跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.176) 您好!臺灣時間:2025/09/08 07:53
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林志豪
研究生(外文):Jyh-Haur Lin
論文名稱:XYZ-三軸精密微動定位系統設計與制動機制
論文名稱(外文):Design and manufacture of XYZ-three axis precision positioning system
指導教授:洪振義洪振義引用關係
指導教授(外文):Chin-Yih Hong
學位類別:碩士
校院名稱:大葉大學
系所名稱:機械工程研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2000
畢業學年度:88
語文別:中文
論文頁數:88
中文關鍵詞:壓電材料遲滯現象掃描式穿隧顯微鏡單自由度進給裝置三自由度微動裝置
外文關鍵詞:PZThysteresis phenomenonScanning Tunneling Microscopecoarse stagethree-axis micropositioner
相關次數:
  • 被引用被引用:14
  • 點閱點閱:834
  • 評分評分:
  • 下載下載:89
  • 收藏至我的研究室書目清單書目收藏:4
中 文 摘 要
精密定位技術是製造產品、測量物體尺寸、運轉各種機器之機械工程上的重要技術之一。隨著精密工程的不斷進步,不論是半導體產業、精密機械工業、生物細胞領域、光電系統、顯微機構、表面工程、STM、SPM等方面,皆朝微小化、精密化的方向前進,因此對於微米或次微米級的定位系統需求量日增。另一方面,具有機電轉換力的壓電材料(Piezoelectric Material),以其質輕、體積小、反應快、解析度高等特性已逐漸被注意,但由於遲滯現象(Hysteresis)及輸出位移的限制,其應用大部分侷限在感測器(Sensors)上只有少部分使用於致動器(Actuators)方面,但近年來由於壓電材料在材料性質的改進和積層式壓電陶瓷的開發,使得壓電材料能在低輸入電壓的驅動下有較高的位移輸出,更適於致動器的用途。
本文的研究目的為利用壓電材料作為致動器設計一用於掃描式穿隧顯微鏡上的精密定位平台,對於其壓電致動器做一探討研究,配合其壓電致動器之特性,設計一開迴路控制系統。
本文在設計上將設計一單自由度進給裝置與三自由度微動裝置,利用雙裝置整合方式來達成精密微動定位的目標,單自由度進給裝置主要是採用驅動位移量較大的壓電材料尺蠖蟲式(Inchworm)驅動設計,其解析度為<40 nm;三自由度微動裝置是利用管狀的壓電材料作為驅動源。本文利用光槓桿法與光干涉法-麥克遜干涉儀來從事壓電致動器的位移量測和特性探討。
ABSTRACT
Recently, the needs for precise micropositioning aries in many fields of research and technology, such as in cellular biology, and SXM(scanning tunneling microscopy or scanning probe microscopy). The requirement of positioning system with submicron order accuracy increases with the development of precision engineering. In this field, the piezoelectric (PZT) material is remarkable in submicron positioning systems for its merits in electromechanical couple. The features of the PZT material, such as less weigh, small size, fast reponse, high resolution, etc., have made it valuable for application in position engineering. However, there are some disadvantages of the PZT devices. The displacement precession of the PZT devices is limited by the hysteresis phenomenon. In addition, the maximum deformation for a piece of PZT material is quite small for most application. In order to improve these properties, the new compositions of the PZT material and multiplayer PZT ceramics have been development in recent years. The reformed PZT devices with these reformed PZT elements may obtain greater displacement and higher precision.
In this work, the characteristics of PZT actuators are investigated for its applicability in the scanning tunneling microscope (STM) system. The results are used to establish a high precession positioning stage for STM system. The positioning stage consists of a coarse stage and a three-axis micropositioner. The coarse stage is driven by an InchwormR motor (New Focus Inc.), which has s minimum resolution of 40 nm. The three-axis micropositioner is based on a PZT tube (PZT-5H). The displacement of the high precession positioning stage was measured by using the Optical lever method and the Michelson interferometer method in order to study the hysteresis characteristics as well as the displacement —voltage relation of the micropositioner.
