|
1 Lindgren, M., Hällbrink, M., Prochiantz, A. &; Langel, Ü. Cell-penetrating peptides. Trends in Pharmacological Sciences 21, 99-103, doi:http://dx.doi.org/10.1016/S0165-6147(00)01447-4 (2000). 2 Schmidt, N., Mishra, A., Lai, G. H. &; Wong, G. C. Arginine-rich cell-penetrating peptides. FEBS letters 584, 1806-1813 (2010). 3 Mussbach, F., Franke, M., Zoch, A., Schaefer, B. &; Reissmann, S. Transduction of peptides and proteins into live cells by cell penetrating peptides. Journal of Cellular Biochemistry 112, 3824-3833 (2011). 4 Heitz, F., Morris, M. C. &; Divita, G. Twenty years of cell‐penetrating peptides: from molecular mechanisms to therapeutics. British journal of pharmacology 157, 195-206 (2009). 5 Wagstaff, K. M. &; Jans, D. A. Protein transduction: cell penetrating peptides and their therapeutic applications. Current medicinal chemistry 13, 1371-1387 (2006). 6 Huang, K. &; García, A. E. Free Energy of Translocating an Arginine-Rich Cell-Penetrating Peptide across a Lipid Bilayer Suggests Pore Formation. Biophysical journal 104, 412-420 (2013). 7 Zorko, M. &; Langel, U. l. Cell-penetrating peptides: mechanism and kinetics of catgo delivery. Advanced Drug Delvery Reviews 57, 529-545 (2005). 8 Afonin, S. et al. The Cell‐Penetrating Peptide TAT (48‐60) Induces a Non‐Lamellar Phase in DMPC Membranes. Chemphyschem 7, 2134-2142 (2006). 9 Herce, H. D. &; Garcia, A. E. Molecular dynamics simulations suggest a mechanism for translocation of the HIV-1 TAT peptide across lipid membranes. Proceedings of the National Academy of Sciences 104, 20805-20810 (2007). 10 Seeger, C. &; Mason, W. S. Hepatitis B virus biology. Microbiology and Molecular Biology Reviews 64, 51-68 (2000). 11 Bruss, V. &; Ganem, D. The role of envelope proteins in hepatitis B virus assembly. Proceedings of the National Academy of Sciences 88, 1059-1063 (1991). 12 Petersen, J. et al. Prevention of hepatitis B virus infection in vivo by entry inhibitors derived from the large envelope protein. Nature biotechnology 26, 335-341 (2008). 13 Urban, S. New insights into hepatitis B and hepatitis delta virus entry. Future Virol. 3, 253–264 (2008). 14 Thorstholm, L. &; Craik, D. Discovery and applications of naturally occurring cyclic peptides. Drug Discovery Today: Technologies 9, e13-e21 (2012). 15 Craik, D. J. Seamless proteins tie up their loose ends. Science 311, 1563-1564 (2006). 16 Rapaport, D. C. The art of molecular dynamics simulation. (Cambridge university press, 2004). 17 Dunkin, C. M., Pokorny, A., Almeida, P. F. &; Lee, H.-S. Molecular dynamics studies of transportan 10 (tp10) interacting with a POPC lipid bilayer. The Journal of Physical Chemistry B 115, 1188-1198 (2010). 18 Herce, H. D. &; Garcia, A. E. Cell penetrating peptides: how do they do it? Journal of biological physics 33, 345-356 (2007). 19 Yesylevskyy, S., Marrink, S.-J. &; Mark, A. E. Alternative mechanisms for the interaction of the cell-penetrating peptides penetratin and the TAT peptide with lipid bilayers. Biophysical journal 97, 40-49 (2009). 20 Chetwynd, A., Wee, C. L., Hall, B. A. &; Sansom, M. S. The energetics of transmembrane helix insertion into a lipid bilayer. Biophysical journal 99, 2534 (2010).
|