跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.176) 您好!臺灣時間:2025/09/07 08:43
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳思帆
研究生(外文):Chen, Sz-Fan
論文名稱:利用氣液固相法成長硫族合金鍺碲單晶奈米線
論文名稱(外文):Synthesis of Single-crystalline Germanium Telluride Chalcogenide Nanowire by Vapor-Liquid-Solid Method
指導教授:謝宗雍
指導教授(外文):Hsieh, Tsung-Eong
口試委員:謝宗雍何永鈞吳文偉
口試委員(外文):Hsieh, Tsung-EongHer, Yung-ChiunWu, Wen-Wei
學位類別:碩士
校院名稱:國立交通大學
系所名稱:材料科學與工程學系所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:72
中文關鍵詞:氣液固相法硫族合金鍺鍗奈米線
外文關鍵詞:Vapor-Liquid-SolidChalcogenideGermanium TellurideNanowire
相關次數:
  • 被引用被引用:0
  • 點閱點閱:218
  • 評分評分:
  • 下載下載:8
  • 收藏至我的研究室書目清單書目收藏:0
本研究利用氣液固相法(Vapor-Liquid-Solid,VLS),以金(Au)奈米粒子為催化劑及95%氬氣(Ar)與5%氫氣(H2)混合氣體為載流氣體,成長鍺碲(GeTe)硫族合金(Chalcogenide)單晶奈米線(Nanowire,NW)。以濺鍍法將約4 nm厚之Au薄膜鍍於矽(Si)基板上,再施予600C、1分鐘之退火處理,利用降低總表面能的原理形成Au奈米粒子。之後將覆有Au奈米粒子的Si基板置於已載有鍺碲(GeTe)粉體源的三溫區高溫爐中,調變基板溫度、爐管壓力及載流氣體流量以長成GeTe NW。描式電子顯微鏡、能量散佈分析儀及X光繞射儀之分析顯示,GeTe NW可於爐管壓力為1 torr,載流氣體流量/基板溫度為0 sccm/425C、50 sccm/425至450C、100 sccm/425至475C、1000 sccm/400至450C之條件下長成,NW的直徑約在 200至300 nm,長度可達30 m,且實驗結果顯示GeTe NW數量隨著載流氣體流量增大而增加。穿透式電子顯微鏡分析顯示NW沿著菱方晶 軸向成長,且其Ge與Te之化學劑量比約以1:1之比例均勻分布於NW中。
This study investigates the synthesis of single-crystalline germanium telluride (GeTe) chalcogenide nanowire (NW) by vapor-liquid-solid (VLS) method. First, the 4-nm thick gold (Au) film was deposited on (Si) substrate via sputtering method and the annealing at 600C for 1 min was carried out to form the Au nanoparticles which serve as the catalyst for subsequent NW growth. Afterward, the Si substrate clad with Au nanoparticles was transferred to a three-zone furnace containing GeTe powder source in order to facilitate the growth of NWs at various temperatures, pressures and carrier gas flow rates. With the analytical results of scanning electron microscopy, energy dispersive spectroscopy and x-ray diffraction, it was found that, at the pressure of 1 torr, the GeTe NWs with the diameter in range of 200-300 nm and the length up to 30 m can be achieved at the flow rate/temperature conditions of: 0 sccm/425C, 50 sccm/425-450C, 100 sccm/425-475C and 1000 sccm/400-450C. Moreover, an increasing number of NW was observed when the carrier gas flow rate was increased. Transmission electron microscopy characterization indicated the GeTe NWs grow along the -axis direction of the rhombohedral lattice and the Ge and Te elements uniformly distribute along NWs with the stoichiometric ratio of 1:1.
