-Induced Diabetes in Mice by Inhibition of the Tyrosine Kinase Signalling Pathway and Subsequent Suppression of Nitric Oxide Production in Macrophages. J Virol. 1999;73(10):8541-8548.
97. el Nawawy A, Soliman AT, el Azzouni O, et al. Interleukin-1-beta, tumour necrosis factor-alpha, islet-cell antibody, and insulin secretion in children with thalassemia major on long-term blood transfusion. J Trop Pediatr. 1996;42(6):362-4.
98. Kilbourn RG, Griffith OW. Inhibition of inducible nitric oxide synthase with inhibitors of tetrahydrobiopterin biosynthesis. J Natl Cancer Inst. 1992;84(21):1672.
99. Tang Y, Li GD. Chronic exposure to high glucose impairs bradykinin-stimulated nitric oxide production by interfering with the phospholipase-C-implicated signalling pathway in endothelial cells: evidence for the involvement of protein kinase C. Diabetologia. 2004;47(12):2093-104.
100.Vadlamani L, Iyengar S. Tumor necrosis factor alpha polymorphism in heart failure/ cardiomyopathy. Congest Heart Fail. 2004;10(6):289-92.
101.Yerneni KK, Bai W, Khan BV, et al. Hyperglycemia- induced activation of nuclear transcription factor kappaB in vascular smooth muscle cells. Diabetes. 1999;48:855-864
102. Mohamed AK, Bierhaus A, Schiekofer S, et al. The role of oxidative stress and NF-kappaB activation in late diabetic complications. Biofactors. 1999;10(2-3):157-67.
103. Kang DH, Hong YS, Lim HJ, et al I. High glucose solution and spent dialysate stimulate the synthesis of transforming growth factor-beta1 of human peritoneal mesothelial cells: effect of cytokine costimulation. Perit Dial Int. 1999;19(3):221-30.
104. Arias-Negrete S, Keller K, Chadee K. Proinflammatory cytekines regulate cyclooxigenase-2 mRNA expression in human macrophages. Biochem Biophys Res Commun. 1995;208:582-589.
105. Di Rosa M, Ialenti A, Ianaro A, et al. Interaction between nitric oxide and cyclooxygenase pathways. Prostaglandins. Leukot. Essent. Fatty Acids. 1996;54:229-238
106. Dandona P, Aljada A, Bandyopadhyay A. Inflammation: the link between insulin resistance, obesity and diabetes. Trends Immunol. 2004;25:4 –7.
107. McCarty MF. Interleukin-6 as a central mediator of cardiovascular risk associated with chronic inflammation, smoking, diabetes, and visceral obesity: down-regulation with essential fatty acids, ethanol and pentoxifylline. Med Hypotheses. 1999;52:465 –477.
108. Lindmark E, Diderholm E, Wallentin L, et al. Relationship between interleukin 6 and mortality in patients with unstable coronary artery disease: effects of an early invasive or noninvasive strategy. JAMA. 2001;286:2107 –2113.
109. Pradhan AD, Manson JE, Rossouw JE, et al. Inflammatory biomarkers, hormone replacement therapy, and incident coronary heart disease: prospective analysis from the Women’s Health Initiative observational study. JAMA. 2002;288:980 –987.
110. Ridker PM, Rifai N, Stampfer MJ, et al. Plasma concentration of interleukin-6 and the risk of future myocardial infarction among apparently healthy men. Circulation. 2000;101:1767 –1772.
111. Jain SK, Kannan K, Lim G, et al. Elevated blood interleukin-6 levels in hyperketonemic type 1 diabetic patients and secretion by acetoacetate-treated cultured U937 monocytes. Diabetes Care. 2003;26:2139 –2143.
112. Devaraj S, Jialal I. Alpha tocopherol supplementation decreases serum C-reactive protein and monocyte interleukin-6 levels in normal volunteers and type 2 diabetic patients. Free Radic Biol Med. 2000;29:790 –792.
113. Liu YJ, Saini A, Cohen DJ, et al. Moduation of macrophages roliferation by hyperglycemia. Mol Cell Endocrinol. 1995;114:187-192.
114. Morohoshi M, Fujisawa K, Uchumura I, et al. The effect of glucose and advanced glycosylation end products on IL-6 production by human monocytes. Ann NY Acad Sci. 1995;748:562-570.
115. Morohoshi M, Fujisawa K, Uchumura I, et al. Glucose-dependent interleukin-6 and tumour necrosis factor production by human periheral blood monocytes in vitro. Diabetes 1996;45:954-959.
116. Hermann C, Krikovszky D, Fust G, et al. Eur Cytokine Netw. 2005;16(4):277-81.
117. Kowluru RA, Odenbach S. Role of interleukin-1beta in the pathogenesis of diabetic retinopathy. Br J Ophthalmol. 2004;88(10):1343-7.
118. Lagathu C, Yvan-Charvet L, Bastard JP, et al. Long-term treatment with interleukin-1beta induces insulin resistance in murine and human adipocytes. Diabetologia. 2006;49(9):2162-73.
119. Kang DH, Hong YS, Lim HJ, et al. High glucose solution and spent dialysate stimulate the synthesis of transforming growth factor-beta1 of human peritoneal mesothelial cells: effect of cytokine costimulation. Perit Dial Int. 1999;19(3):221-30.
120. Engebretson S, Chertog R, Nichol A, et al. Plasma levels of tumour necrosis factor-alpha in patients with chronic periodontitis and type 2 diabetes. J Clin Periodontol. 2007;34(1):18-24.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