跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.131) 您好!臺灣時間:2026/01/16 02:25
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張育誠
研究生(外文):Chang, Yu-Cheng
論文名稱:使用六號重油的微富氧燃燒之實驗研究
論文名稱(外文):The Experimental Studies of Air-Enriched Combustion Using No.6 Heavy Oil
指導教授:陳俊勳陳俊勳引用關係
指導教授(外文):Chen, Chiun-Hsun
口試委員:陳俊勳馬小康何無忌王啟川劉耀先
口試委員(外文):Chen, Chiun-HsunMa, Hsiao-KangHo, Wu-ChiWang, Chi-ChuanLiu, Yao-Hsien
口試日期:2015-06-25
學位類別:博士
校院名稱:國立交通大學
系所名稱:機械工程系所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:英文
論文頁數:153
中文關鍵詞:霧化空氣燃燒污染排放節能
外文關鍵詞:atomizing air combustionemissionenergy saving
相關次數:
  • 被引用被引用:0
  • 點閱點閱:482
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
近年來,由於能源價格的飆漲以及對環保議題的重視,如何增加能源使用效率以及減少污染排放之節能技術就成為全球研究投入的議題,而富氧燃燒技術也是其中之一。在傳統燃燒技術中,由於燃燒空氣中含有79%的氮氣,然氮氣並不參與燃燒反應,同時會帶走大量的熱,因此傳統燃燒的能源利用率偏低,而富氧燃燒正好克服了此一缺點。本研究主要針對微富氧燃燒於工業爐上之節能與污染排放特性進行實驗分析探討,本研究之氧氣濃度介於21% ~ 30%之間,燃料為6號重油為主,燃燒機則是選用工業燃燒爐所使用之燃油燃燒機,探討霧化空氣與燃燒空氣微富氧燃燒對燃燒器之污染排放、溫度分佈以及燃料消耗之影響。由於增加氧濃度可減少不反應物氮氣的含量,亦即減少煙道排氣量,故可降低排氣熱損,達到節能的效果。實驗結果顯示,燃油過剩空氣量只需6%即足以達到完全燃燒,同時氣氧濃度改變對完全燃燒所需之過剩空氣量影響並不明顯。在維持爐溫於1200 ± 10 °C,6%過剩空氣量之條件下,重油需求量由21% O2之24.0 L/hr逐步降低至30% O2之16.0 L/hr,節能量可達33.3%%以上。在NOx排放方面,在30% O2時比21% O2增加1.51倍,但NOx總排放量則降低29.4%以上。因此截至目前為止,本研究結果顯示出,燃油工業爐於霧化空氣或燃燒空氣中進行微富氧燃燒,不僅可達到降低能源使用,同時對於工業爐燃燒作業且可提升生產效率和產品產量之效。
Oxygen combustion has high energy efficiency, because the unnecessary heating of nitrogen in air is eliminated. However, the high costs of oxygen and retrofitting limits the widespread application of oxygen combustion for existing conventional air/fuel combustion systems. This study modifies the conventional air/fuel combustion system to explore the influence of oxygen concentration on combustion system performance when the oxygen concentration is limited between 21% O2 and 30% O2. Oxygen is injected into atomized-air and combustion-air in this study. The emissions, radiant heat flux, temperature distributions and fuel consumption were measured. The experimental results indicated that the increase of the oxygen concentration leads to less fuel consumption, because of the existence of less inert gas (N2). Compared with 21% O2, fuel consumption is reduced 33.3% for 30% O2 when the furnace temperature is maintained at 1200 ± 10 °C. Moreover, the NOx concentrations were increased 1.51 times but the total NOx emissions were decreased by 29.4% when the oxygen concentration increased from 21% to 30%. Meanwhile, the radiation heat flux per energy input was increased, along with the oxygen concentration.