摘 要.........................................................................................................i
Abstract.....................................................................................................ii
誌 謝.......................................................................................................iii
目 錄.......................................................................................................iv
圖目錄.......................................................................................................vi
表目錄........................................................................................................x
第一章 緒 論........................................................................................1
第二章 文獻回顧....................................................................................3
2-1、記憶體簡介....................................................................................................3
2-2、相變化材料....................................................................................................5
2-2-1、GST合金...........................................................................................5
2-2-2、Sb2Te3合金........................................................................................7
2-2-3、GeTe合金.........................................................................................8
2-3、一維結構奈米線..........................................................................................12
2-4、VLS法簡介.................................................................................................13
2-4-1、VLS生長機制..................................................................................14
2-4-2、VLS法之催化劑..............................................................................16
2-4-3、載流氣體流量...................................................................................18
2-4-4、爐管壓力...........................................................................................19
2-4-5、溫度...................................................................................................20
2-5、以VLS法生成相變化材料NW之發展現況...........................................21
2-6、研究動機.....................................................................................................24
第三章 實驗方法及步驟......................................................................25
3-1、實驗流程.....................................................................................................25
3-2、試片製備.....................................................................................................25
3-3、微觀結構與成分分析.................................................................................27
3-3-1、SEM分析........................................................................................27
3-3-2、XRD分析........................................................................................27
3-3-3、TEM分析........................................................................................27
3-3-4、EDS分析.........................................................................................27
第四章 結果與討論..............................................................................28
4-1、Au奈米粒子的製備...................................................................................28
4-2、爐管壓力對NW成長的影響....................................................................29
4-3、載流氣體流量對NW成長之影響............................................................36
4-4、微觀結構與成分分析.................................................................................46
4-4-1、調變爐管壓力之產物相組成..........................................................46
4-4-2、調變載流氣體流量之產物相組成..................................................50
4-5、TEM分析....................................................................................................56
4-6、NW長成條件的歸納.................................................................................58
第五章 結 論....................................................................................60
第六章 未來研究與展望......................................................................61
參考文獻..................................................................................................62

[1] 簡昭欣、呂正傑、陳志遠、張茂男、許世祿、趙天生,《先進記憶體簡介》,國研科技,2004年,第01期,31-36頁。
[2] 葉林秀、李佳謀、徐明豐、吳德和,《磁阻式隨機存取記憶體技術的發展—現在與未來》,物理雙月刊,2004年,第04期,607-619頁。
[3] M. Guth, G. Schmerber and A. Dinia, “Magnetic Tunnel Junctions for Magnetic Random Access Memory Applications”, Mat. Sci. Eng. C, 19(2002), p.129-133.
[4] R.C. Sousa and I.L. Prejbeanu, “Non-volatile Magnetic Random Access Memories (MRAM)”, C. R. Physique, 6(2005), p.1013-1021.
[5] R.E. Jones, Jr., P.D. Maniar, R. Moazzami, P. Zurcher, J.Z. Witowski, Y.T. Lii, P.Chu and S.J. Gillespie, “Ferroelectric Non-volatile Memories for Low-voltage, Low-power Applications”, Thin Solid Films, 270(1995), p.584-588.
[6] W.W. Zhuangl, W. Pan, B.D. Ulrich, J.J. Lee, L. Stecker, A. Burmaster, D.R. Evans, S.T. Hsul, M. Tajiri, A. Shimaoka, K. Inoue, T. Naka, N. Awaya, K. Sakiyama, Y. Wang, S.Q. Liu, N.J. Wu and A. Ignatiev, “Novel1 Colossal Magnetoresistive Thin Film Nonvolatile Resistance Random Access Memory (RRAM)”, IEDM '02 Tech. Dig., December 8-11, (2002), San Francisco, CA, p.193-196.
[7] A. Sawa, “Resistive Switching in Transition Metal Oxides”, Mater. Today, 11(2008), p.28-36.
[8] M. Wuttig and N. Yamada, “Phase-change Materials for Rewriteable Data Storage”, Nat. Mater., 6(2007), p.824-832.
[9] H.-S.P. Wong, S. Raoux, S.B. Kim, J. Liang, J.P. Reifenberg, B. Rajendran, M. Asheghi and K.E. Goodson, “Phase Change Memory”, Proceedings of the IEEE, 98(2010), p.2201-2227.
[10] S.R. Ovshinsky, “Reversible Electrical Switching Phenomena in Disordered Structures”, Phys. Rev. Lett., 21 (1968), p.1450-1453.
[11] Phase Change Materials, ed. by S. Raoux and M. Wuttig, New York, USA, Springer, (2009), p.86-89.
[12] R.-Y. Kim, H.-G. Kim and S.-G. Yoon, “Structural Properties of Ge2Sb2Te5 Thin Films by Metal Organic Chemical Vapor Deposition for Phase Change Memory Applications”, Appl. Phys. Lett., 89(2006), 102107.
