[1] 簡昭欣、呂正傑、陳志遠、張茂男、許世祿、趙天生,《先進記憶體簡介》,國研科技,2004年,第01期,31-36頁。[2] 葉林秀、李佳謀、徐明豐、吳德和,《磁阻式隨機存取記憶體技術的發展—現在與未來》,物理雙月刊,2004年,第04期,607-619頁。[3] M. Guth, G. Schmerber and A. Dinia, “Magnetic Tunnel Junctions for Magnetic Random Access Memory Applications”, Mat. Sci. Eng. C, 19(2002), p.129-133.
[4] R.C. Sousa and I.L. Prejbeanu, “Non-volatile Magnetic Random Access Memories (MRAM)”, C. R. Physique, 6(2005), p.1013-1021.
[5] R.E. Jones, Jr., P.D. Maniar, R. Moazzami, P. Zurcher, J.Z. Witowski, Y.T. Lii, P.Chu and S.J. Gillespie, “Ferroelectric Non-volatile Memories for Low-voltage, Low-power Applications”, Thin Solid Films, 270(1995), p.584-588.
[6] W.W. Zhuangl, W. Pan, B.D. Ulrich, J.J. Lee, L. Stecker, A. Burmaster, D.R. Evans, S.T. Hsul, M. Tajiri, A. Shimaoka, K. Inoue, T. Naka, N. Awaya, K. Sakiyama, Y. Wang, S.Q. Liu, N.J. Wu and A. Ignatiev, “Novel1 Colossal Magnetoresistive Thin Film Nonvolatile Resistance Random Access Memory (RRAM)”, IEDM '02 Tech. Dig., December 8-11, (2002), San Francisco, CA, p.193-196.
[7] A. Sawa, “Resistive Switching in Transition Metal Oxides”, Mater. Today, 11(2008), p.28-36.
[8] M. Wuttig and N. Yamada, “Phase-change Materials for Rewriteable Data Storage”, Nat. Mater., 6(2007), p.824-832.
[9] H.-S.P. Wong, S. Raoux, S.B. Kim, J. Liang, J.P. Reifenberg, B. Rajendran, M. Asheghi and K.E. Goodson, “Phase Change Memory”, Proceedings of the IEEE, 98(2010), p.2201-2227.
[10] S.R. Ovshinsky, “Reversible Electrical Switching Phenomena in Disordered Structures”, Phys. Rev. Lett., 21 (1968), p.1450-1453.
[11] Phase Change Materials, ed. by S. Raoux and M. Wuttig, New York, USA, Springer, (2009), p.86-89.
[12] R.-Y. Kim, H.-G. Kim and S.-G. Yoon, “Structural Properties of Ge2Sb2Te5 Thin Films by Metal Organic Chemical Vapor Deposition for Phase Change Memory Applications”, Appl. Phys. Lett., 89(2006), 102107.
[13] S.W. Ryu, H.-K. Lyeo, J.H. Lee, Y.B. Ahn, G.H. Kim, C.H. Kim, S.G. Kim, S.-H. Lee, K.Y. Kim, J.H. Kim, W. Kim, C.S. Hwang and H.J. Kim, “SiO2 Doped Ge2Sb2Te5 Thin Films with High Thermal Efficiency for Applications in Phase Change Random Access Memory”, Nanotechnology, 22(2011), 254005.
[14] D. Loke, L. Shi, W. Wang, R. Zhao, H. Yang, L.-T. Ng, K.-G. Lim, T.-C. Chong and Y.-C. Yeo, “Ultrafast Switching in Nanoscale Phase-change Random Access Memory with Superlattice-like Structures”, Nanotechnology, 22(2011), 254019.
[15] L. Wang, C.D. Wright, M.M. Aziz, C.-H. Yang and G.-W. Yang, “Design of An Optimised Readout Architecture for Phase-change Probe Memory Using Ge2Sb2Te5 Media”, Jpn. J. Appl. Phys., 53(2014), 028002.
[16] B. Liu, Z. Song, S. Feng and B. Chen, “Characteristics of Chalcogenide Nonvolatile Memory Nano-cell-element Based on Sb2Te3 Material”, Microelectr. Eng., 82(2005), p.168-174.