摘要 iii
Abstract iv
Contents vi
List of Tables ix
List of Figures xi
List of Symbols xvi
List of Subscripts xviii
List of Abbreviations xix
Chapter 1 1
Introduction 1
1-1 Background 1
1-2 Literature Survey 2
1-3 Scope of the Present Study 13
Chapter 2 16
Experimental Apparatus 16
2-1 Experiment Layout 16
2-2 Combustion Test Systems 17
2-2-1 Burner 17
2-2-2 Burner Pilot 18
2-2-3 Ultraviolet Flame Detector 18
2-3 Combustion Chamber 18
2-4 Pipeline Control System 19
2-4-1 Natural Gas Pipeline 19
2-4-2 Oxygen Pipeline 19
2-4-3 Air Supply Pipeline 20
2-4-4 Oil Supply Pipeline 21
2-5 Measurement Instrumentations 22
2-5-1 Temperature Measurement 22
2-5-2 Oxygen Analyzer 22
2-5-3 Flu Gas Samplig Analyzer 23
2-5-4 Radiation Measurement 24
2-5-5 Flame Characteristic Analysis 24
2-5-6 Data Acquisition System 25
2-6 Experiment Test Conditions 25
2-6-1 Overall of Oxygen Concentration 26
2-6-2 Stocihiometric Relation 26
2-6-3 Combustion Efficiency 28
2-6-4 Fuel NOx Formations 29
2-7 Experimental Procedures 31
2-7-1 Oil Pre-heater and Circulating Loop Program 31
2-7-2 Ignition Program 31
2-7-3 Oxygen-enriched Combustion Experiment Program 32
2-7-4 Shutdown Procedures 33
Chapter 3 66
Uncertainty Analysis 66
3-1 Data Quality Indicator Goals for Critical Measurement 66
3-2 The Uncertainties of Thermocouple 68
3-3 The Uncertainties of Radiometer 69
3-4 The Uncertainties of Flue Gas Sampling Analyzer 69
3-5 The Repeatability of Experiment 70
Chapter 4 78
Results and Discussion 78
4.1 The Effects of Oxygen Concentration for the Atomized-air-enriched Test 78
4.2 The Effects of Oxygen Concentration for the Combustion-air-enriched Test 86
Chapter 5 133
Conclusions 133
Chapter 6 135
Future Works 135
References 136
Annex A 146
Annex B 148
Annex C 150
Annex D 152


[1] Trinks, W.; Mawhinney, M. H.; Shannon, R. A.; Reed, R. J.; Garvey, J. R. Industrial furnaces. John Wiley &; Sons, Inc., 6th ed., Hoboken, New Jersey, USA, 2004.
[2] Baukal, C. E. Oxygen-enhanced combustion. CRC Press, Washington, D.C., New York, USA, 1998.
[3] Xin, Y. M.; Borgnakke, D. S.; Campos, M. A.; Olszewski, P.; Atreya, A.; Borgnakke, C. Possibility of combustion furnace operation with oxygen-enriched gas from nitrogen generator. 2013 ACEEE Summer Study on Energy Efficiency in Industry, Conference Center Niagara Falls in Niagara Falls, NY, July 23- 26, 2013.
[4] Adeosun, A.; Muthiah, A.; Abu-Zahra, M. R. M. Evaluation of oxygen-enriched air combustion process integrated with CO2 post-combustion capture. Int. J. of Thermal &; Environmental Engineering 2013, 5, 113–121.
[5] Belaissaoui, B.; Cabot, Gilles.; Cabot, M. S.; Willson, D.; Favre, Eric. CO2 capture for gas turbines: an integrated energy-efficient process combining combustion in oxygen-enriched air, flue gas recirculation, and membrane separation. Chem. Eng. Sci. 2013, 97, 256–263.
[6] Vega, F.; Navarrete, B.; Alonso-Fariñas, B.; Rodríguez, M. Development of partial oxy-combustion technology: Design, commissioning and experimental program in a pilot plant. Energy Procedia 2014, 63, 6344–6348.
[7] Lin, H.; Zhou, M.; Ly, J.; Vu, J.; Wijmans, J. G.; Merkel, T. C.; Jin, J.; Haldeman, A.; Wagener, E. H.; Rue, D. Membrane-based oxygen-enriched combustion. Ind. Chem. Res. 2013, 52, 10820–10834.
[8] Tuson, G. B.; Kobayashi, H.; Campbell, M. J. Oxygen enriched combustion system performance study phase II–100 percent oxygen enriched combustion in regenerative glass meters; DOE report No. DE-FCO7-88ID12833, U.S Department of Energy: Washington, DC, Aug 1994.
