|
[1] Trinks, W.; Mawhinney, M. H.; Shannon, R. A.; Reed, R. J.; Garvey, J. R. Industrial furnaces. John Wiley &; Sons, Inc., 6th ed., Hoboken, New Jersey, USA, 2004. [2] Baukal, C. E. Oxygen-enhanced combustion. CRC Press, Washington, D.C., New York, USA, 1998. [3] Xin, Y. M.; Borgnakke, D. S.; Campos, M. A.; Olszewski, P.; Atreya, A.; Borgnakke, C. Possibility of combustion furnace operation with oxygen-enriched gas from nitrogen generator. 2013 ACEEE Summer Study on Energy Efficiency in Industry, Conference Center Niagara Falls in Niagara Falls, NY, July 23- 26, 2013. [4] Adeosun, A.; Muthiah, A.; Abu-Zahra, M. R. M. Evaluation of oxygen-enriched air combustion process integrated with CO2 post-combustion capture. Int. J. of Thermal &; Environmental Engineering 2013, 5, 113–121. [5] Belaissaoui, B.; Cabot, Gilles.; Cabot, M. S.; Willson, D.; Favre, Eric. CO2 capture for gas turbines: an integrated energy-efficient process combining combustion in oxygen-enriched air, flue gas recirculation, and membrane separation. Chem. Eng. Sci. 2013, 97, 256–263. [6] Vega, F.; Navarrete, B.; Alonso-Fariñas, B.; Rodríguez, M. Development of partial oxy-combustion technology: Design, commissioning and experimental program in a pilot plant. Energy Procedia 2014, 63, 6344–6348. [7] Lin, H.; Zhou, M.; Ly, J.; Vu, J.; Wijmans, J. G.; Merkel, T. C.; Jin, J.; Haldeman, A.; Wagener, E. H.; Rue, D. Membrane-based oxygen-enriched combustion. Ind. Chem. Res. 2013, 52, 10820–10834. [8] Tuson, G. B.; Kobayashi, H.; Campbell, M. J. Oxygen enriched combustion system performance study phase II–100 percent oxygen enriched combustion in regenerative glass meters; DOE report No. DE-FCO7-88ID12833, U.S Department of Energy: Washington, DC, Aug 1994. [9] Ikeda, M.; Toporov, D.; Christ, D.; Stadler, H.; Förster, M.; Kneer, R. Trends in NOx emissions during pulverized fuel oxy-fuel combustion. Energy Fuels 2012, 26, 3141–3149. [10] Yamazaki, H. The status of oxy-fuel technology in the glass industry. IFRF TOTeM 17, Cernay la Ville, France, Sept 26, 2000. [11] Grandmaison, E. W.; Poirier, D. J.; Boyd, E. Development of an oxygen-enriched furnace system for reduced CO2 and NOx emissions for the steel industry. DOE report No.DE-FC07-97ID13554, U.S Department of Energy: Washington, DC, Jan 2003. [12] Kiriishi, K.; Fujimine, T.; Hayakawa, A. High efficiency furnace with oxy-fuel combustion and zero-emission by CO2 recovery. 2006. [13] Blasiak, W.; Yang, W.H.; Narayanan, K.; von Sche´ele, J. Flameless oxyfuel combustion for fuel consumption and nitrogen oxides emissions reductions and productivity increase. J. Energy Inst. 2007, 80(1), 3–11. [14] Bisio, B.; Bosio, A.; Rubatto, G. Thermodynamics applied to oxygen enrichment of combustion air. Energy Convers. Manage. 2002, 43, 2589–2600. [15] Thekdy, A. C.; Vereeke, F. J. Fuel efficiency improvement by oxygen enrichment of combustion air. Ind. Heat. 1981, 22–23. [16] Mohammed, F. M. A. Oxygen enriched combustion of high emission fuels. Master Thesis. An-Najah National University, Nablus, Palestine, 2008. [17] Horbaniuc, B.; Marin, O.; Dumitrascu, G.; Charon, O. Oxygen-enriched combustion in supercritical boilers. Energy 2004, 29, 427–448. [18] Marin, O.; Châtel-Pélage, F.; Ghani, M. U.; Perrin, N.; Carty, R.; Philo, G. R. Low-oxygen enrichment in coal-fired utility boilers. The 28th International Technical Conference on Coal Utilization &; Fuel Systems, Clearwater, Florida, USA, March 10-13, 2003. [19] Indulkar, S.; Dongare, S.; Waghmare, S. N. Power enhancement using oxygen enriched air: a critical review. Int. J. Adv. Engg. Tech. 2014, V, 14–17. [20] Kuppusamy, R.; Palanisamy, G. Impact of oxygen enriched air intake on the exhaust of a single cylinder diesel engine. Am. J. Environ. Sci. 