[13] S.W. Ryu, H.-K. Lyeo, J.H. Lee, Y.B. Ahn, G.H. Kim, C.H. Kim, S.G. Kim, S.-H. Lee, K.Y. Kim, J.H. Kim, W. Kim, C.S. Hwang and H.J. Kim, “SiO2 Doped Ge2Sb2Te5 Thin Films with High Thermal Efficiency for Applications in Phase Change Random Access Memory”, Nanotechnology, 22(2011), 254005.
[14] D. Loke, L. Shi, W. Wang, R. Zhao, H. Yang, L.-T. Ng, K.-G. Lim, T.-C. Chong and Y.-C. Yeo, “Ultrafast Switching in Nanoscale Phase-change Random Access Memory with Superlattice-like Structures”, Nanotechnology, 22(2011), 254019.
[15] L. Wang, C.D. Wright, M.M. Aziz, C.-H. Yang and G.-W. Yang, “Design of An Optimised Readout Architecture for Phase-change Probe Memory Using Ge2Sb2Te5 Media”, Jpn. J. Appl. Phys., 53(2014), 028002.
[16] B. Liu, Z. Song, S. Feng and B. Chen, “Characteristics of Chalcogenide Nonvolatile Memory Nano-cell-element Based on Sb2Te3 Material”, Microelectr. Eng., 82(2005), p.168-174.
[17] M.S. Kim, S.H. Cho, S.K. Hong, J.S. Roh and D.J. Choi, “Crystallization Characteristics of Nitrogen-doped Sb2Te3 Films for PRAM Application”, Ceram. Int., 34(2008), p.1043-1046.
[18] Y. Zhang, J. Feng, Z.F. Zhang, B.C. Cai, Y.Y. Lin, Ting’ao Tang, Bomy Chen, “Characteristics of Si-doped Sb2Te3 Thin Films for Phase-change Random Access Memory”, Appl. Surf. Sci., 254(2008), p.5602-5606.
[19] G. Bruns, P. Merkelbach, C. Schlockermann, M. Salinga, M. Wuttig, T.D. Happ, J.B. Philipp and M. Kund, “Nanosecond Switching in GeTe Phase Change Memory Cells”, Appl. Phys. Lett., 95(2009), 043108.
[20] S. Raoux, H.-Y. Cheng, M.A. Caldwell and H.-S.P. Wong, “Crystallization Times of Ge-Te Phase Change Materials as a Function of Composition”, Appl. Phys. Lett., 95(2009), 071910.
[21] X.S. Miao, L.P. Shu, H.K. Lee, J.M. Li, R. Zhao, P.K. Tan, K.G. Lim, H.X. Yang and T.C. Chong, “Temperature Dependence of Phase-Change Random Access Memory Cell”, Jpn. J. Appl. Phys., 45(2006), p.3955-3958.
[22] G.-S. Park, J.-H. Kwon, M. Kim, H. R. Yoon, W. Jo, T. K. Kim, J.-M. Zuo and Y. Khang, “Crystalline and Amorphous Structures of Ge–Sb–Te Nanoparticles”, J. Appl. Phys., 102(2007), 013524.
[23] N. Yamada, E. Ohno, K. Nishiuchi, N. Akahira and M. Takao, “Rapid-phase Transitions of GeTe-Sb2Te3 Pseudobinary Amorphous Thin Films for An Optical Disk Memory”, J. Appl. Phys., 69 (1991), p.2849-2856.
[24] V.D. Das, N. Soundararajan and M. Pattabi, “Electrical Conductivity and Thermoelectric Power of Amorphous Sb2Te3 Thin Films and Amorphous-crystalline Transition”, J. Mat. Sci., 22(1987), p.3522-3528.
[25] B. Predel, “Sb-Te (Antimony-Tellurium)”, Landolt-B#westeur055#rnstein - Group IV Physical Chemistry, ed. by O. Madelung, Springer-Verlag, 5J(1998), p.1.
[26] “Antimony Telluride Crystal Structure, Chemical Bond, Lattice Parameters”, Landolt-B#westeur055#rnstein - Group III Condensed Matter, ed. by O. Madelung, U. R#westeur055#ssler and M. Schulz, Springer-Verlag, 41C(1998).
[27] K.L. Chopra and S.K. Bahl, “Amorphous versus Crystalline GeTe Films. I. Growth and Structural Behavior”, J. Appl. Phys., 40(1969), p.4171-4178.
