|
[1] X. Wang, “Intelligent multi-camera video surveillance: A review,” Pattern Recognition Letters, vol. 34, no. 1, pp. 3-19, 2013/01/01/, 2013. [2] E. Bochinski, V. Eiselein, and T. Sikora, "High-Speed tracking-by-detection without using image information." pp. 1-6. [3] S. Schulter, P. Vernaza, W. Choi et al., "Deep Network Flow for Multi-object Tracking." pp. 2730-2739. [4] A. Bewley, Z. Ge, L. Ott et al., “Simple Online and Realtime Tracking,” eprint arXiv:1602.00763, pp. arXiv:1602.00763, 2016. [5] Z. Li, et al., “Global data association for multi-object tracking using network flows,” Proc. 2008 IEEE Conference on Computer Vision and Pattern Recognition, 2008, pp. 1-8. [6] J. Redmon, and A. Farhadi, “YOLOv3: An Incremental Improvement,” eprint arXiv:1804.02767, pp. arXiv:1804.02767, 2018. [7] M. Danelljan, G. Häger, F. S. Khan et al., “Discriminative Scale Space Tracking,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 39, no. 8, pp. 1561-1575, 2017. [8] L. Hou, W. Wan, J.-N. Hwang et al., “Human tracking over camera networks: a review,” EURASIP Journal on Advances in Signal Processing, vol. 2017, no. 1, pp. 43, 2017/06/05, 2017. [9] E. Ahmed, M. Jones, and T. K. Marks, "An improved deep learning architecture for person re-identification." pp. 3908-3916. [10] E.Ristani,andC.Tomasi,“FeaturesforMulti-TargetMulti-CameraTrackingand Re-Identification,” eprint arXiv:1803.10859, pp. arXiv:1803.10859, 2018. [11] H.Luo,W.Jiang,X.Zhangetal.,“AlignedReID++:Dynamicallymatchinglocal information for person re-identification,” Pattern Recognition, vol. 94, pp. 53-61, 2019/10/01/, 2019. [12] C.Kuan-Wen,L.Chih-Chuan,H.Yi-Pingetal.,"Anadaptivelearningmethodfor target tracking across multiple cameras." pp. 1-8. [13] Javed, Rasheed, Shafique et al., "Tracking across multiple cameras with disjoint views." pp. 952-957 vol.2. [14] O. Javed, K. Shafique, Z. Rasheed et al., “Modeling inter-camera space–time and appearance relationships for tracking across non-overlapping views,”Computer Vision and Image Understanding, vol. 109, no. 2, pp. 146-162, 2008/02/01/, 2008. [15] N. Narayan, N. Sankaran, S. Setlur et al., “Learning Deep Features for Online Person Tracking using Non-overlapping Cameras: A Survey,” Image and Vision Computing, 2019/08/01/, 2019 [16] D. S. Bolme, J. R. Beveridge, B. A. Draper et al., "Visual object tracking using adaptive correlation filters." pp. 2544-2550. [17] J. F. Henriques, R. Caseiro, P. Martins et al., “High-Speed Tracking with Kernelized Correlation Filters,” eprint arXiv:1404.7584, pp. arXiv:1404.7584, 2014. [18] S. Ren, K. He, R. Girshick et al., “Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks,” eprint arXiv:1506.01497, pp. arXiv:1506.01497, 2015. [19] R.E. Kalman, “A new approach to linear filtering and prediction problems,” Journal of basic Engineering, vol. 82, no. 1, 1960, pp. 35-45 [20] D. Yi, et al., “Deep Metric Learning for Person Re-identification,” Proc. 2014 22nd International Conference on Pattern Recognition, 2014, pp. 34-39. [21] S. Schulter, P. Vernaza, W. Choi et al., "Deep Network Flow for Multi-object Tracking." pp. 2730-2739 [22] Y.-J.Cho,S.-A.Kim,J.