[17] M.S. Kim, S.H. Cho, S.K. Hong, J.S. Roh and D.J. Choi, “Crystallization Characteristics of Nitrogen-doped Sb2Te3 Films for PRAM Application”, Ceram. Int., 34(2008), p.1043-1046.
[18] Y. Zhang, J. Feng, Z.F. Zhang, B.C. Cai, Y.Y. Lin, Ting’ao Tang, Bomy Chen, “Characteristics of Si-doped Sb2Te3 Thin Films for Phase-change Random Access Memory”, Appl. Surf. Sci., 254(2008), p.5602-5606.
[19] G. Bruns, P. Merkelbach, C. Schlockermann, M. Salinga, M. Wuttig, T.D. Happ, J.B. Philipp and M. Kund, “Nanosecond Switching in GeTe Phase Change Memory Cells”, Appl. Phys. Lett., 95(2009), 043108.
[20] S. Raoux, H.-Y. Cheng, M.A. Caldwell and H.-S.P. Wong, “Crystallization Times of Ge-Te Phase Change Materials as a Function of Composition”, Appl. Phys. Lett., 95(2009), 071910.
[21] X.S. Miao, L.P. Shu, H.K. Lee, J.M. Li, R. Zhao, P.K. Tan, K.G. Lim, H.X. Yang and T.C. Chong, “Temperature Dependence of Phase-Change Random Access Memory Cell”, Jpn. J. Appl. Phys., 45(2006), p.3955-3958.
[22] G.-S. Park, J.-H. Kwon, M. Kim, H. R. Yoon, W. Jo, T. K. Kim, J.-M. Zuo and Y. Khang, “Crystalline and Amorphous Structures of Ge–Sb–Te Nanoparticles”, J. Appl. Phys., 102(2007), 013524.
[23] N. Yamada, E. Ohno, K. Nishiuchi, N. Akahira and M. Takao, “Rapid-phase Transitions of GeTe-Sb2Te3 Pseudobinary Amorphous Thin Films for An Optical Disk Memory”, J. Appl. Phys., 69 (1991), p.2849-2856.
[24] V.D. Das, N. Soundararajan and M. Pattabi, “Electrical Conductivity and Thermoelectric Power of Amorphous Sb2Te3 Thin Films and Amorphous-crystalline Transition”, J. Mat. Sci., 22(1987), p.3522-3528.
[25] B. Predel, “Sb-Te (Antimony-Tellurium)”, Landolt-B#westeur055#rnstein - Group IV Physical Chemistry, ed. by O. Madelung, Springer-Verlag, 5J(1998), p.1.
[26] “Antimony Telluride Crystal Structure, Chemical Bond, Lattice Parameters”, Landolt-B#westeur055#rnstein - Group III Condensed Matter, ed. by O. Madelung, U. R#westeur055#ssler and M. Schulz, Springer-Verlag, 41C(1998).
[27] K.L. Chopra and S.K. Bahl, “Amorphous versus Crystalline GeTe Films. I. Growth and Structural Behavior”, J. Appl. Phys., 40(1969), p.4171-4178.
[28] K.S. Andrikopoulos, S.N. Yannopoulos, G.A. Voyiatzis, A.V. Kolobov, M.Ribes and J. Tominaga, “Raman Scattering Study of the -GeTe Structure and Possible Mechanism for the Amorphous to Crystal Transition”, J. Phys., 18(2006), p.965-979.
[29] M. Snykers, P. Delavignette, S. Amelinckx, “The Domain Structure of GeTe as Observed by Electron Microscopy”, Mat. Res. Bull., 7(8)(1972), p.831-840.
[30] B. Predel, “Ge-Te (Germanium-Tellurium)”, Landolt-B#westeur055#rnstein - Group IV Physical Chemistry, ed. by O. Madelung, Springer-Verlag, 5f(1996), p.1-3.
[31] T. Chattopadhyay, J.X. Boucherle and H.G. von Schnering, “Neutron Diffraction Study on The Structural Phase Transition in GeTe”, J. Phys. C: Solid State Phys., 20(1987), p.1431-1440.