[28] K.S. Andrikopoulos, S.N. Yannopoulos, G.A. Voyiatzis, A.V. Kolobov, M.Ribes and J. Tominaga, “Raman Scattering Study of the -GeTe Structure and Possible Mechanism for the Amorphous to Crystal Transition”, J. Phys., 18(2006), p.965-979.
[29] M. Snykers, P. Delavignette, S. Amelinckx, “The Domain Structure of GeTe as Observed by Electron Microscopy”, Mat. Res. Bull., 7(8)(1972), p.831-840.
[30] B. Predel, “Ge-Te (Germanium-Tellurium)”, Landolt-B#westeur055#rnstein - Group IV Physical Chemistry, ed. by O. Madelung, Springer-Verlag, 5f(1996), p.1-3.
[31] T. Chattopadhyay, J.X. Boucherle and H.G. von Schnering, “Neutron Diffraction Study on The Structural Phase Transition in GeTe”, J. Phys. C: Solid State Phys., 20(1987), p.1431-1440.
[32] H. Wiedemeier and P.A. Siemers, “The Thermal Expansion of GeS and GeTe”, Z. Anorg. Allg. Chem., 431(1977), p.299-304.
[33] “IV-VI Compounds, General Tables Crystal Structure, Chemical Bond and Related Data of GeTe, SnTe”, Landolt-B#westeur055#rnstein - Group III Condensed Matter, ed. by O. Madelung, U. R#westeur055#ssler and M. Schulz, Springer-Verlag, 41C(1998), p.1-4.
[34] M. Micoulaut, L. Cormier and G. S. Henderson, “The structure of amorphous, crystalline and liquid GeO2”, J. Phys.: Condens. Matter, 18(2006), p.753-784.
[35] S. Blanchandin, P. Marchet, P. Thomas, J.C. Champarnaud-Mesjard and B. Frit, “New investigations within the TeO2-WO3 system: phase equilibrium diagram and glass crystallization”, J. Mater. Sci. 34(1999), p.4285-4292.
[36] O. Lindovist, “Refiment of the structure of -TeO2”, Acta Chem. Scand., 22(1968), p.977-982.
[37] L. Guillet, A. Ider, J.P. Laval and B. Frit, “Crystal Structure of TeOF2”, J. Fluorine Chem., 93(1999), p.33-38.
[38] L.V. Yashina, S.P. Kobeleva, T.B. Shatalova, V.P. Zlomanov and V.I. Shtanov, “XPS Study of Fresh and Oxidized GeTe and (Ge,Sn) Te Surface”, Solid State Ionics, 141–142(2001), p.512-522.
[39] E. Gourvest, B. Pelissier, C. Vallee, A. Roule, S. Lhostis and S. Maitrejean, “Impact of Oxidation on Ge2Sb2Te5 and GeTe Phase-Change Properties”, J. Electrochem. Soc., 159(2012), p.H373-H377.
[40] C. Burda, X. Chen, R. Narayanan and M.A. E.-Sayed, “Chemistry and Properties of Nanocrystals of Different Shapes”, Chem. Rev., 105(2005), p.1025-1102.
[41] G.-Y. Zhao, C.-L. Xu, D.-J. Guo, H. Li, H.-L. Li, “Template Preparation of Pt-Ru and Pt Nanowire Array Electrodes on a Ti/Si Substrate for Methanol Electro-oxidation”, J. Power Sources, 162(2006), p.492-496.
[42] M. Jamal, J. Xu and K.M. Razeeb, “Disposable Biosensor Based on Immobilisation of Glutamate Oxidase on Pt Nanoparticles Modified Au Nanowire Array Electrode”, Biosens. Bioelectron., 26(2010), p.1420-1424.
[43] H.-G. Liao, L. Cui, S. Whitelam and H. Zheng, “Real-Time Imaging of Pt3Fe Nanorod Growth in Solution”, Science, 336(2012), p.1011-1014.
[44] S.E. Lohse and C.J. Murphy, “The Quest for Shape Control: A History of Gold Nanorod Synthesis”, Chem. Mater., 25(2013), p.1250-1261.
[45] M.M. J. Treacy, T.W. Ebbesen and J.M. Gibson, “Exceptionally High Young's Modulus Observed for Individual Carbon Nanotubes”, Nature, 381(1996), p.678-680.
