跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.172) 您好!臺灣時間:2025/09/11 12:05
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:卓侑學
研究生(外文):Yu-Hsueh Chuo
論文名稱:跨鏡頭可疑人士追蹤系統的設計與實踐
論文名稱(外文):Design and Implementation of a Cross-Camera Suspect Tracking System
指導教授:許瑞愷
指導教授(外文):Ruey-Kai Sheu
口試委員:張玉山袁賢銘羅文聰
口試委員(外文):Yue-Shan ChangShyan-Ming YuanWin-Tung Lo
口試日期:2020-01-07
學位類別:碩士
校院名稱:東海大學
系所名稱:資訊工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:48
中文關鍵詞:跨鏡頭追蹤可疑人士追蹤監控系統相機拓樸人員再辨識
外文關鍵詞:Multiple Camera trackingSuspicious trackingSurveillance SystemCamera topologyPerson re-identification
相關次數:
  • 被引用被引用:0
  • 點閱點閱:363
  • 評分評分:
  • 下載下載:1
  • 收藏至我的研究室書目清單書目收藏:0
監控系統已安裝於很多公共場所與自家住宅內來預防犯罪事件的發生與特定 安全事件的可疑人士的跟蹤。雖然在跨鏡頭的人物再辨識技術已經有很大的進展, 但在實際上多鏡頭的監視系統使用上,由於大量人員的進出導致與時間空間的不 確定性,以至於人員搜尋的時候仍是一項具有挑戰的任務。因此,本研究設計並 實踐了一監控系統,幫助用戶可跨多攝像頭連續穩定地追蹤同一個目標人物。首 先系統使用YOLO和Correlation filter來進行單鏡頭頭中的可疑人物追蹤,目標 人物的特徵也在此階段收集。一旦目標人員離開攝像機的範圍,則會藉由地理信 息和跟踪路徑來使用攝像機網絡拓撲結構預測候選入口攝像機。在第二階段中, 系統使用人員再辨識演算法計算人員相似性,並有助於在相機之間自動識別目標 人物。在實驗上,我們使用公開數據集進行測試,結果表明我們的系統可以準確 地在跨鏡頭識別目標人物並具有良好的表現。
Many public places, such as police agencies and universities, imported multiple cameras surveillance systems to prevent criminal events by tracking the suspicious. In the traditional surveillance system, if we need to identify the person in multiple cameras, it is necessary to interactively compare the characteristics of the target person within the Closed-Circuit Television(CCTV), which takes a lot of time. Despite the progress of intelligent surveillance systems, it has not become widespread products because the target person might pass by other persons, and occlusion causes the system to lose track of the target. What’s more, the recognition of the target person on multiple cameras remains a challenge because of the large spatio-temporal uncertainty, which means the entry and the exit of persons in cameras are unpredictable. Therefore, this paper proposes a novel system framework that achieves continuous and stable track of the same person in multiple cameras. Firstly, we utilize YOLO and Correlation filter to track the suspicious in single camera. Once the target enters another camera, the method we developed, which combines camera network topo-logy and Person re-identification technology, is able to identify the person automatically. Experimental results and public data-sets show our system can effectively solve the problems of single camera tracking, and accurately recognize the target across cameras. When retrieving the video record, the complete trajectory and appearance time are recorded, which improves the efficiency of the person searching and is more adapted in the real-world situation.

摘 要 1
Abstract 2
誌 謝 3
目錄 4
圖目錄 6
表目錄 7
第一章 緒論 8
1.1 研究動機與背景 8
1.2 研究目的與方法 9
1.3 章節概要 11
第二章 文獻探討 12
2.1 單鏡頭內的目標追蹤 12
2.1.1 Minimum Output Sum of Squared Error (MOSSE) 12
2.1.2 Discriminative Scale Space Tracker (DSST)13
2.1.3 Tracking-by-detection 15
2.2 跨鏡頭的目標追蹤 16
2.3 相機網路拓樸 18
第三章 研究方法 19
3.1 Tracking module 20
3.1.1 Detector 20
3.1.2 Tracker 20
3.1.3 Tracking by detection 21
3.1.4 Tracking Module 運作流程 22
3.2 Candidate Cameras Selection Module 23
3.2.1 In Camera network topology inference 23
3.2.2 Cross cameras topology inference 24
3.3 Person re-id Module 25
3.4 Recommend camera and result 27
3.5 Algorithm 29
第四章 實驗結果 33
4.1 Datasets 34
4.2 Tracking Experiment results 34
4.3 Person re-id experiment result 36
4.4 Experiments for Multiple Object Tracking Benchmark 39
4.5 Experiments for Person re-identification benchmark 40
第五章 Discussion and implementation 42
5.1 Discussion 42
5.2 Implementation 43
第六章 結論與未來展望 44
參考文獻 45
[1] X. Wang, “Intelligent multi-camera video surveillance: A review,” Pattern
Recognition Letters, vol. 34, no. 1, pp. 3-19, 2013/01/01/, 2013.
