跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.88) 您好!臺灣時間:2026/02/15 08:16
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:江文益
研究生(外文):Wen-yi Chiang
論文名稱:像素形狀對於累增型CMOS光電二極體崩潰電壓的影響
論文名稱(外文):Breakdown Effect of Pixel Topology on Avalanche CMOS Photodiodes
指導教授:陳自強陳自強引用關係
指導教授(外文):Oscal T.–C. Chen
學位類別:碩士
校院名稱:國立中正大學
系所名稱:電機工程所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
畢業學年度:96
語文別:中文
論文頁數:56
中文關鍵詞:CMOS影像感測器累增崩潰光電二極體崩潰電壓暗電流
外文關鍵詞:CMOS imager sensor、Avalanche photodiode、breakd
相關次數:
  • 被引用被引用:0
  • 點閱點閱:516
  • 評分評分:
  • 下載下載:55
  • 收藏至我的研究室書目清單書目收藏:0
CMOS 影像感測器具有低必v消耗、高整合度以及低成本之優點,明顯地,CMOS 影像感測器即將成為新一代的影像擷取技術。在影像感測器中CMOS 光電二極體扮演了一個最重要的光電轉換角色,因為CMOS 光電二極體的特性參數為控制影像品質的重要關鍵,本論文之目的即為探討累增崩潰光電二極體其具有偵測單一光子的能力之特性參數。我們提出一種可承受高逆向偏壓與具有低暗電流量的光電二極體佈局設計,並推導其崩潰電壓模型。在驗証這個模型的過程上,我們利用TSMC (Taiwan Semiconductor Manufactory Company)所提供的 0.35 2P4M (Two Poly Layers and Four Metal Layers) CMOS製程,在探討崩潰電壓部份設計了數種不同接面結構、不同感光面積、不同感光週長與邊角數目的光電二極體佈局,量測的結果顯示較短週長、較大面積和較多之邊角數目的光電二極體具有較高之崩潰電壓。在暗電流部份具有較少邊角數目的光電二極體陣列其暗電流量較少。因此本論文所提出的崩潰電壓模型將可應用於高崩潰電壓、低暗電流量之CMOS光電二極體設計。
The CMOS process has increasingly becoming the mainstay in the IC market due to advantages of its low-power dissipation and high-density integration. In an image sensor system, the photodiode play the most important role of the photo-electronic conversion device. This paper will conduct a complete analysis, simulation and measurement of the sensor characteristics of the avalanche photodiode. First, with high reverse biased and low dark current, a CMOS photodiode breakdown model will be derived. Next the 2P4M CMOS 0.35 process provided by the TSMC is used to design photodiodes with different structures、area 、periphery and corner numbers. Lastly, the results from measurement and simulation are compared and analyzed. The concept of this proposed model can be utilized in CMOS photodiode design with high breakdown voltage and low dark current.
摘要 I
目錄 II
圖目錄 III
表目錄 III
第一章 緒論 1
1.1研究背景 1
1.2 研究目的 2
1.3 論文架構 2
第二章 CMOS影像感測器之介紹 3
2.1 CMOS影像感測器之結構 3
2.2 應用於赫瞍狾﹞妓祤W崩潰光電二極體 8
第三章 累增崩潰光電二極體之研究 10
3.1 累增崩潰光電二極體接面結構 10
3.1.1 接面零偏壓 13
3.1.2 接面零偏壓電場 16
3.1.3 接面零偏壓空間電荷寬度 20
3.1.4 光電二極體逆向偏壓 22
3.2像素形狀與累增崩潰光電二極體之關係 24
3.3累增崩潰光電二極體之崩潰電壓模型 32
3.4 累增崩潰光電二極體之暗電流量測數據結果與分析 36
第四章 累增崩潰光電二極體陣列量測結果分析 38
4.1 接面結構和像素形狀與累增崩潰光電二極體陣列之關係 38
4.2 累增崩潰光電二極體陣列之暗電流量測數據結果與分析 46
第五章 結論 48
[1]Brian F. Aull, Andrew H. Loomis, Douglas J. Young, Richard M. Heinrichs, Bradley J. Felton, Peter J. Daniels and Deborah J. Landers, “Geiger-mode avalanche photodiodes for three-dimensional imaging,” Lincoln Laboratory Journal, vol. 13, no. 2, pp. 335-350, 2002.
[2]Cova, M. Ghioni, A. Lacaita, C. Samori and F. Zappa, “Avalanche photodiodes and quenching circuits for single-photon detection,” Applied Optics, vol. 35, no. 12, pp. 1956-1976, Apr. 1996.