[32] H. Wiedemeier and P.A. Siemers, “The Thermal Expansion of GeS and GeTe”, Z. Anorg. Allg. Chem., 431(1977), p.299-304.
[33] “IV-VI Compounds, General Tables Crystal Structure, Chemical Bond and Related Data of GeTe, SnTe”, Landolt-B#westeur055#rnstein - Group III Condensed Matter, ed. by O. Madelung, U. R#westeur055#ssler and M. Schulz, Springer-Verlag, 41C(1998), p.1-4.
[34] M. Micoulaut, L. Cormier and G. S. Henderson, “The structure of amorphous, crystalline and liquid GeO2”, J. Phys.: Condens. Matter, 18(2006), p.753-784.
[35] S. Blanchandin, P. Marchet, P. Thomas, J.C. Champarnaud-Mesjard and B. Frit, “New investigations within the TeO2-WO3 system: phase equilibrium diagram and glass crystallization”, J. Mater. Sci. 34(1999), p.4285-4292.
[36] O. Lindovist, “Refiment of the structure of -TeO2”, Acta Chem. Scand., 22(1968), p.977-982.
[37] L. Guillet, A. Ider, J.P. Laval and B. Frit, “Crystal Structure of TeOF2”, J. Fluorine Chem., 93(1999), p.33-38.
[38] L.V. Yashina, S.P. Kobeleva, T.B. Shatalova, V.P. Zlomanov and V.I. Shtanov, “XPS Study of Fresh and Oxidized GeTe and (Ge,Sn) Te Surface”, Solid State Ionics, 141–142(2001), p.512-522.
[39] E. Gourvest, B. Pelissier, C. Vallee, A. Roule, S. Lhostis and S. Maitrejean, “Impact of Oxidation on Ge2Sb2Te5 and GeTe Phase-Change Properties”, J. Electrochem. Soc., 159(2012), p.H373-H377.
[40] C. Burda, X. Chen, R. Narayanan and M.A. E.-Sayed, “Chemistry and Properties of Nanocrystals of Different Shapes”, Chem. Rev., 105(2005), p.1025-1102.
[41] G.-Y. Zhao, C.-L. Xu, D.-J. Guo, H. Li, H.-L. Li, “Template Preparation of Pt-Ru and Pt Nanowire Array Electrodes on a Ti/Si Substrate for Methanol Electro-oxidation”, J. Power Sources, 162(2006), p.492-496.
[42] M. Jamal, J. Xu and K.M. Razeeb, “Disposable Biosensor Based on Immobilisation of Glutamate Oxidase on Pt Nanoparticles Modified Au Nanowire Array Electrode”, Biosens. Bioelectron., 26(2010), p.1420-1424.
[43] H.-G. Liao, L. Cui, S. Whitelam and H. Zheng, “Real-Time Imaging of Pt3Fe Nanorod Growth in Solution”, Science, 336(2012), p.1011-1014.
[44] S.E. Lohse and C.J. Murphy, “The Quest for Shape Control: A History of Gold Nanorod Synthesis”, Chem. Mater., 25(2013), p.1250-1261.
[45] M.M. J. Treacy, T.W. Ebbesen and J.M. Gibson, “Exceptionally High Young's Modulus Observed for Individual Carbon Nanotubes”, Nature, 381(1996), p.678-680.
[46] Y.Y. Wei, G. Eres, V.I. Merkulov and D.H. Lowndes, “Effect of Catalyst Film Thickness on Carbon Nanotube Growth by Selective Area Chemical Vapor Deposition”, Appl. Phys. Lett,, 78(2001), p.1394-1396.
[47] P. Roy, S. Berger and P. Schmuki, “TiO2 Nanotubes: Synthesis and Applications”, Angew. Chem. Int. Ed., 50(2011), p.2904-2939.
[48] F. Qian, Y. Li, S. Gradecak, D. Wang, C. J. Barrelet and C.M. Lieber, “Gallium Nitride-Based Nanowire Radial Heterostructures for Nanophotonics”, Nano Lett., 4(2004), p.1975-1979.