[9] Ikeda, M.; Toporov, D.; Christ, D.; Stadler, H.; Förster, M.; Kneer, R. Trends in NOx emissions during pulverized fuel oxy-fuel combustion. Energy Fuels 2012, 26, 3141–3149.
[10] Yamazaki, H. The status of oxy-fuel technology in the glass industry. IFRF TOTeM 17, Cernay la Ville, France, Sept 26, 2000.
[11] Grandmaison, E. W.; Poirier, D. J.; Boyd, E. Development of an oxygen-enriched furnace system for reduced CO2 and NOx emissions for the steel industry. DOE report No.DE-FC07-97ID13554, U.S Department of Energy: Washington, DC, Jan 2003.
[12] Kiriishi, K.; Fujimine, T.; Hayakawa, A. High efficiency furnace with oxy-fuel combustion and zero-emission by CO2 recovery. 2006.
[13] Blasiak, W.; Yang, W.H.; Narayanan, K.; von Sche´ele, J. Flameless oxyfuel combustion for fuel consumption and nitrogen oxides emissions reductions and productivity increase. J. Energy Inst. 2007, 80(1), 3–11.
[14] Bisio, B.; Bosio, A.; Rubatto, G. Thermodynamics applied to oxygen enrichment of combustion air. Energy Convers. Manage. 2002, 43, 2589–2600.
[15] Thekdy, A. C.; Vereeke, F. J. Fuel efficiency improvement by oxygen enrichment of combustion air. Ind. Heat. 1981, 22–23.
[16] Mohammed, F. M. A. Oxygen enriched combustion of high emission fuels. Master Thesis. An-Najah National University, Nablus, Palestine, 2008.
[17] Horbaniuc, B.; Marin, O.; Dumitrascu, G.; Charon, O. Oxygen-enriched combustion in supercritical boilers. Energy 2004, 29, 427–448.
[18] Marin, O.; Châtel-Pélage, F.; Ghani, M. U.; Perrin, N.; Carty, R.; Philo, G. R. Low-oxygen enrichment in coal-fired utility boilers. The 28th International Technical Conference on Coal Utilization &; Fuel Systems, Clearwater, Florida, USA, March 10-13, 2003.
[19] Indulkar, S.; Dongare, S.; Waghmare, S. N. Power enhancement using oxygen enriched air: a critical review. Int. J. Adv. Engg. Tech. 2014, V, 14–17.
[20] Kuppusamy, R.; Palanisamy, G. Impact of oxygen enriched air intake on the exhaust of a single cylinder diesel engine. Am. J. Environ. Sci. 2011, 7(2), 136–140.
[21] Reed, R. J. Combustion Handbook-A basic reference on the art and science of industrial heating with gaseous and liquid fuels, Volume II, 3rd ed., North American Mfg. Co., Cleveland, OH, 1997.
[22] Karimi, H. J.; Saida, M. H. Heat transfer and energy analysis of a pusher type reheating furnace using oxygen enhanced air for combustion. J. Iron Steel Res. Int. 2010, 17, 12–17.
[23] Lalović1, M.; Radović, Ž.; Lalović, M. M.; Tadić, N.; The effect of oxygen enrichment of combustion air on the amount and chemical composition of combustion products. Zbornik radova Tehnološkog fakulteta u Leskovcu. 2011, 20, 87–95.
[24] Baukal, C. E.; Gebhart, B. Oxygen-enhanced/natural gas flame radiation. Int. J. Heat Transfer. 1997, 40(11), 2539–2547.
[25] Belohradsky, P.; Skryja, P. Experimental study on the influence of oxygen fraction in the combustion air on the combustion characteristics. Chem. Eng. Trans. 2013, 35, 1147–1152.
[26] Daood, S. S.; Nimmo, W.; Edge, P.; Gibbs, B. M. Deep-staged, oxygen enriched combustion of coal. Fuel 2012, 101, 187–196.
[27] Buhre, B. J. P.; Elliott, L. K.; Sheng, C. D.; Gupta, R. P.; Wall, T. F. Oxy-fuel combustion technology for coal-fired power generation. Prog. Energy Combust. Sci. 2006, 31, 283–307.
