跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.108) 您好!臺灣時間:2025/09/02 04:38
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳士婷
研究生(外文):Shih-Ting Chen
論文名稱:應用跳脫語言模型於同義詞取代之研究
論文名稱(外文):Skip N-gram modeling for Near-Synonym choice
指導教授:禹良治禹良治引用關係
指導教授(外文):Liang-ChihYu
口試委員:劉昭麟邱昭彰
口試委員(外文):Chao-LinLiuChaochangChiu
口試日期:2012-7-18
學位類別:碩士
校院名稱:元智大學
系所名稱:資訊管理學系
學門:電算機學門
學類:電算機一般學類
論文種類:學術論文
畢業學年度:100
語文別:中文
論文頁數:35
中文關鍵詞:同義詞點式交互資訊N連詞跳脫語言模型
外文關鍵詞:Near-synonymPMIN-gramSkip N-gram
相關次數:
  • 被引用被引用:0
  • 點閱點閱:390
  • 評分評分:
  • 下載下載:11
  • 收藏至我的研究室書目清單書目收藏:2
同義詞(Near-Synonym)不只在自然語言應用中是重要的一環,也是對第二語言學習者很重要的部分。同義詞雖然是一群意思相近的單字集合,但在特定的情況與特殊用法下,選擇錯誤的同義詞會造成句意上的誤解,甚至是整個文法錯誤,因此我們希望能夠藉由上下文的訊息,再利用系統分辨出正確的同義詞,協助外語學習者做有效率的學習。
目前為止已有許多同義詞的相關研究,這些研究的方法包含:點式交互資訊(Pointwise Mutual Information, PMI)與N連詞(N-gram)模型都是常用的方法,我們想使用與以往不同的方法來提升正確率,因此我們使用跳脫語言模型(Skip N-gram)的方法參與SemEval-2007同義詞任務,結果顯示我們提出的方法是可行的,正確率也有明顯的提升。
Near-synonym is not only an important thing in natural language applications, and also very important for the second language learner. Although, near-synonym represent a groups of words with similar meaning. But, in specific case and specific usage, we choice the wrong near-synonym may cause wrong meaning, even cause grammatical errors. Therefore, we hope system can use contextual information to differentiate near-synonym.

So far, there are many studies about near-synonym, the methods of these studies include: PMI and N-gram modeling. We want to use different method to improve the accuracy, so we use Skip N-gram modeling for near-synonym choice in SemEval-2007 task, the results show that our proposed method is feasible and the accuracy have improved significantly
書名頁 i
論文口試委員審定書 ii
授權書 iii
中文摘要 iv
英文摘要 v
誌謝 vi
目錄 vii
表目錄 ix
圖目錄 x
第一章 緒論 1
1.1 研究背景 1
1.2 動機與目的 3
1.3 研究方法簡介 4
1.4 章節概要 5
第二章 文獻探討 6
2.1 Web 1T 5-gram 6
2.2 詞彙選擇驗證 7
2.3 同義詞研究 8
第三章 研究方法 9
3.1 資料前處理 9
3.2 方法概念簡介 11
3.3 N連詞(N-gram) 12
3.3.1 N連詞模組建立 12
3.4 跳脫語言模型(Skip N-gram) 13
第四章 實驗與結果分析 16
4.1 實驗資料-資料來源 16
4.2 實驗資料-同義詞集 17
4.3 評分方法 18
4.4 最佳召回率(Recall) 19
4.5 參與團隊系統介紹 19
4.6 實驗結果與分析 21
4.6.1 方法與語料分析 21
4.6.2 詞性分析 24
4.6.3 N-gram與Skip組合分析 27
4.6.4 正確率(Accuracy) 28
4.6.5 結果範例討論 29
第五章 結論與未來展望 32
參考文獻 33
參考文獻
1.D. Moldovan and R. Mihalcea, "Using WordNet and Lexical Operators to Improve Internet Searches," IEEE Internet Computing, pp. 34-43, 2000.
2.J. Bhogal, A. Macfarlane, and P. Smith, "A Review of Ontology based Query Expansion," Information Processing &; Management, pp. 866-886, 2007.
3.C. Cheng, "Word-Focused Extensive Reading with Guidance," In Proc. of the 13th International Symposium on English Teaching, pp. 24-32, 2004.
4.S. Ouyang, H. H. Gao, and S. N. Koh, "Developing a Computer-Facilitated Tool for Acquiring Near-Synonyms in Chinese and English," In Proc. of IWCS-09, pp. 316-319, 2009.