2011, 7(2), 136–140. [21] Reed, R. J. Combustion Handbook-A basic reference on the art and science of industrial heating with gaseous and liquid fuels, Volume II, 3rd ed., North American Mfg. Co., Cleveland, OH, 1997. [22] Karimi, H. J.; Saida, M. H. Heat transfer and energy analysis of a pusher type reheating furnace using oxygen enhanced air for combustion. J. Iron Steel Res. Int. 2010, 17, 12–17. [23] Lalović1, M.; Radović, Ž.; Lalović, M. M.; Tadić, N.; The effect of oxygen enrichment of combustion air on the amount and chemical composition of combustion products. Zbornik radova Tehnološkog fakulteta u Leskovcu. 2011, 20, 87–95. [24] Baukal, C. E.; Gebhart, B. Oxygen-enhanced/natural gas flame radiation. Int. J. Heat Transfer. 1997, 40(11), 2539–2547. [25] Belohradsky, P.; Skryja, P. Experimental study on the influence of oxygen fraction in the combustion air on the combustion characteristics. Chem. Eng. Trans. 2013, 35, 1147–1152. [26] Daood, S. S.; Nimmo, W.; Edge, P.; Gibbs, B. M. Deep-staged, oxygen enriched combustion of coal. Fuel 2012, 101, 187–196. [27] Buhre, B. J. P.; Elliott, L. K.; Sheng, C. D.; Gupta, R. P.; Wall, T. F. Oxy-fuel combustion technology for coal-fired power generation. Prog. Energy Combust. Sci. 2006, 31, 283–307. [28] Czakiert, T.; Bis, Z.; Muskala, W.; Nowak, W. Fuel conversion from oxy-fuel combustion in a circulating fluidized bed. Fuel Process. Technol. 2006, 87, 531–538. [29] Krishnamurthy, N.; Blasiak, W.; Lugnet, A. Development of high temperature air and oxy-fuel combustion technologies for minimized CO2 and NOx emissions in industrial heating. Proceedings of the Joint International Conference on Sustainable Energy and Environment (SEE), Hua Hin, Thailand, Dec. 1-3, 2004. [30] Mine, T.; Marumoto, T.; Kiyama, K.; Imada, N.; Ochi, K. I.; Iwamoto, H. Development of Hitachi oxy-fuel combustion technologies. Energy Procedia 2013, 37, 1365–1376. [31] Mine, T.; Kiyama, K.; Fukuda, Y.; Imada, N.; Dernjatin, P. Development of an advanced oxy-fuel combustion technology with flue gas re-circulation system, new types of burner and characteristics of mill performance. 2nd Oxyfuel Combustion Conference, Sept. 13, 2011. [32] Kim, H. K.; Kim, Y.; Lee, S. M.; Ahn, K. Y. Studies on combustion characteristics and flame length of turbulent oxy-fuel flames. Energy Fuels 2007, 21, 1459–1467. [33] Poirier, D.; Grandmaison, E. W.; Lawrence, A. D.; Matovic, M. D.; Boyd, E. Oxygen-enriched combustion studies with the low NOx CGRI burner. IFRF Combustion Journal 2004, Article Number 200404, 2–15. [34] Grandmaison, E. W.; Yimer, I.; Becker, H. A.; Sobiesiak, A. The strong-jet/weak-jet problem and aerodynamic modelling of the CGRI burner. Combust. Flame 1998, 115 (93), 381–396. [35] Wünning, J.A.; Wünning, J.G. Flameless oxidation to reduce thermal NO formation. Prog. Energy Combust. Sci. 1997, 23 (81), 81–94. [36] Lacava, P. T.; Carvalho Jr, J. A.; Pimenta, A. P.; Ferreira, M. A. Thermal analysis of an enriched flame incinerator for aqueous residues. Energy 2006, 31, 528–545. [37] Yang, Y. H.; Deng, N. Y.; Zhang, S. Q. Effects of coal oxygen-enriched combustion on energy saving and environment. Materials for Renewable Energy &; Environment (ICMREE), 2011 International Conference on (Volume: 2), Shaghai, China, May 20-22, 1552–1555, 2011, [38] Mastellone, M. L.; Zaccariello, L.; Santoro, D.; Arena, U. The O2-enriched air gasification of coal, plastics and wood in a fluidized bed reactor. Waste Management 2012, 32, 733–742. [39] Lasek, J. A.; Glod, K.; Janusz, M.; Kazalski, K.; Zuwała, J. Pressurized oxy-fuel combustion: a study of selected parameters. Energy Fuels 2012, 26, 6492–6500. [40] Beltrame, A.; Porshnev, P.; Merchan-Merchan, W.; Saveliev, A.; Fridman, A.; Kennedy, L. A.; Petrova, O.; Zhdanok, S.; Amouri, F.; Charon, O. Soot