[28] Czakiert, T.; Bis, Z.; Muskala, W.; Nowak, W. Fuel conversion from oxy-fuel combustion in a circulating fluidized bed. Fuel Process. Technol. 2006, 87, 531–538.
[29] Krishnamurthy, N.; Blasiak, W.; Lugnet, A. Development of high temperature air and oxy-fuel combustion technologies for minimized CO2 and NOx emissions in industrial heating. Proceedings of the Joint International Conference on Sustainable Energy and Environment (SEE), Hua Hin, Thailand, Dec. 1-3, 2004.
[30] Mine, T.; Marumoto, T.; Kiyama, K.; Imada, N.; Ochi, K. I.; Iwamoto, H. Development of Hitachi oxy-fuel combustion technologies. Energy Procedia 2013, 37, 1365–1376.
[31] Mine, T.; Kiyama, K.; Fukuda, Y.; Imada, N.; Dernjatin, P. Development of an advanced oxy-fuel combustion technology with flue gas re-circulation system, new types of burner and characteristics of mill performance. 2nd Oxyfuel Combustion Conference, Sept. 13, 2011.
[32] Kim, H. K.; Kim, Y.; Lee, S. M.; Ahn, K. Y. Studies on combustion characteristics and flame length of turbulent oxy-fuel flames. Energy Fuels 2007, 21, 1459–1467.
[33] Poirier, D.; Grandmaison, E. W.; Lawrence, A. D.; Matovic, M. D.; Boyd, E. Oxygen-enriched combustion studies with the low NOx CGRI burner. IFRF Combustion Journal 2004, Article Number 200404, 2–15.
[34] Grandmaison, E. W.; Yimer, I.; Becker, H. A.; Sobiesiak, A. The strong-jet/weak-jet problem and aerodynamic modelling of the CGRI burner. Combust. Flame 1998, 115 (93), 381–396.
[35] Wünning, J.A.; Wünning, J.G. Flameless oxidation to reduce thermal NO formation. Prog. Energy Combust. Sci. 1997, 23 (81), 81–94.
[36] Lacava, P. T.; Carvalho Jr, J. A.; Pimenta, A. P.; Ferreira, M. A. Thermal analysis of an enriched flame incinerator for aqueous residues. Energy 2006, 31, 528–545.
[37] Yang, Y. H.; Deng, N. Y.; Zhang, S. Q. Effects of coal oxygen-enriched combustion on energy saving and environment. Materials for Renewable Energy &; Environment (ICMREE), 2011 International Conference on (Volume: 2), Shaghai, China, May 20-22, 1552–1555, 2011,
[38] Mastellone, M. L.; Zaccariello, L.; Santoro, D.; Arena, U. The O2-enriched air gasification of coal, plastics and wood in a fluidized bed reactor. Waste Management 2012, 32, 733–742.
[39] Lasek, J. A.; Glod, K.; Janusz, M.; Kazalski, K.; Zuwała, J. Pressurized oxy-fuel combustion: a study of selected parameters. Energy Fuels 2012, 26, 6492–6500.
[40] Beltrame, A.; Porshnev, P.; Merchan-Merchan, W.; Saveliev, A.; Fridman, A.; Kennedy, L. A.; Petrova, O.; Zhdanok, S.; Amouri, F.; Charon, O. Soot and NO formation in methane-oxygen enriched diffusion flame. Combust. Flame 2001, 124, 295–310.
[41] Luo, S. Y.; Xiao, B.; Hu, Z. Q.; Liu, S. M.; Guan, Y. W. Experimental study on oxygen-enriched combustion of biomass micro fuel. Energy 2009, 34, 1880–1884.
[42] Chin, S.; Jurng, J.; Lee, J. H.; Hur, J. H. Oxygen-enriched air for co-incineration of organic sludges with municipal solid waste: A pilot plant experiment. Waste Management 2008, 28, 2684–2689.
[43] Zhen, H. S.; Leung, C. W.; Cheung, C. S. Combustion characteristics of a swirling inverse diffusion flame upon oxygen content variation. Appl. Energ. 2011, 88, 2925–2933.