[2] E. Bochinski, V. Eiselein, and T. Sikora, "High-Speed tracking-by-detection
without using image information." pp. 1-6.
[3] S. Schulter, P. Vernaza, W. Choi et al., "Deep Network Flow for Multi-object Tracking." pp. 2730-2739.
[4] A. Bewley, Z. Ge, L. Ott et al., “Simple Online and Realtime Tracking,” eprint arXiv:1602.00763, pp. arXiv:1602.00763, 2016.
[5] Z. Li, et al., “Global data association for multi-object tracking using network flows,” Proc. 2008 IEEE Conference on Computer Vision and Pattern Recognition, 2008, pp. 1-8.
[6] J. Redmon, and A. Farhadi, “YOLOv3: An Incremental Improvement,” eprint arXiv:1804.02767, pp. arXiv:1804.02767, 2018.
[7] M. Danelljan, G. Häger, F. S. Khan et al., “Discriminative Scale Space Tracking,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 39, no. 8, pp. 1561-1575, 2017.
[8] L. Hou, W. Wan, J.-N. Hwang et al., “Human tracking over camera networks: a review,” EURASIP Journal on Advances in Signal Processing, vol. 2017, no. 1, pp. 43, 2017/06/05, 2017.
[9] E. Ahmed, M. Jones, and T. K. Marks, "An improved deep learning architecture for person re-identification." pp. 3908-3916.
[10] E.Ristani,andC.Tomasi,“FeaturesforMulti-TargetMulti-CameraTrackingand Re-Identification,” eprint arXiv:1803.10859, pp. arXiv:1803.10859, 2018.
[11] H.Luo,W.Jiang,X.Zhangetal.,“AlignedReID++:Dynamicallymatchinglocal information for person re-identification,” Pattern Recognition, vol. 94, pp. 53-61, 2019/10/01/, 2019.
[12] C.Kuan-Wen,L.Chih-Chuan,H.Yi-Pingetal.,"Anadaptivelearningmethodfor target tracking across multiple cameras." pp. 1-8.
[13] Javed, Rasheed, Shafique et al., "Tracking across multiple cameras with disjoint views." pp. 952-957 vol.2.
[14] O. Javed, K. Shafique, Z. Rasheed et al., “Modeling inter-camera space–time and appearance relationships for tracking across non-overlapping views,”Computer Vision and Image Understanding, vol. 109, no. 2, pp. 146-162, 2008/02/01/, 2008.
[15] N. Narayan, N. Sankaran, S. Setlur et al., “Learning Deep Features for Online Person Tracking using Non-overlapping Cameras: A Survey,” Image and Vision Computing, 2019/08/01/, 2019
[16] D. S. Bolme, J. R. Beveridge, B. A. Draper et al., "Visual object tracking using adaptive correlation filters." pp. 2544-2550.
[17] J. F. Henriques, R. Caseiro, P. Martins et al., “High-Speed Tracking with Kernelized Correlation Filters,” eprint arXiv:1404.7584, pp. arXiv:1404.7584, 2014.
[18] S. Ren, K. He, R. Girshick et al., “Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks,” eprint arXiv:1506.01497, pp. arXiv:1506.01497, 2015.
[19] R.E. Kalman, “A new approach to linear filtering and prediction problems,” Journal of basic Engineering, vol. 82, no. 1, 1960, pp. 35-45
[20] D. Yi, et al., “Deep Metric Learning for Person Re-identification,” Proc. 2014 22nd International Conference on Pattern Recognition, 2014, pp. 34-39.
[21] S. Schulter, P. Vernaza, W. Choi et al., "Deep Network Flow for Multi-object Tracking." pp. 2730-2739
[22] Y.-J.Cho,S.-A.Kim,J.-H.Parketal.,“Jointpersonre-identificationandcamera network topology inference in multiple cameras,” Computer Vision and Image Understanding, vol. 180, pp. 34-46, 2019/03/01/, 2019.
[23] A. Hermans, L. Beyer, and B. Leibe, “In Defense of the Triplet Loss for Person Re-Identification,” eprint arXiv:1703.07737, pp. arXiv:1703.07737, 2017.
