跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.88) 您好!臺灣時間:2026/02/15 07:56
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:洪銘燦
研究生(外文):Ming-Tsan Hung
論文名稱:不確定離散系統特性方程式根之環形邊界
論文名稱(外文):Annular bounds for the roots of characteristic equations of uncertain discrete systems
指導教授:孫永莒
指導教授(外文):Yeong-Jeu Sun
學位類別:碩士
校院名稱:義守大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:50
中文關鍵詞:環形邊界
外文關鍵詞:Annular bounds
相關次數:
  • 被引用被引用:0
  • 點閱點閱:432
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文旨在針對不確定離散系統特性方程式根提出其環形邊界的上下界,其上下界可由特定多項式最大非負零點獲得。最後,吾人將輔以實例,來驗證這環形邊界,並說明其結果較之前的相關文獻更不保守。
In this thesis, we provide the annular bound, i.e., lower and upper circular bound, for the roots of characteristic equations of uncertain discrete systems. Such an annular bound can be easily obtained by estimating the largest nonnegative zero of the specific polynomial. Two examples are also provided to show that the proposed annular bound is less conservative than the existing one reported recently.
目錄
致謝...................................................i
中文摘要...............................................ii
英文摘要...............................................iii
目錄...................................................iv
圖目錄.................................................vii
第一章 引言
1.1 概論.................................1
1.2 符號定義.............................2
第二章 定義與定理
2.1 離散時間系統與z轉換...........................3
2.1.1 離散時間系統................3
2.1.2 z轉換之定義.................5
2.1.3 z轉換之性質.................7
2.1.4 差分方程式之解..............12
2.1.5 模擬圖與訊號流程圖..........16
2.1.6 特性方程式..................19
2.2 穩定性的定義.........................20
2.2.1 非時變系統穩定性的定........20
2.2.2 時變系統穩定性的定..........21
2.2.3 均勻穩定....................22
2.2.4 局部穩定與全域穩定..........23
2.3 穩定性測試...........................24
2.3.1 Jury穩定性測試..............24 2.4 多項式理論...........................26
2.5 環形界限.............................29
2.6 Descarter 法則.......................31
2.7 Newton 法 ............................32
2.7.1 Newton 法簡.................32
2.7.2 Newton 法收斂...............33
第三章 主要定理
3.1 系統描述.............................34
3.2 主要定理.............................36
第四章 範例模擬
4.1 範例一...............................39
4.2 範例二...............................42
第五章 結論以及未來研究方向
5.1 結論.................................45
5.2 未來研究方...........................45
參考文獻...............................................48
參考文獻
[1] Chukwu, E. N., 1992, Stability and Time-Optimal Control of Hereditary Systems, Academic Press, New York.
[2] Elmali, H., Renzulli, M., and Olgac, N., 2000, “Experimental comparison of delayed resonator and PD controlled vibration absorbers using electromagnetic actuators,” ASME Journal of Dynamic Systems, Measurement and Control, 122, pp. 514-520.
[3] Hsiao, F. H., Pan, S. T., and Teng, C. C., 1997, “Robust controller design for discrete uncertain multiple time-delay systems,” ASME Journal of Dynamic Systems, Measurement and Control, 119, pp. 223-225.
[4] Insperger, T., and Stepan, G., 2002, “Semi-discretization method for delayed systems,” International Journal for numerical methods in engineering, 55, pp. 503-518.
[5] Jalili, N., and Esmailzadeh, E., 2001, “Optimum active vehicle suspensions with actuator time delay,” ASME Journal of Dynamic Systems, Measurement and Control, 123, pp. 54-61.
[6] Kapila, V., Tzes, A. and Yan, Q., 2000, “Closed-loop input shaping for flexible structures using time-delay control,” ASME Journal of Dynamic Systems, Measurement and Control, 122, pp. 454-460.
[7] Mori, T., Fukuma, N., and Kuwahara, M., 1982, “Delay-independent stability criteria for discrete-delay systems,” IEEE Trans. Automat. Contr., 27, pp. 964-966.