[44] Bejarano, P. A.; Levendis, Y. A. Combustion of coal chars in oxygen-enriched atmospheres. Combust. Sci. and Tech. 2007, 179, 1569–1587.
[45] Wu, K. K.; Chang, Y. C.; Chen, C. H.; Chen, Y. D. High-efficiency combustion of natural gas with 21–30% oxygen-enriched air. Fuel 2010, 89, 2455–2462.
[46] Wu, K. K.; Chang, Y. C.; Chen, C. H.; Chen, Y. D. The effects of oxygen concentration for energy saving and emission with a gas-fired burner. The 20th International Symposium on Transport Phenomena, Victoria BC, Canada, July 7-10, 2009.
[47] Rajkumar, K.; Govindarajan, P. Impact of oxygen enriched air intake on the exhaust of a single cylinder diesel engine. Am. J. Environ. Sci. 2011, 7(2), 136–140.
[48] Momani, W. The effects of excess oxygen to mixture on the gasses emissions of a gasoline engine. Am. J. Applied Sci. 2009, 6 (6), 1122–1125.
[49] Xiao, G. F.; Qiao, X. Q.; Huang, Z.; Chen, Z. P. Improvement of startability of direct-injection diesel engines by oxygen-enriched intake air. Proceed. Instit. Mech. Eng. Part D: J. Autom. Eng. 2007, 221 (11), 1453–1465.
[50] Rakopoulos, C. D.; Hountalas, D. T.; Zannis, T. C.; Levendis, Y. A. Operational and environmental evaluation of diesel engines burning oxygen-enriched intake air or oxygen-enriched fuels: A Review. SAE Technical Paper 2004-01-2924. 2004.
[51] Momani, W.; Abu-Ein, S.; Momani, M.; Fayyad, S. M. Effects of oxygenated gasoline on fuel and air mass flow rates and air-fuel ratio. Am. J. Applied Sci. 2009, 6 (5), 974–977.
[52] Huang, I. T.; Chang, Y. C.; Wu, K. K. The development of key technology to improve thermal energy utilization (in Chinese). ITRI technical report No. 553971644, 2008.
[53] Salzano, E.; Basco, A.; Cammarota, F.; Di Sarli, V.; Di Benedetto, A. Explosions of syngas/CO2 mixtures in oxygen-enriched air. Ind. Eng. Chem. Res. 2012, 51, 7671–7678.
[54] Fives North American Combustion, Inc. Fire.AllTM Oil burners Bulletin 5514. Technical Sheets, Feb. 2011.
[55] Fives North American Combustion, Inc. Bulletin 4011/4021. Technical Sheets, Feb. 2008.
[56] Honeywell International Inc., C7035A Minipeeper ultraviolet flame detectors. Technical Sheets, Feb. 2011.
[57] Chuan-Fan electric Co., Ltd. Blowers &; Fans—Centrifugal blowers (in Chinese). Product Catalog, May 2005.
[58] Marceau, W. D. Combustion systems and combustion control. Canadian Ceramic Society Journal 1967, 36, XL VIII-LI.
[59] N.F.P.A. 86. Ovens and furnaces. National Protection Association, Batterymarch Park, Quincy, Ma 02269, 1995.
[60] Bodurtha, F. T. Industrial explosion prevention and protection. McGraw-Hill book Co., New York, NY, 1980.
[61] Factory Mutual Engineering Corporation. Handbook of industrial loss prevention. 2nd ed., McGraw-Hill book Co., New York, NY, 1967.
[62] Fives North American Combustion, Inc. SensitrolTM Oil valves Bulletin 1813. Technical Sheets, Sept. 2006.
[63] Fisher Controls Company. Control valve handbook. 2nd ed., 4th printing, Fisher Controls Company, Marshalltown, IA, 1977.
[64] Vervalin, C. H. Fire protection manual for hydrocarbon processing plants. vol. 2, 1st ed., Gulf Publishing Co., Houstion, TX, 1981.
[65] Vervalin, C. H. Fire protection manual for hydrocarbon processing plants. vol. 1, 3rd ed., Gulf Publishing Co., Houstion, TX, 1985.