目 錄
封面內頁
簽名頁
上網授權書………………………………………..…………………iii
授權書………………………………………………………………..iv
中文摘要………………………………………………………………v
英文摘要………………………………………….…………………vii
誌謝……………………………………………….………………… ix
目錄……………………………………………….………………… xi
圖目錄…………………………………………….………..……… xiii
表目錄……………………………………………...….……………xvi
符號表…………………………………………………………...…xvii
第一章 緒論………………………………………………….……..1
1.1研究背景……………………………………………………….1
1.2文獻回顧………………………………………………………..2
1.2.1微定位平台………………………………………..……….2
1.2.2掃描穿隧型顯微鏡………………………………………...5
1.3 研究目的與預期成果…………………………………………6
第二章 壓電材料原理………………………………………….....8
2.1壓電材料之簡…………………………………………………..8
2.2壓電材料組成律……………………………...…………......16
2.3壓電諧振體……………………………………………………18
2.4壓電特性參數…………………………………………………19
第三章 系統組成設計與配置……………………………….….23
3.1 設計流程規劃………………………………………………..23
3.2組成系統之設計………………………………………………23
3.2.1單自由度進給裝置……………………………….……...24
3.2.2三自由度微動裝置……………………………….……...30
3.3 組成系統之整合……………………………………………..36
第四章 實驗量測………………………………………………....38
4.1 實驗儀器……………………………...……………………...38
4.2實驗原理與方法………………………………………………39
4.2.1實驗原理………………………..………………………...40
4.2.1.1光槓桿法……………………………………………..40
4.2.1.2光干涉法……………………………………………..42
4.2.2實驗方法………………………………………..………...51
4.2.2.1光槓桿法實驗量測…………………………...……..51
4.2.2.2麥克遜干涉儀實驗量測………………………...…..55
4.3 實驗結果整理與討論………………………………………..58
4.3.1單自由度進給裝置……………………………………….58
4.3.2.三自由度微動裝置………………………………………59
4.3.2.1光槓桿法實驗………………………………………..60
4.3.2.2光干涉實驗-麥克遜干涉儀實驗……………………61
第五章 結論與未來展望………………………………………...79
參考文獻……………………………………………………………81
附錄………………………………………………………………….87
參考文獻
[1] P. D. Atherton, Y. Xu., M. McConnel,“Mew X-Y Stage for Positioning and Scanning,”Proceedings of SPIE’s Annual Meeting, Aug. 1996, Denver, USA.
[2] Y. Xu, P. D. Atherton, M. McConnel, and T. R. Hicks,“Desing and Characteristicvs of Nanameter Precision Mechanisms,”Proceedings of American Society For Precision Enginering, Annual Meeting, 1996, USA.
[3 D. Heuderson, D. Jensen and P. Piccirilli,“Recent advancements in Piezoelectric Stepping Motors,”Proceedings of American Society For Precision Engineering, Annual Meeting, 1996, USA.
[4 H. Isobe, T. Moriguchi, A. Kyusojin,“Development of Piezoelectric XYZ Positioning Device Using Impulsive Force,”日本精密工學會誌, Vol. 62, N.4,1996.
[5 J. W. Ryu, D. G. Gweon,“High Precision X-Y-θ Micropositioning Stage Using Monolithic Fiexure-Pivoted Linkages,”Proceedings of American Society For Precision Enginering, Annual Meeting, 1996, USA.
[6] A. Kanai, H. Sano, J. Yoshioka, and M. Miyashita,“Positioning of a 200kg Carriage on Plain Bearing Guideways to Nanometer Accuracy with a Force-operated Linear Actuator,”Nanotechnology, Vol. 2, pp. 43-51, 1991.
[7] Waniun Wang and Ilene Busch-Vishniac, “A High Precision Micropositioner based on Magnetostriction Principle,” Rev. Sci. Instrum., Vol. 3, pp, No. 1, 1992.
[8] Takehiko Nomura and Ryouichi Suzuki, “Six-axis Controlled Nanometer-order Positioning stage for Microfabrication,”Nanotechnology, Vol. 3, pp. 21-28, 1992.
[9] Wanjun Wang and Tian He, “A high Precision Micropositioner with Five Degrees of Freedom Based on an Electromagnetic Driving Principle,”Rev. Sci. Instrum., Vol. 67, No. 1, pp. 312-317, 1996.