and NO formation in methane-oxygen enriched diffusion flame. Combust. Flame 2001, 124, 295–310. [41] Luo, S. Y.; Xiao, B.; Hu, Z. Q.; Liu, S. M.; Guan, Y. W. Experimental study on oxygen-enriched combustion of biomass micro fuel. Energy 2009, 34, 1880–1884. [42] Chin, S.; Jurng, J.; Lee, J. H.; Hur, J. H. Oxygen-enriched air for co-incineration of organic sludges with municipal solid waste: A pilot plant experiment. Waste Management 2008, 28, 2684–2689. [43] Zhen, H. S.; Leung, C. W.; Cheung, C. S. Combustion characteristics of a swirling inverse diffusion flame upon oxygen content variation. Appl. Energ. 2011, 88, 2925–2933. [44] Bejarano, P. A.; Levendis, Y. A. Combustion of coal chars in oxygen-enriched atmospheres. Combust. Sci. and Tech. 2007, 179, 1569–1587. [45] Wu, K. K.; Chang, Y. C.; Chen, C. H.; Chen, Y. D. High-efficiency combustion of natural gas with 21–30% oxygen-enriched air. Fuel 2010, 89, 2455–2462. [46] Wu, K. K.; Chang, Y. C.; Chen, C. H.; Chen, Y. D. The effects of oxygen concentration for energy saving and emission with a gas-fired burner. The 20th International Symposium on Transport Phenomena, Victoria BC, Canada, July 7-10, 2009. [47] Rajkumar, K.; Govindarajan, P. Impact of oxygen enriched air intake on the exhaust of a single cylinder diesel engine. Am. J. Environ. Sci. 2011, 7(2), 136–140. [48] Momani, W. The effects of excess oxygen to mixture on the gasses emissions of a gasoline engine. Am. J. Applied Sci. 2009, 6 (6), 1122–1125. [49] Xiao, G. F.; Qiao, X. Q.; Huang, Z.; Chen, Z. P. Improvement of startability of direct-injection diesel engines by oxygen-enriched intake air. Proceed. Instit. Mech. Eng. Part D: J. Autom. Eng. 2007, 221 (11), 1453–1465. [50] Rakopoulos, C. D.; Hountalas, D. T.; Zannis, T. C.; Levendis, Y. A. Operational and environmental evaluation of diesel engines burning oxygen-enriched intake air or oxygen-enriched fuels: A Review. SAE Technical Paper 2004-01-2924. 2004. [51] Momani, W.; Abu-Ein, S.; Momani, M.; Fayyad, S. M. Effects of oxygenated gasoline on fuel and air mass flow rates and air-fuel ratio. Am. J. Applied Sci. 2009, 6 (5), 974–977. [52] Huang, I. T.; Chang, Y. C.; Wu, K. K. The development of key technology to improve thermal energy utilization (in Chinese). ITRI technical report No. 553971644, 2008. [53] Salzano, E.; Basco, A.; Cammarota, F.; Di Sarli, V.; Di Benedetto, A. Explosions of syngas/CO2 mixtures in oxygen-enriched air. Ind. Eng. Chem. Res. 2012, 51, 7671–7678. [54] Fives North American Combustion, Inc. Fire.AllTM Oil burners Bulletin 5514. Technical Sheets, Feb. 2011. [55] Fives North American Combustion, Inc. Bulletin 4011/4021. Technical Sheets, Feb. 2008. [56] Honeywell International Inc., C7035A Minipeeper ultraviolet flame detectors. Technical Sheets, Feb. 2011. [57] Chuan-Fan electric Co., Ltd. Blowers &; Fans—Centrifugal blowers (in Chinese). Product Catalog, May 2005. [58] Marceau, W. D. Combustion systems and combustion control. Canadian Ceramic Society Journal 1967, 36, XL VIII-LI. [59] N.F.P.A. 86. Ovens and furnaces. National Protection Association, Batterymarch Park, Quincy, Ma 02269, 1995. [60] Bodurtha, F. T. Industrial explosion prevention and protection. McGraw-Hill book Co., New York, NY, 1980. [61] Factory Mutual Engineering Corporation. Handbook of industrial loss prevention. 2nd ed., McGraw-Hill book Co., New York, NY, 1967. [62] Fives North American Combustion, Inc. SensitrolTM Oil valves Bulletin 1813. Technical Sheets, Sept. 2006. [63] Fisher Controls Company. Control valve handbook. 