[66] Republic of China Environmental Protection Administration; Stationary Pollution Source Air Pollutant Emissions Standards, Environmental protection administration order Huan-Shu-Kong-Tzu No. 16668, Article 11, Taiwan, Republic of China, 2013.
[67] Fluke Corp. Fluke 2680 series data acquisition systems, Technical Sheets, 2011.
[68] Heywood, J. B. Internal combustion engine fundamentals. McGraw-Hill, Inc., New York, 1988.
[69] Turns, S. R. An introduction to combustion: concepts and applications. McGraw-Hill, Inc., 2nd ed., New York, 1996.
[70] Yao, C. Y.; Ou, J. J.; Hou, S. S.; Lin, T. H. Mass-energy balance characteristic of oxyfuel combustion with flue gas recirculation. The CSME 26th Conference, Taiwan, Tainan, Nov. 20-21, 2009.
[71] Zandaryaa, S.; Buekens, A. Pollution control technologies-Volume II-control of nitrogen oxides. Encyclopedia of Life Support Systems, United Nations Educational, Scientific and Cultural Organization.
[72] Chen, J. J. Study of De-NOx controls technology in the boiler (in Chinese). Knowledge of Boiler 2013, 34, 1–32.
[73] National Conference of Standards Laboratories, Determining and reporting measurement uncertainties. Ad Hoc Committee on Measurement Uncertainties, April, 1995.
[74] Rabinovich, S. G. Measurement errors and uncertainties. Springer Science and Media, Inc., 3rd ed., New York, 2005.
[75] Grabe, M. Measurement uncertainties in science and technology. Springer Science and Media, Inc., 2nd ed., New York, 2014.
[76] Coleman, H. W.; Steele, W. G. Experimentation and uncertainty analysis for engineers. John Wiley &; Sons, Inc., 2ed., New York, 1999.
[77] Moffat, R. J. Describing the uncertainties in experimental results. Exp. Therm. Fluid Sci. 1988, 1, 3–17.
[78] Kline, S. J.; Mcclintock, F. Describing uncertainties in single-sample experiments. Mech. Eng. 1953, 75, 3–8.
[79] Moffat, R. J. Contributions to the theory of single-sample uncertainty analysis. J. Fluid Eng. 1982, 104, 250–260.
[80] Holman, J. P. Experimental methods for engineers. McGraw-Hill, Inc., 5th ed., New York, 1989.
[81] Robert, K.; Ted, W. Spotlight-8, NASA Glenn Research Center, 2005.
[82] Beer, J. M.; Chigier, N. A. Combustion aerodynamics. Applied Science Publishers Ltd., London, 1972.
[83] Palmer, H. B.; Beer, J .M. Combustion technology-some modern developments, Academic Press, New York, NY, 1974.
[84] Stambuleanu, A. Flame combustion processes in industry, Abacus Press, Tunbridge Wells, Kent, England, 1976.
[85] Shore, D. E.; McElron, M. W. Tuning industrial boilers, II-establish excess air levels, Power 1977, 121(5), 76–79.
[86] Lupton, H. P. Industrial gas engineering, Vols. 1, 2, 3, North Western Gas Board, London, 1960.
[87] Singer, J. G. Combustion technology-some modern developments, Academic Press, New York, NY, 1974.
[88] Gorog, J. P.; Adams, T. N.; Brimacombe, J. K. Heat transfer from flames in a rotary kiln. Metallurgical Transaction B. 1983, 14(3), 411–424.
[89] Hudak, I. Characteristic parameters of oxygen-enhanced combustion process. Master Thesis. Brno University of Technology, 2013.
[90] Reed, R. J. Combustion Handbook-A basic reference on the art and science of industrial heating with gaseous and liquid fuels, Volume I, 3rd ed., North American Mfg. Co., Cleveland, OH, 1986.
[91] Bracco, F. Nitric oxide formation in droplet diffusion flames. Fourteenth Combustion symposium. The Combustion Institute, 831-842, 1972.
[92] Williams, A. et al. Prediction of NOx emissions from oxygen-enriched low NOx burners. International Conference on environmental control of Combustion Processes, AFRC, 1991.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top