[46] Y.Y. Wei, G. Eres, V.I. Merkulov and D.H. Lowndes, “Effect of Catalyst Film Thickness on Carbon Nanotube Growth by Selective Area Chemical Vapor Deposition”, Appl. Phys. Lett,, 78(2001), p.1394-1396.
[47] P. Roy, S. Berger and P. Schmuki, “TiO2 Nanotubes: Synthesis and Applications”, Angew. Chem. Int. Ed., 50(2011), p.2904-2939.
[48] F. Qian, Y. Li, S. Gradecak, D. Wang, C. J. Barrelet and C.M. Lieber, “Gallium Nitride-Based Nanowire Radial Heterostructures for Nanophotonics”, Nano Lett., 4(2004), p.1975-1979.
[49] F. Patolsky, G. Zheng, O. Hayden, M. Lakadamyali, X. Zhuang and C. M. Lieber, “Electrical Detection of Single Viruses”, PNAS, 101(2004), p.14017-14022.
[50] J. Zhang, R. Huang, L. Shi, L. Wang, F. Wei, T. Kong and G. Cheng, “Bi Doping Modulating Structure and Phase-change Properties of GeTe Nanowires”, Appl. Phys. Lett., 102(2013), 063104.
[51] H. Tanaka, T. Nishihara, T. Ohtsuka, K. Morimoto, N. Yamada and K. Morita, “Electrical Switching Phenomena in a Phase Change Material in Contact with Metallic Nanowires”, Jpn. J. Appl. Phys., 41(2002), p.1443-1445.
[52] X. Gai, S. Madden, D.-Y. Choi, D. Bulla and B. L.-Davies, “Dispersion Engineered Ge11.5As24Se64.5 Nanowires with a Nonlinear Parameter of 136 W1m1 at 1550 nm”, Optics Express, 18(2010), p.18866-18874.
[53] J.-K. Ahn, K.-W. Park, H.-J. Jung and S.-G. Yoon, “Phase-Change InSbTe Nanowires Grown in Situ at Low Temperature by Metal-Organic Chemical Vapor Deposition”, Nano Lett., 10(2010), p.472-477.
[54] M. Longo, R. Fallica, C. Wiemer, O. Salicio, M. Fanciulli, E. Rotunno and L. Lazzarini, ‘‘Metal Organic Chemical Vapor Deposition of Phase Change Ge1Sb2Te4 Nanowires’’, Nano Lett., 12(2012), p.1509-1515.
[55] L. Pei, K. Mori and M. Adachi, “Formation Process of Two-Dimensional Networked Gold Nanowires by Citrate Reduction of AuCl4- and the Shape Stabilization”, Langmuir, 20(18)(2004), p.7837-7843.
[56] H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F.R. Aussenegg and J.R. Krenn, “Silver Nanowires as Surface Plasmon Resonators”, Phys. Rev. Lett., 95(2005), 257403.
[57] M. Rolandi, C.F. Quate and H. Dai, “A New Scanning Probe Lithography Scheme with a Novel Metal Resist”, Adv. Mater., 14(3)(2002), p.191-194.
[58] T.-H. Fang and W.-J. Chang, “Nanolithography and Nanoindentation of Tantalum-oxide Nanowires and Nanodots Using Scanning Probe Microscopy”, Physica B, 352(2004), p.190-199.
[59] D.C. Johnson, W.D. Morris and A.L. Prieto, “Effects of Transport Gradients in a Chemical Vapor Deposition Reactor Employing Vapor-liquid-solid Growth of Ternary Chalcogenide Phase-change Materials”, Nanotechnol., 21(2010), 165604.
[60] R.S. Wagner and W.C. Ellis, “Vapor Liquid Solid Mechanism of Single Crystal Growth”, Appl. Phys. Lett., 4(1964), p.89-90.
[61] A. Prince, “Au-Ge-Te”, Phase Diagrams Ternary Gold Alloys, London, Inst. Met., (1990), p.277-281.
[62] H.-S. Chung, Y. Jung, S.C. Kim, D.H. Kim, K.H. Oh and R. Agarwal, “Epitaxial Growth and Ordering of GeTe Nanowires on Microcrystals Determined by Surface Energy Minimization”, Nano Lett., 9(2009), p.2395-2401.