5.D. Pearce, "Synonymy in Collocation Extraction," In Proc. of the Workshop on WordNet and Other Lexical Resources at NAACL-01,2001.
6.D. Inkpen, "A Statistical Model of Near Synonym Choice," ACM Trans. Speech and Language Processing, pp. 1-17, 2007.
7.L. C. Yu, C. H. Wu, R. Y. Chang, C. H. Liu, and E. H. Hovy, "Annotation and verification of sense pools in OntoNotes," Information Processing&;Management 46(4), pp.436-447, 2010.
8.A. Islam, D. Inkpen, "Real-word spelling correction using Google Web 1T 3-gram, " In Proc. Association for Computational Linguistics, pp. 1241-1249, 2009.
9.P. Nulty, F. Costello, "Using lexical patters in google Web 1T corpus to deduce semantic relation between nouns," In Proc. Association for Computational Linguistics, pp. 58-63, 2009.
10.P. Edmonds, "Choosing the Word Most Typical in Context Using a Lexical Co-occurrence Net Network," In Proc. Association for Computational Linguistics, pp. 507-509, 1997.
11.M. Gardiner and M. Dras, "Exploring Approaches to Discriminating among Near-Synonyms," In Proc. of the Australasian Technology Workshop, pp. 31-39, 2007.
12.D. Inkpen, "Near-Synonym Choice in an Intelligent Thesaurus," In Proc. Association for Computational Linguistics, pp. 356-363, 2007.
13.D. Inkpen, "A Statistical Model for Near-Synonym Choice, " ACM Trans. on Speech and language processing, pp. 356-363, 2007.
14.A. Islam, D. Inkpen, "Near-Synonym Choice using a 5-gram Language Model," In proc. Research in Computing Science, pp. 41-52, 2010.
15.D. McCarthy, "Lexical Substitution as a Task for WSD Evaluation," In Proc. of the SIGLEX/SENSEVAL Workshop on Word Sense Disambiguation at ACL-02, pp. 109-115, 2002.
16.I. Dagan, O. Glickman, A. Gliozzo, E. Marmorshtein, and C. Strapparava, "Direct Word Sense Matching for Lexical Substitution," In Proc. of COLING/ACL-06, pp. 449-456, 2006.
17.D. McCarthy, R. Navigli, "The English lexical substitution task," In Proceedings of the 4th International Workshop on Semantic Evaluations (SemEval-2007), pp. 48-53, 2009.
18.D. Martinez, S. N. Kim, and T. Baldwin, "MELB-MKB: Lexical substitution system based on relatives in context," In Proceedings of the 4th workshop on Semantic Evaluations (SemEval-2007), pp. 237–240, 2007.
19.S. Zhao, L. Zhao, Y. Zhang, T. Liu, and S. Li, "HIT: Web based scoring method for English lexical substitution," In Proceedings of the 4th workshop on Semantic Evaluations (SemEval-2007), pp. 173–176, 2007.
20.S. Hassan, A. Csomai, C. Banea, R. Sinha, and R. Mihalcea, "UNT: SubFinder: Combining knowledge sources for automatic lexical substitution, " In Proceedings of the 4th workshop on Semantic Evaluations (SemEval-2007), pp. 410–413, 2007.
21.C. Giuliano, A. Gliozzo, and C. Strapparava, "FBK-irst: Lexical substitution task exploiting domain and syntagmatic coherence," In Proceedings of the 4th workshop on Semantic Evaluations(SemEval-2007), pp. 145–148, 2007.
22.D. Yuret, "KU: Word sense disambiguation by substitution," In Proceedings of the 4th workshop on Semantic Evaluations (SemEval-2007), pp. 207–214, 2007.
23.T. Hawker, "USYD: WSD and lexical substitution using the Web1T corpus,"In Proceedings of the 4th workshop on Semantic Evaluations (SemEval-2007), pp. 446–453, 2007.
24.S. Mohammad, G. Hirst, and P. Resnik, "Tor, TorMd: Distributional profiles of concepts for unsupervised word sense disambiguation," In Proceedings of the 4th workshop on Semantic Evaluations (SemEval-2007), pp. 326–333, 2007.
25.C. Fellbaum, "WordNet: An electronic lexical database," Cambridge, MA: The MIT Press, 1998.
26.D. Lin, "An information-theoretic definition of similarity," In Proceedings of the 15th international conference on machine learning. Madison, W
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top