[3]Sunetra K. Mendis, Sabrina E. Kemeny, Russell C. Gee, Bedabrata Pain, Craig O. Staller, Quiesup Kim and Eric R. Fossum, “CMOS active pixel image sensors for highly intergrated imaging systems,” IEEE Journal of Solid-State Circuits, vol. 32, pp. 187-197, Feb. 1997.
[4]Lisa G. McIlrath, “A low-power low-noise ultrawide-dynamic-range CMOS imager with pixel-parallel A/D conversion,” IEEE Journal of Solid-State Circuits, vol. 36, no. 5, pp. 846-853, May. 2003.
[5]F. Zappa, A. Lotito, A. C. Giudice and S. Cova, “Monolithic active-reset circuit for single-photon avalanche detectors,” IEEE Journal of Solid-State Circuits, vol. 38, no. 7, pp. 1298-1301, Jul. 2003.
[6]Cristiano L. Niclass, Alexis Rochas, Pierre-Andre Besse and Edoardo Charbon, “A CMOS single photon avalanche diode array for 3D imaging,” ISSCC Tech. Dig., vol. 47, pp. 120-121. 2004.
[7]K. G. McKay, “Avalanche breakdown in silicon,” Physical Review, vol. 94, no. 4, pp. 877-884, May 1954.
[8]S. L. Miller, “Avalanche breakdown in germanium,” Physical Review, vol. 99, no. 4, pp. 1234-1241, Aug. 1955.
[9]H. S. Veloric, M. B. Prince and M. J. Eder, “Avalanche breakdown voltage in silicon diffused p-n junctions as a function of impurity gradient,” Journal of Applied Physics, vol. 27, no. 8, pp. 895-899, Aug. 1956.
[10]R. J. McIntyre, “Theory of microplasma instability in silicon,” Journal of Applied Physics, vol. 32, no. 6, pp. 983-995, Jun. 1961.
[11]R. H. Haitz, A. Goetzberger, R. M. Scarlett and W. Shockley, “Avalanche effects in silicon -n junctions: I. localized photomultiplication studies on microplasmas,” Journal of Applied Physics, vol. 34, no. 6, pp.1581-1590, Jun. 1963.
[12]A. Goetzberger, B. McDonald, R. H. Haitz and R. M. Scarlett, “Avalanche effects in silicon p-n junctions: II. structurally perfect junctions,” Journal of Applied Physics, vol. 34, no. 6, pp. 1591-1600, Jun. 1963.
[13]Roland H. Haitz, “Model for the electrical behavior of a microplasma,” Journal of Applied Physics, vol. 35, no. 5, pp. 1370-1376, May 1964.
[14]S. M. Sze and G. Gibbons, “Avalanche breakdown voltage of abrupt and linearly graded p-n junctions in Ge, Si, GaAs, and GaP,” Apply Physics Letter, vol. 8, pp. 111-113, Jan. 1966.
[15]S. M. Sze and G. Gibbons, “Effect of junction curvature on breakdown voltage in semiconductors,” Solid-State Electronics, vol. 9, pp. 831-845, Sep. 1966.
[16]William G. Oldham, Reid R. Samuelson and Paolo Antognetti, “Triggering phenomena in avalanche diodes,” IEEE Transactions on Electron Devices, vol. ED-19, no. 9, pp. 1056-1060, Sep. 1972.
[17]Hi-Deok Lee and Jeong-Mo Hwang, “Accurate extraction of reverse leakage current component of shallow silicide p+n junction for quareter- and sub-quarter-micron mOSFET’s,” IEEE Transactions on Electron Devices, vol. 45, no. 8, pp. 1845-1850, Aug. 1998.
[18]P. Magnan, A. Gautrand, Y. Degerli, C. Marques, F. Lavernhe, C. Cavadore, F. Corbiere, J. Farre, Olivier Saint-Pe, Michel Tulet and Robert Davancens, “Influence of pixel topology on performances of CMOS APS imagers,” Proceedings of SPIE Sensor and Camera Systems for Scientific, Industrial, and Digital Photography Applications, vol. 3965, pp. 114-125, May 2000.
[19]Igor Shcherback and Orly Yadid-Pecht, “CMOS APS MTF modeling,” IEEE Transactions on Electron Devices, vol. 48, no. 12, pp. 2710-2715, Dec. 2001.
[20]P. Agarwal, M. J. Goossens, V. Zieren, E. Aksen and J. W. Slotboom, “Impact ionization in thin silicon diodes,” IEEE Electron Device Letters, vol. 25, no. 12, pp. 807-809, Dec. 2004.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top