[63] Y. Cui, L.J. Lauhon, M.S. Gudiksen, J. Wang and C.M. Lieber, “Diameter-controlled Synthesis of Single-crystal Silicon Nanowires”, Appl. Phys. Lett., 78(2001), p.2214-2216.
[64] E.F. Kukovitsky, S.G. L’vov, N.A. Sainov, V.A. Shustov, L.A. Chernozatonskii, “Correlation between Metal Catalyst Particle Size and Carbon Nanotube Growth”, Chem. Phys. Lett., 355(2002), p.497-503.
[65] E.A. Sutter and P.W. Sutter, “Size-Dependent Phase Diagram of Nanoscale Alloy Drops Used in Vapor-Liquid-Solid Growth of Semiconductor Nanowires”, ACS Nano, 4(2010), p.4943-4947.
[66] S. Mathur, S. Barth, H. Shen, J.-C. Pyun and U. Werner, “Size-Dependent Photoconductance in SnO2 Nanowires”, Small, 1(2005), p.713-717.
[67] H.R. Stuart and D.G. Hall, “Island Size Effects in Nanoparticle-enhanced Photodetectors”, Appl. Phys. Lett., 73(26)(1998), p.3815-3817.
[68] H.-J. Jeon, S.-C. Yi, S.-G. Oh, “Preparation and Antibacterial Effects of Ag-SiO2 Thin Films by Sol–gel Method”, Biomaterials, 24(2003), p.4921-4928.
[69] G. Reiter, “Dewetting of Thin Polymer Films”, Phys. Rev. Lett., 68(1992), p.75-78.
[70] P.G. Gennes, “Wetting: Statics and Dynamics”, Rev. Mod. Phys., 57(1985), p.827-863.
[71] Surface Science Techniques, ed. by G. Bracco and B. Holst, Berlin, Germany, Springer Berlin-Heidelberg, (2013), Chap.1, p.4.
[72] A. Menzel, R. Goldberg, G. Burshtein, V. Lumelsky, K. Subannajui, M. Zacharias and Y. Lifshitz, “Role of Carrier Gas Flow and Species Diffusion in Nanowire Growth from Thermal CVD”, J. Phys. Chem. C, 116(2012), p.5524-5530.
[73] C.-B. Jin, J.-E. Yang and M.-H. Jo, “Shape-controlled Growth of Single-crystalline Ge Nanostructures”, Appl. Phys. Lett., 88(2006), 193105.
[74] S. Meister, H. Peng, K. McIlwrath, K. Jarausch, X.F. Zhang and Y. Cui, “Synthesis and Characterization of Phase-Change Nanowires”, Nano Lett., 6(2006), p.1514-1517.
[75] D. Yu, J. Wu, Q. Gu and H. Park, “Germanium Telluride Nanowires and Nanohelices with Memory-Switching Behavior”, J. Am. Chem. Soc., 128(2006), p.8148-8149.
[76] S.-H. Lee, D.-K. Ko, Y. Jung and R. Agarwal, “Size-dependent Phase Transition Memory Switching Behavior and Low Writing Currents in GeTe Nanowires”, Appl. Phys. Lett., 89(2006), 223116.
[77] Y. Jung, S.-H. Lee, D.-K. Ko and R. Agarwal, “Synthesis and Characterization of Ge2Sb2Te5 Nanowires with Memory Switching Effect”, J. Am. Chem. Soc., 128(2006), p.14026-14027.
[78] X. Sun, B. Yu, G. Ng and M. Meyyappan, “One-Dimensional Phase-Change Nanostructure: Germanium Telluride Nanowire”, J. Phys. Chem. C, 111(2007), p.2421-2425.
[79] X. Sun, B. Yu and M. Meyyappan, “Synthesis and Nanoscale Thermal Encoding of Phase-change Nanowires”, Appl. Phys. Lett., 90(2007), 183116.
[80] S.-H. Lee, Y. Jung and R. Agarwal, “Highly Scalable Non-volatile and Ultra-low-power Phase-change Nanowire Memory”, Nat. Nanotechnol., 2(2007), p,626-630.
[81] X. Sun, S. Ju, D. Janes and B. Yu, “Self-assembly of Low-dimensional Phase-change Nanomaterials for Information Storage”, Proceedings of the 7th IEEE International Conference on Nanotechnology, August 2-5, (2007), Hong Kong, p,1067-1071.