[8] Sun, Y. J., and Yu, G. J., 1997, “Delay-dependent exponential stability criteria for nonlinear time-varying discrete systems with multiple time delays,” Journal of the Franklin Institute, Engineering and Applied Mathematics, 334B, No. 4, pp. 659-666.
[9] Sun, Y. J., and Hsieh, J. G., 1997, “Exponential tracking control for a class of uncertain systems with time-varying arguments and deadzone nonlinearities,” ASME Journal of Dynamic Systems, Measurement, and Control, 119, pp. 825-830.
[10] Sun, Y. J., Hsieh, J. G., and Yang, H. C., 1997, “On the stability of uncertain systems with multiple time-varying delays,” IEEE Trans. Automat. Contr., 42, No. 1, pp. 101-105.
[11] Tsao, T. C., 1994, “Simple stability criteria for nonlinear time-varying discrete systems,” Systems & Control Letters, 22, pp. 223-225.
[12] Wang, R. J., and Wang, W. J., 1993, “Pole-assignment robustness for discrete-time systems with multiple time-delays,” Proceedings of the 32nd Conference on Decision and Control, San Antonio, Texas, pp. 3831-3834.
[13] Wu, J. W., and Hong, K. S., 1994, “Delay-independent exponential stability criteria for time-varying discrete delay systems,” IEEE Trans. Automat. Contr., 39, pp. 811-814.
[14] Boese, F. G., and Luther, W. J., 1989, “A note on a classical bound for the moduli of all zeros of polynomial,” IEEE Trans. Automat. Contr., 34, pp. 998-1001, 1989.
[15] Datt, B, and Govil, N. K., 1978, “On the location of zeros of polynomial,” J. Approx. Theory, 24, pp. 78-82.
[16] Joyal, A., Labelle, G., and Rahman, Q. I., 1967, “On the locations of zeros of polynomials,” Canadian Math. Bulletin, 10, pp. 53-63, 1967.
[17] Sun, Y. J., and Hsieh, J. G., 1996, “A note on the circular bound of polynomial zeros,” IEEE Trans. Circuits Syst., 43, pp. 476-478.
[18] Sun, Y. J., Horng, J. H., and Hsieh, J. G., 1996, “Annular bounds for the zeros of a family of complex-coefficient polynomials,” Journal of the Chinese Institute of Electrical Engineering, 3, No. 1, pp. 97-100.
[19] Zeheb, E., 1991, “On the largest modulus of polynomial zero,” IEEE Trans. Circuits Syst., 38, pp. 333-337.
[20] Zilovic, M. S., Roytman, L. M., Combettes, P. L., and Swamy, M. N. S., 1992, “A bound for the zeros of polynomials,” IEEE Trans. Circuits Syst., 39, pp. 476-478.
[21] Phillips, C. L., and Nagle, H. T., 1995, Digital Control System Analysis and Design , Prentice Hall, New Jersey.
[22] Benjamin, C. K., 1992, Digital Control System, Harcount Brace Jovanovich , Florida.
[23] Salivahanan, S. , Vallavaraj, A. and Gnanapriya, C. , 1991, Digital Signal Processing, McGraw Hill Companies, Inc.
[24] Kolk, W. R. and Lerman, R. A., 1992 , Nonlinear System Dynamics , Van
Nostrand Reinhold, NY.
[25] Slotine, J.-J. E., and Li, W., 1991, Applied Nonlinear Control , Prentice-
Hall, Englewood Cliffs, New Jersey.
[26] Vidyasagar, M., 1993 , Nonlinear Systems Analysis , Prentice-Hall, Eglewood Cliffs, NJ.
[27] Bronshtein, I. N., and Semendyayev, K. A., 1979, Handbook of Mathematics, Ven Nostrand Reinhold, New York.
[28] Buchanan, J. L., and Turner, P. R., 1992, Numerical Methods and Analysis,
McGraw-Hill, New York.
[29] 林超群,1999,自動控制系統設計與Matlab語言差分方程式,全華。
[30] 周建華,2000, 矩陣原理及題解, 中央圖書。
[31] 馮康等編,1978, 數值計算方法, 國防工業出版社,北京。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top