[49] F. Patolsky, G. Zheng, O. Hayden, M. Lakadamyali, X. Zhuang and C. M. Lieber, “Electrical Detection of Single Viruses”, PNAS, 101(2004), p.14017-14022.
[50] J. Zhang, R. Huang, L. Shi, L. Wang, F. Wei, T. Kong and G. Cheng, “Bi Doping Modulating Structure and Phase-change Properties of GeTe Nanowires”, Appl. Phys. Lett., 102(2013), 063104.
[51] H. Tanaka, T. Nishihara, T. Ohtsuka, K. Morimoto, N. Yamada and K. Morita, “Electrical Switching Phenomena in a Phase Change Material in Contact with Metallic Nanowires”, Jpn. J. Appl. Phys., 41(2002), p.1443-1445.
[52] X. Gai, S. Madden, D.-Y. Choi, D. Bulla and B. L.-Davies, “Dispersion Engineered Ge11.5As24Se64.5 Nanowires with a Nonlinear Parameter of 136 W1m1 at 1550 nm”, Optics Express, 18(2010), p.18866-18874.
[53] J.-K. Ahn, K.-W. Park, H.-J. Jung and S.-G. Yoon, “Phase-Change InSbTe Nanowires Grown in Situ at Low Temperature by Metal-Organic Chemical Vapor Deposition”, Nano Lett., 10(2010), p.472-477.
[54] M. Longo, R. Fallica, C. Wiemer, O. Salicio, M. Fanciulli, E. Rotunno and L. Lazzarini, ‘‘Metal Organic Chemical Vapor Deposition of Phase Change Ge1Sb2Te4 Nanowires’’, Nano Lett., 12(2012), p.1509-1515.
[55] L. Pei, K. Mori and M. Adachi, “Formation Process of Two-Dimensional Networked Gold Nanowires by Citrate Reduction of AuCl4- and the Shape Stabilization”, Langmuir, 20(18)(2004), p.7837-7843.
[56] H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F.R. Aussenegg and J.R. Krenn, “Silver Nanowires as Surface Plasmon Resonators”, Phys. Rev. Lett., 95(2005), 257403.
[57] M. Rolandi, C.F. Quate and H. Dai, “A New Scanning Probe Lithography Scheme with a Novel Metal Resist”, Adv. Mater., 14(3)(2002), p.191-194.
[58] T.-H. Fang and W.-J. Chang, “Nanolithography and Nanoindentation of Tantalum-oxide Nanowires and Nanodots Using Scanning Probe Microscopy”, Physica B, 352(2004), p.190-199.
[59] D.C. Johnson, W.D. Morris and A.L. Prieto, “Effects of Transport Gradients in a Chemical Vapor Deposition Reactor Employing Vapor-liquid-solid Growth of Ternary Chalcogenide Phase-change Materials”, Nanotechnol., 21(2010), 165604.
[60] R.S. Wagner and W.C. Ellis, “Vapor Liquid Solid Mechanism of Single Crystal Growth”, Appl. Phys. Lett., 4(1964), p.89-90.
[61] A. Prince, “Au-Ge-Te”, Phase Diagrams Ternary Gold Alloys, London, Inst. Met., (1990), p.277-281.
[62] H.-S. Chung, Y. Jung, S.C. Kim, D.H. Kim, K.H. Oh and R. Agarwal, “Epitaxial Growth and Ordering of GeTe Nanowires on Microcrystals Determined by Surface Energy Minimization”, Nano Lett., 9(2009), p.2395-2401.
[63] Y. Cui, L.J. Lauhon, M.S. Gudiksen, J. Wang and C.M. Lieber, “Diameter-controlled Synthesis of Single-crystal Silicon Nanowires”, Appl. Phys. Lett., 78(2001), p.2214-2216.
[64] E.F. Kukovitsky, S.G. L’vov, N.A. Sainov, V.A. Shustov, L.A. Chernozatonskii, “Correlation between Metal Catalyst Particle Size and Carbon Nanotube Growth”, Chem. Phys. Lett., 355(2002), p.497-503.