[82] X. Sun, B. Yu, G. Ng, M. Meyyappan, S. Ju and D.B. Janes, “Germanium Antimonide Phase-Change Nanowires for Memory Applications”, IEEE Trans. Electron Devices, 55(2008), p.3131-3135.
[83] Y. Jung, S.-H. Lee, A. T. Jennings and R. Agarwal, “Core-Shell Heterostructured Phase Change Nanowire Multistate Memory”, Nano Lett., 8(7)(2008), p.2056-2062.
[84] B. Yu, X. Sun, S. Ju, D.B. Janes and M. Meyyappan, “Chalcogenide-nanowire-based Phase Change Memory”, IEEE T. Nanotechnol., 7(2008), p.496-502.
[85] J.S. Lee, S. Brittman, D. Yu and H. Park, “Vapor-Liquid-Solid and Vapor-Solid Growth of Phase-Change Sb2Te3 Nanowires and Sb2Te3/GeTe Nanowire Heterostructures”, J. Am. Chem. Soc., 130(2008), p.6252-6258.
[86] S.-W. Jung, S.-M. Yoon, Y.-S. Park, S.-Y. Lee and B.-G. Yu, “Control of the Thickness and the Length of Germanium-Telluride Nanowires Fabricated via the Vapor-Liquid-Solid Method”, J. Korean Phys. Soc., 54(2009), p.653-659.
[87] J.W.L. Yim, B. Xiang and J. Wu, “Sublimation of GeTe Nanowires and Evidence of Its Size Effect Studied by in Situ TEM”, J. Am. Chem. Soc., 131(2009), p.14526-14530.
[88] H.-S. Chung, Y. Jung, S.C. Kim, D.H. Kim, K.H. Oh and Agarwal, “Epitaxial Growth and Ordering of GeTe Nanowires on Microcrystals Determined by Surface Energy Minimization”, Nano Lett., 9(2009), p.2395-2401.
[89] A.T. Jennings, Y. Jung, J. Engel and R. Agarwal, “Diameter-Controlled Synthesis of Phase-Change Germanium Telluride Nanowires via the Vapor-Liquid-Solid Mechanism”, J. Phys. Chem. C, 113(2009), p.6898-6901.
[90] Y. Jung, C.-Y. Yang, S.-H. Lee and R. Agarwal, “Phase-Change Ge-Sb Nanowires: Synthesis, Memory Switching and Phase-Instability”, Nano Lett., 9(2009), p.2103-2108.
[91] D.C. Johnson, W.D. Morris and A.L. Prieto, “Effects of Transport Gradients in a Chemical Vapor Deposition Reactor Employing Vapor-liquid-solid Growth of Ternary Chalcogenide Phase-change Materials”, Nanotechnol., 21(2010), 165604.
[92] Y. Jung, R. Agarwal, C.-Y. Yang and R. Agarwal, “Chalcogenide Phase-change Memory Nanotubes for Lower Writing Current Operation”, Nanotechnol., 22(2011), 254012.
[93] S.-W. Nam, H.-S. Chung, Y. C. Lo, L. Qi, J. Li, Y. Lu, A.T. C. Johnson, Y. Jung, P. Nukala and R. Agarwal, “Electrical Wind Force-Driven and Dislocation-Templated Amorphization in Phase-Change Nanowires”, Science, 336(2012), p.1561-1566.
[94] C.S. Jung, H.S. Kim, H.S. Im, Y.S. Seo, K. Park, S.H. Back, Y.J. Cho, C.H. Kim, J. Park and J.-P. Ahn, “Polymorphism of GeSbTe Superlattice Nanowires”, Nano Lett., 13(2013), p. 543-549.
[95] P. Nukala, R. Agarwal, X. Qian, M.H. Jang, S. Dhara, K. Kumar, A.T.C. Johnson, J. Li and R. Agarwal, “Direct Observation of Metal−Insulator Transition in Single-crystalline Germanium Telluride Nanowire Memory Devices Prior to Amorphization”, Nano Lett., 14(2014), p. 2201-2209.
[96] K.C. Grabar, R.G. Freeman, M.B. Hommer and M.J. Natan, “Preparation Characterization of Au Colloid and Monolayers”, Anal. Chem., 67(1995), p.735-743.
[97] http://www.crct.polymtl.ca/fact/phase_diagram.php?file=Au-Te.jpg&;dir=SGTE

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top