-H.Parketal.,“Jointpersonre-identificationandcamera network topology inference in multiple cameras,” Computer Vision and Image Understanding, vol. 180, pp. 34-46, 2019/03/01/, 2019. [23] A. Hermans, L. Beyer, and B. Leibe, “In Defense of the Triplet Loss for Person Re-Identification,” eprint arXiv:1703.07737, pp. arXiv:1703.07737, 2017. [24] L. Leal-Taixé, A. Milan, I. Reid et al., “MOTChallenge 2015: Towards a Benchmark for Multi-Target Tracking,” eprint arXiv:1504.01942, pp. arXiv:1504.01942, 2015. [25] Y. Li, et al., “Learning to associate: HybridBoosted multi-target tracker for crowded scene,” Proc. 2009 IEEE Conference on Computer Vision and Pattern Recognition, 2009, pp. 2953-2960. [26] K. Bernardin, and R. Stiefelhagen, “Evaluating Multiple Object Tracking Performance: The CLEAR MOT Metrics,” EURASIP Journal on Image and Video Processing, vol. 2008, no. 1, pp. 246309, 2008/05/18, 2008. [27] A. Geiger, M. Lauer, C. Wojek et al., “3D Traffic Scene Understanding From Movable Platforms,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 36, no. 5, pp. 1012-1025, 2014. [28] W. Choi, “Near-Online Multi-target Tracking with Aggregated Local Flow Descriptor,” eprint arXiv:1504.02340, pp. arXiv:1504.02340, 2015. [29] J.H. Yoon, et al., “Bayesian Multi-object Tracking Using Motion Context from Multiple Objects,” Proc. 2015 IEEE Winter Conference on Applications of Computer Vision, 2015, pp. 33-40. [30] M.YangandY.Jia,“TemporalDynamicAppearanceModelingforOnlineMulti- Person Tracking,” eprint arXiv:1510.02906, 2015, pp. arXiv:1510.02906. [31] Y. Xiang, et al., “Learning to Track: Online Multi-object Tracking by Decision Making,” Proc. 2015 IEEE International Conference on Computer Vision (ICCV), 2015, pp. 4705-4713. [32] J. F. Henriques, R. Caseiro, P. Martins et al., “High-Speed Tracking with Kernelized Correlation Filters,” eprint arXiv:1404.7584, pp. arXiv:1404.7584, 2014. [33] L. Zheng, L. Shen, L. Tian et al., "Scalable Person Re-identification: A Benchmark." pp. 1116-1124. [34] W. Li, R. Zhao, T. Xiao, and X. Wang, “DeepReID: Deep Filter Pairing Neural Network for Person Re-identification,” in 2014 IEEE Conference on Computer Vision and Pattern Recognition, 2014, pp. 152–159. [35] M. Gou, S. Karanam, W. Liu et al., "DukeMTMC4ReID: A Large-Scale Multi- camera Person Re-identification Dataset." pp. 1425-1434. [36] Y. Sun, L. Zheng, W. Deng et al., “SVDNet for Pedestrian Retrieval,” eprint arXiv:1703.05693, pp. arXiv:1703.05693, 2017. [37] C. Song, Y. Huang, W. Ouyang, and L. Wang, “Mask-Guided Contrastive Attention Model for Person Re-identification,” in 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2018, pp. 1179–1188. [38] Z. Zhong, L. Zheng, Z. Zheng et al., “Camera Style Adaptation for Person Re- identification,” eprint arXiv:1711.10295, pp. arXiv:1711.10295, 2017. [39] Y. Shen, H. Li, T. Xiao et al., “Deep Group-shuffling Random Walk for Person Re-identification,” eprint arXiv:1807.11178, pp. arXiv:1807.11178, 2018 [40] Z. Zheng, X. Yang, Z. Yu et al., “Joint Discriminative and Generative Learning for Person Re-identification,” eprint arXiv:1904.07223, pp. arXiv:1904.07223, 2019. [41] W.Liu,etal.,“SSD:SingleShotMultiBoxDetector,”eprintarXiv:1512.02325, 2015, pp. arXiv:1512.02325. [42] Y. Li, et al., “Learning to associate: HybridBoosted multi-target tracker for crowded scene,” Proc. 2009 IEEE Conference on Computer Vision and Pattern Recognition, 2009, pp. 2953-2960. [43] K. Bernardin and R. Stiefelhagen, “Evaluating Multiple Object Tracking Performance: The CLEAR MOT Metrics,” EURASIP Journal on Image and Video Processing, vol. 2008, no. 1, 2008, pp. 246309. [44] Z. Zhong, et al., “ Re-ranking Person Re-identification with k-Reciprocal Encoding,” Proc. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017, pp. 3652-3661. [45] A.D.Bagdanov,etal.,Multi-targetDataAssociationUsingSparseReconstruction, 2013, p. 239-248.
|