[24] L. Leal-Taixé, A. Milan, I. Reid et al., “MOTChallenge 2015: Towards a Benchmark for Multi-Target Tracking,” eprint arXiv:1504.01942, pp. arXiv:1504.01942, 2015.
[25] Y. Li, et al., “Learning to associate: HybridBoosted multi-target tracker for crowded scene,” Proc. 2009 IEEE Conference on Computer Vision and Pattern Recognition, 2009, pp. 2953-2960.
[26] K. Bernardin, and R. Stiefelhagen, “Evaluating Multiple Object Tracking Performance: The CLEAR MOT Metrics,” EURASIP Journal on Image and Video Processing, vol. 2008, no. 1, pp. 246309, 2008/05/18, 2008.
[27] A. Geiger, M. Lauer, C. Wojek et al., “3D Traffic Scene Understanding From Movable Platforms,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 36, no. 5, pp. 1012-1025, 2014.
[28] W. Choi, “Near-Online Multi-target Tracking with Aggregated Local Flow Descriptor,” eprint arXiv:1504.02340, pp. arXiv:1504.02340, 2015.
[29] J.H. Yoon, et al., “Bayesian Multi-object Tracking Using Motion Context from Multiple Objects,” Proc. 2015 IEEE Winter Conference on Applications of Computer Vision, 2015, pp. 33-40.
[30] M.YangandY.Jia,“TemporalDynamicAppearanceModelingforOnlineMulti- Person Tracking,” eprint arXiv:1510.02906, 2015, pp. arXiv:1510.02906.
[31] Y. Xiang, et al., “Learning to Track: Online Multi-object Tracking by Decision Making,” Proc. 2015 IEEE International Conference on Computer Vision (ICCV), 2015, pp. 4705-4713.
[32] J. F. Henriques, R. Caseiro, P. Martins et al., “High-Speed Tracking with Kernelized Correlation Filters,” eprint arXiv:1404.7584, pp. arXiv:1404.7584, 2014.
[33] L. Zheng, L. Shen, L. Tian et al., "Scalable Person Re-identification: A Benchmark." pp. 1116-1124.
[34] W. Li, R. Zhao, T. Xiao, and X. Wang, “DeepReID: Deep Filter Pairing Neural Network for Person Re-identification,” in 2014 IEEE Conference on Computer Vision and Pattern Recognition, 2014, pp. 152–159.
[35] M. Gou, S. Karanam, W. Liu et al., "DukeMTMC4ReID: A Large-Scale Multi- camera Person Re-identification Dataset." pp. 1425-1434.
[36] Y. Sun, L. Zheng, W. Deng et al., “SVDNet for Pedestrian Retrieval,” eprint arXiv:1703.05693, pp. arXiv:1703.05693, 2017.
[37] C. Song, Y. Huang, W. Ouyang, and L. Wang, “Mask-Guided Contrastive Attention Model for Person Re-identification,” in 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2018, pp. 1179–1188.
[38] Z. Zhong, L. Zheng, Z. Zheng et al., “Camera Style Adaptation for Person Re- identification,” eprint arXiv:1711.10295, pp. arXiv:1711.10295, 2017.
[39] Y. Shen, H. Li, T. Xiao et al., “Deep Group-shuffling Random Walk for Person Re-identification,” eprint arXiv:1807.11178, pp. arXiv:1807.11178, 2018
[40] Z. Zheng, X. Yang, Z. Yu et al., “Joint Discriminative and Generative Learning for Person Re-identification,” eprint arXiv:1904.07223, pp. arXiv:1904.07223, 2019.
[41] W.Liu,etal.,“SSD:SingleShotMultiBoxDetector,”eprintarXiv:1512.02325, 2015, pp. arXiv:1512.02325.
[42] Y. Li, et al., “Learning to associate: HybridBoosted multi-target tracker for crowded scene,” Proc. 2009 IEEE Conference on Computer Vision and Pattern Recognition, 2009, pp. 2953-2960.
[43] K. Bernardin and R. Stiefelhagen, “Evaluating Multiple Object Tracking Performance: The CLEAR MOT Metrics,” EURASIP Journal on Image and Video Processing, vol. 2008, no. 1, 2008, pp. 246309.
[44] Z. Zhong, et al., “ Re-ranking Person Re-identification with k-Reciprocal Encoding,” Proc. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017, pp. 3652-3661.
[45] A.D.Bagdanov,etal.,Multi-targetDataAssociationUsingSparseReconstruction, 2013, p. 239-248.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top