2nd ed., 4th printing, Fisher Controls Company, Marshalltown, IA, 1977. [64] Vervalin, C. H. Fire protection manual for hydrocarbon processing plants. vol. 2, 1st ed., Gulf Publishing Co., Houstion, TX, 1981. [65] Vervalin, C. H. Fire protection manual for hydrocarbon processing plants. vol. 1, 3rd ed., Gulf Publishing Co., Houstion, TX, 1985. [66] Republic of China Environmental Protection Administration; Stationary Pollution Source Air Pollutant Emissions Standards, Environmental protection administration order Huan-Shu-Kong-Tzu No. 16668, Article 11, Taiwan, Republic of China, 2013. [67] Fluke Corp. Fluke 2680 series data acquisition systems, Technical Sheets, 2011. [68] Heywood, J. B. Internal combustion engine fundamentals. McGraw-Hill, Inc., New York, 1988. [69] Turns, S. R. An introduction to combustion: concepts and applications. McGraw-Hill, Inc., 2nd ed., New York, 1996. [70] Yao, C. Y.; Ou, J. J.; Hou, S. S.; Lin, T. H. Mass-energy balance characteristic of oxyfuel combustion with flue gas recirculation. The CSME 26th Conference, Taiwan, Tainan, Nov. 20-21, 2009. [71] Zandaryaa, S.; Buekens, A. Pollution control technologies-Volume II-control of nitrogen oxides. Encyclopedia of Life Support Systems, United Nations Educational, Scientific and Cultural Organization. [72] Chen, J. J. Study of De-NOx controls technology in the boiler (in Chinese). Knowledge of Boiler 2013, 34, 1–32. [73] National Conference of Standards Laboratories, Determining and reporting measurement uncertainties. Ad Hoc Committee on Measurement Uncertainties, April, 1995. [74] Rabinovich, S. G. Measurement errors and uncertainties. Springer Science and Media, Inc., 3rd ed., New York, 2005. [75] Grabe, M. Measurement uncertainties in science and technology. Springer Science and Media, Inc., 2nd ed., New York, 2014. [76] Coleman, H. W.; Steele, W. G. Experimentation and uncertainty analysis for engineers. John Wiley &; Sons, Inc., 2ed., New York, 1999. [77] Moffat, R. J. Describing the uncertainties in experimental results. Exp. Therm. Fluid Sci. 1988, 1, 3–17. [78] Kline, S. J.; Mcclintock, F. Describing uncertainties in single-sample experiments. Mech. Eng. 1953, 75, 3–8. [79] Moffat, R. J. Contributions to the theory of single-sample uncertainty analysis. J. Fluid Eng. 1982, 104, 250–260. [80] Holman, J. P. Experimental methods for engineers. McGraw-Hill, Inc., 5th ed., New York, 1989. [81] Robert, K.; Ted, W. Spotlight-8, NASA Glenn Research Center, 2005. [82] Beer, J. M.; Chigier, N. A. Combustion aerodynamics. Applied Science Publishers Ltd., London, 1972. [83] Palmer, H. B.; Beer, J .M. Combustion technology-some modern developments, Academic Press, New York, NY, 1974. [84] Stambuleanu, A. Flame combustion processes in industry, Abacus Press, Tunbridge Wells, Kent, England, 1976. [85] Shore, D. E.; McElron, M. W. Tuning industrial boilers, II-establish excess air levels, Power 1977, 121(5), 76–79. [86] Lupton, H. P. Industrial gas engineering, Vols. 1, 2, 3, North Western Gas Board, London, 1960. [87] Singer, J. G. Combustion technology-some modern developments, Academic Press, New York, NY, 1974. [88] Gorog, J. P.; Adams, T. N.; Brimacombe, J. K. Heat transfer from flames in a rotary kiln. Metallurgical Transaction B. 1983, 14(3), 411–424. [89] Hudak, I. Characteristic parameters of oxygen-enhanced combustion process. Master Thesis. Brno University of Technology, 2013. [90] Reed, R. J. Combustion Handbook-A basic reference on the art and science of industrial heating with gaseous and liquid fuels, Volume I, 3rd ed., North American Mfg. Co., Cleveland, OH, 1986. [91] Bracco, F. Nitric oxide formation in droplet diffusion flames. Fourteenth Combustion symposium. The Combustion Institute, 831-842, 1972. [92] Williams, A. et al. Prediction of NOx emissions from oxygen-enriched low NOx burners. International Conference on environmental control of Combustion Processes, AFRC, 1991.
|