[65] E.A. Sutter and P.W. Sutter, “Size-Dependent Phase Diagram of Nanoscale Alloy Drops Used in Vapor-Liquid-Solid Growth of Semiconductor Nanowires”, ACS Nano, 4(2010), p.4943-4947.
[66] S. Mathur, S. Barth, H. Shen, J.-C. Pyun and U. Werner, “Size-Dependent Photoconductance in SnO2 Nanowires”, Small, 1(2005), p.713-717.
[67] H.R. Stuart and D.G. Hall, “Island Size Effects in Nanoparticle-enhanced Photodetectors”, Appl. Phys. Lett., 73(26)(1998), p.3815-3817.
[68] H.-J. Jeon, S.-C. Yi, S.-G. Oh, “Preparation and Antibacterial Effects of Ag-SiO2 Thin Films by Sol–gel Method”, Biomaterials, 24(2003), p.4921-4928.
[69] G. Reiter, “Dewetting of Thin Polymer Films”, Phys. Rev. Lett., 68(1992), p.75-78.
[70] P.G. Gennes, “Wetting: Statics and Dynamics”, Rev. Mod. Phys., 57(1985), p.827-863.
[71] Surface Science Techniques, ed. by G. Bracco and B. Holst, Berlin, Germany, Springer Berlin-Heidelberg, (2013), Chap.1, p.4.
[72] A. Menzel, R. Goldberg, G. Burshtein, V. Lumelsky, K. Subannajui, M. Zacharias and Y. Lifshitz, “Role of Carrier Gas Flow and Species Diffusion in Nanowire Growth from Thermal CVD”, J. Phys. Chem. C, 116(2012), p.5524-5530.
[73] C.-B. Jin, J.-E. Yang and M.-H. Jo, “Shape-controlled Growth of Single-crystalline Ge Nanostructures”, Appl. Phys. Lett., 88(2006), 193105.
[74] S. Meister, H. Peng, K. McIlwrath, K. Jarausch, X.F. Zhang and Y. Cui, “Synthesis and Characterization of Phase-Change Nanowires”, Nano Lett., 6(2006), p.1514-1517.
[75] D. Yu, J. Wu, Q. Gu and H. Park, “Germanium Telluride Nanowires and Nanohelices with Memory-Switching Behavior”, J. Am. Chem. Soc., 128(2006), p.8148-8149.
[76] S.-H. Lee, D.-K. Ko, Y. Jung and R. Agarwal, “Size-dependent Phase Transition Memory Switching Behavior and Low Writing Currents in GeTe Nanowires”, Appl. Phys. Lett., 89(2006), 223116.
[77] Y. Jung, S.-H. Lee, D.-K. Ko and R. Agarwal, “Synthesis and Characterization of Ge2Sb2Te5 Nanowires with Memory Switching Effect”, J. Am. Chem. Soc., 128(2006), p.14026-14027.
[78] X. Sun, B. Yu, G. Ng and M. Meyyappan, “One-Dimensional Phase-Change Nanostructure: Germanium Telluride Nanowire”, J. Phys. Chem. C, 111(2007), p.2421-2425.
[79] X. Sun, B. Yu and M. Meyyappan, “Synthesis and Nanoscale Thermal Encoding of Phase-change Nanowires”, Appl. Phys. Lett., 90(2007), 183116.
[80] S.-H. Lee, Y. Jung and R. Agarwal, “Highly Scalable Non-volatile and Ultra-low-power Phase-change Nanowire Memory”, Nat. Nanotechnol., 2(2007), p,626-630.
[81] X. Sun, S. Ju, D. Janes and B. Yu, “Self-assembly of Low-dimensional Phase-change Nanomaterials for Information Storage”, Proceedings of the 7th IEEE International Conference on Nanotechnology, August 2-5, (2007), Hong Kong, p,1067-1071.
[82] X. Sun, B. Yu, G. Ng, M. Meyyappan, S. Ju and D.B. Janes, “Germanium Antimonide Phase-Change Nanowires for Memory Applications”, IEEE Trans. Electron Devices, 55(2008), p.3131-3135.