[10] J. Heil, A. Bohm, M. Primke, and P. Wyter, “Versatile Three-Dimensional Cryogenic Micropositioning Device,”Rev. Sci. Instrum., Vol. 67 No. 1, 1996.
[11] Shigeru Sakuta, Mikio Adachi, Kiyoshi Ogawa, Katsunobu Ueda, Noboru Takasu, Kozo Taira, and Toshiyuki Nakano,“Precision Table Control System Using Friction Drive for Optical Disk Masterting Machine,”Int. J. Japan Soc. Prec. Eng., Vol. 32, No. 2, pp. 122-126, 1998.
[12] Paul D. Atherton,“Nanometer Precision Mechanisms,”Measurement and Control, Vol. 31, pp. 37-42, 1998.
[13] E. Clayton Teague,“Generating and Measuring Displacements up to 0.1m to an Accuracy of 0.1nm:Is It Possible, ”SPIE Handbook,“The Technology of Proximal Probe Lithography, ”1993.
[14] 江田弘著,杜光宗編譯,“超精密工作機械的製作“ 建宏出版社,1995。
[15] 井澤實著,杜光宗編譯,“精密定位技術及其設計技術“ 建宏出版社,1992。
[16] Takaaki Oiwan and Toshihiko Sugimoto,“ Shape Optimization for Flexure Hinges, ”精密工學會誌,Vol. 63, No. 10, pp. 1454-1458, 1997.
[17] J. R. Matey, R.S. Crandall, and B. Brycki, “ Biomorh-Driven X-Y-Z Translation Stage for Scanned Image Misroscopy, ”Rev. Sci. Instrum., Vol. 58, No. 4, 1987.
[18] 簡宏彰,“ 三自由度超精密微定位平台之研究 ”國立台灣大學機械工程研究所碩士論文, 1996.
[19] 曾俊凱,“三自由度微定位平台之動態分析”國立台灣大學機械工程研究所碩士論文, 1997.
[20] H. Jonathon Mamin, David W. Abraham, Eric Ganz, and John Clarke,“Two-Dimensional, Remote Micrpositioner for a Scanning Tunneling Microscope, ”Rev. Sci. Instrum. Vol. 56, No. 11, 1985.
[21] E. de Haas, W. Barsingerhorn, and J. F. van der Veen, “Piezoelectric Push-Pull Micropositioner for Ballistic Electron Emission Microscope, ”Rev. Sci. Intrum. Vol. 68, No. 10, pp.3803-3805, 1997.
[22] K. Pond, B. Z. Nosho, H. R. Stuber, A. C. Gossard, and W. H. Weinberg, “A Two-Dimensional Ultrahigh Vacuum Positioner for Scanning Tunneling Microscopy,”Rev. Sci. Instrum. Vol. 69, No. 3, pp.1403-1405, 1998.
[23] D. W. Pohl, “Dynamic piezoelectric translation devices,”Rev. Sci. Instrum. Vol. 58, No. 1, 1987.
[24] Ch. Renner, Ph. Niedermann, A. D. Kent, and O. Fischer, “A Vertical Piezoelectric Inertial Slider,”Rev. Sci. Instrum. Vol. 61, No. 3, 1990.
[25] Robert Curtis, Chris Pearson, Peter Gaard, and Eric Ganz, “A Compact Micropositioner for Use in Ultrahigh Vacuum,”Rev. Sci. Instrum. Vol. 64, No. 9, pp.2687-2690, 1993.
[26] A. R. Smith, S. Gwo, and C. K. Shih, “A New High-resolution Two-dimensional Micropositioning Device for Scanning Probe Microscopy Applications,”Rev. Sci. Instrum. Vol. 65, No. 10, 1994.
[27] S. H. Chang and S. S. Li, “A Friction-drive Micropositioner with Programmable Step Size,”Rev. Sci. Instrum. Vol. 70, No. 6, 1999.
[28] O. Jusko, X. Zhao, H. Wolff, G. Wilkening, “Design and Three Dimensional Calibration of a Measuring Scanning Tunneling Microscope for Metrological Applications,”Rev.Sci.Instrum. Vol. 65, No. 8, pp. 2514-2517(Aug. 1994).
[29] J. W. Lyding, S. Skala, J. S. Hubacek, R. Brockenbrough, G. Gammie, “Variable-Temperature Scanning Tunneling Microscope,”Rev. Sci. Instrum. Vol. 59, No. 9, pp.1897-1902 (Sept. 1988).