[83] Y. Jung, S.-H. Lee, A. T. Jennings and R. Agarwal, “Core-Shell Heterostructured Phase Change Nanowire Multistate Memory”, Nano Lett., 8(7)(2008), p.2056-2062.
[84] B. Yu, X. Sun, S. Ju, D.B. Janes and M. Meyyappan, “Chalcogenide-nanowire-based Phase Change Memory”, IEEE T. Nanotechnol., 7(2008), p.496-502.
[85] J.S. Lee, S. Brittman, D. Yu and H. Park, “Vapor-Liquid-Solid and Vapor-Solid Growth of Phase-Change Sb2Te3 Nanowires and Sb2Te3/GeTe Nanowire Heterostructures”, J. Am. Chem. Soc., 130(2008), p.6252-6258.
[86] S.-W. Jung, S.-M. Yoon, Y.-S. Park, S.-Y. Lee and B.-G. Yu, “Control of the Thickness and the Length of Germanium-Telluride Nanowires Fabricated via the Vapor-Liquid-Solid Method”, J. Korean Phys. Soc., 54(2009), p.653-659.
[87] J.W.L. Yim, B. Xiang and J. Wu, “Sublimation of GeTe Nanowires and Evidence of Its Size Effect Studied by in Situ TEM”, J. Am. Chem. Soc., 131(2009), p.14526-14530.
[88] H.-S. Chung, Y. Jung, S.C. Kim, D.H. Kim, K.H. Oh and Agarwal, “Epitaxial Growth and Ordering of GeTe Nanowires on Microcrystals Determined by Surface Energy Minimization”, Nano Lett., 9(2009), p.2395-2401.
[89] A.T. Jennings, Y. Jung, J. Engel and R. Agarwal, “Diameter-Controlled Synthesis of Phase-Change Germanium Telluride Nanowires via the Vapor-Liquid-Solid Mechanism”, J. Phys. Chem. C, 113(2009), p.6898-6901.
[90] Y. Jung, C.-Y. Yang, S.-H. Lee and R. Agarwal, “Phase-Change Ge-Sb Nanowires: Synthesis, Memory Switching and Phase-Instability”, Nano Lett., 9(2009), p.2103-2108.
[91] D.C. Johnson, W.D. Morris and A.L. Prieto, “Effects of Transport Gradients in a Chemical Vapor Deposition Reactor Employing Vapor-liquid-solid Growth of Ternary Chalcogenide Phase-change Materials”, Nanotechnol., 21(2010), 165604.
[92] Y. Jung, R. Agarwal, C.-Y. Yang and R. Agarwal, “Chalcogenide Phase-change Memory Nanotubes for Lower Writing Current Operation”, Nanotechnol., 22(2011), 254012.
[93] S.-W. Nam, H.-S. Chung, Y. C. Lo, L. Qi, J. Li, Y. Lu, A.T. C. Johnson, Y. Jung, P. Nukala and R. Agarwal, “Electrical Wind Force-Driven and Dislocation-Templated Amorphization in Phase-Change Nanowires”, Science, 336(2012), p.1561-1566.
[94] C.S. Jung, H.S. Kim, H.S. Im, Y.S. Seo, K. Park, S.H. Back, Y.J. Cho, C.H. Kim, J. Park and J.-P. Ahn, “Polymorphism of GeSbTe Superlattice Nanowires”, Nano Lett., 13(2013), p. 543-549.
[95] P. Nukala, R. Agarwal, X. Qian, M.H. Jang, S. Dhara, K. Kumar, A.T.C. Johnson, J. Li and R. Agarwal, “Direct Observation of Metal−Insulator Transition in Single-crystalline Germanium Telluride Nanowire Memory Devices Prior to Amorphization”, Nano Lett., 14(2014), p. 2201-2209.
[96] K.C. Grabar, R.G. Freeman, M.B. Hommer and M.J. Natan, “Preparation Characterization of Au Colloid and Monolayers”, Anal. Chem., 67(1995), p.735-743.
[97] http://www.crct.polymtl.ca/fact/phase_diagram.php?file=Au-Te.jpg&;dir=SGTE