[30] O. Haase, M. Borbonus, P. Muralt, R. Koch, K. H. Riedr, “A Novel Ultrahigh Vacuum Scanning Tunneling Microscope for Surface Science Studies,”Rev. Sci. Instrum. Vol. 61, No. 5, pp.1480-1483(May 1990).
[31] M. A. Dubson, Jeeseong Hwang, “Simple, Variable-Temperature, Scanning Tunneling Microscope,”Rev. Sci. Instrum. Vol. 63, No. 7, pp.3643-3645(July 1992).
[32] G. C. Rosolen, M. E. Welland, “A Combined Scanning Electron Microscope and Scanning Tunneling Microscope for studying Nanostructure,”Rev. Sci. Instrum. Vol. 63, No. 9, pp,4041-4045(Sept. 1992).
[33] A. Wiessner, J. Kirschner, “Design Consideration and Performance of a Combined Scanning Tunneling and Scanning Electron Microscope,”Rev. Sci. Instrum. Vol. 68, No. 10, pp.3790-3798(Oct. 1997).
[34] C. L. Jnhncke, H. D. Hallen, “A Versatile Stable Scanning Proximal Probe Microscope,”Rev. Sci. Instrum. Vol. 68, No. 4, pp.1759-1763(April 1997).
[35] Ki Hyun Kim, “A Novel Digital Feedback Scheme of Shear-Force Control in Near-Field Scanning Optical Microscope,”Rev. Sci, Instrum. Vol. 68, No. 7, pp.2783-2786(July 1997).
[36] P. G. Gucciardi, M. Labardi, S. Gennai, F. Lazzeri, M. Allegrini, “Versatile Scanning Near-Field Optical Microscope for Material Science Applications,”Rev. Sci. Instrum. Vol. 68, No. 8, pp.3088-3092(Aug. 1997).
[37] J. W. P. Hsu, A. A. McDaniel, “A Shear Forces Feedback Control System for Near-Field Scanning Optical Microscopes without Look-in Detection,”Rev. Sci. Instrum. Vol. 68, No. 8, pp.3095-3095(Aug. 1997).
[38] 陳昭舜,“壓電微掃描器之動態分析,”國立台灣大學機械工程研究所碩士論文, 1994.
[39] 駱世民,“壓電掃瞄機構之設計與分析,”國立台灣大學機械工程研究所碩士論文, 1993.
[40] 謝政順,“低溫燒結PZT陶瓷在致動器方面的應用,”私立大葉大學電機工程研究所碩士論文, 1999.
[41] 李昇憲,“深紫外光光學微影術晶片步進機之研製,”國立台灣大學機械工程研究所碩士論文, 1998.
[42] 李振邦,“奈米級長距離致動機構暨三自由度為定位平台之研製,”國立台灣大學機械工程研究所碩士論文, 1998.
[43] 本社編輯部 編譯,“精密定位圖集,”夫子出版社,1989.
[44] 大塚二郎著,洪榮哲編譯,“機構設計-精密定位法,”全華科技圖書股份有限公司, 1998.
[45] 內野 研二著,許溢适編譯,“壓電/電歪致動器,”文笙出版社,1995.
[46] Takuro Ikeda, “Fundamentals of Piezoelectricity,”Oxford New York Tokyo, 1990.
[47] 汪建民主編,“陶瓷技術手冊(上),”中華民國產業科技發展協進會,1994.
[48] 彭成鑑,“壓電材料,”科儀新知.第十六卷.六期, pp.16-28, 1995.
[49] 張所鈜,“智慧型系統之致動器與感測器,”科儀新知.第十六卷.六期, pp.30-42, 1995.
[50] A. Hammiche, Yu Wei, I. H. Wilson, R. P. Webb, “The surrey STM: Construction, development, and evaluation of a scanning tunneling microscope,”Rev. Sci. Instrum. 62(12), December 1991.
[51] “THE PIEZO BOOK,”burleigh.
[52] M. Sunar, SS. Roa, “Recent advances in sensing and control of flexible structures vip piezoelectric materials techno;ogy,”Appl. Mech. Rev. Vol. 52 , January 1999.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top