跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.57) 您好!臺灣時間:2026/02/07 12:25
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:吳坤霖
研究生(外文):Kun-Lin Wu
論文名稱:混沌系統之同步化及其應用
論文名稱(外文):Synchronization of Chaotic Systems and Its Application
指導教授:葉錦波
指導教授(外文):Jiin-Po Yeh
學位類別:碩士
校院名稱:義守大學
系所名稱:土木與生態工程學系碩士班
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:110
中文關鍵詞:同步化混沌
外文關鍵詞:SynchronizationChaos
相關次數:
  • 被引用被引用:4
  • 點閱點閱:829
  • 評分評分:
  • 下載下載:67
  • 收藏至我的研究室書目清單書目收藏:1
摘要
本論文主要探討兩混沌系統之同步化及其應用,所使用之動力系統為羅倫茲系統。首先探討羅倫茲系統之混沌行為,發現在多種不同參數組合之下,可以產生混沌行為;之後,選取可以產生混沌行為之參數,作為探討同步化及其安全通訊時所使用之混沌系統。本文所研究之同步化問題,兩系統之參數不同,起始狀況也不同,為區分起見,分別稱為驅動系統與反應系統。利用驅動系統訊號中某個變數驅動反應系統,給予反應系統的參數起始猜測值,擷取此驅動訊號與其在反應系統所對應訊號之時間序列,當作樣本,並令彼此之間的相關係數以及兩個訊號標準差之比值輪流趨近於1,當作收斂的指標,逐步修正參數值,直至收斂值在容頂~差範圍之內,如此則可達到同步化,使得兩個系統的參數值一樣。
接著應用同步化的觀念於安全通訊方面,在此為區分起見,分別稱兩系統為發射系統與接收系統,依上面所述之驅動變數,再加上一個欲傳遞之資訊訊號當作發射訊號,驅動接收系統,使用上述相同的收斂指標,逐步修正接收系統之參數,如此也可達到同步化,之後便可恢復此傳遞之資訊訊號。
Abstract
This thesis mainly focuses on the synchronization of two Chaotic systems, and its application. The Lorenz system is used as the dynamical system. First, the behaviors of the Lorenz system are explored. It’s discovered that the Lorenz system can have chaotic behaviors with many different combinations of parameters. Then, one combination of the parameters which causes the Lorenz system to be chaotic is selected as the chaotic system to be used in the synchronization and secure communication. The parameters and initial conditions of these two systems are different. In order to be distinguished, these two systems are described as the drive system and response system, respectively. One variable in the drive system is used to drive the response system. Given the initial guess of parameters in the response system, the time series of the drive signal and its counterpart in the response system are extracted as the samples. Making the correlation coefficient and the ratio of standard deviations between these two signals in turn approach asymptotically to one, which are the convergence criteria, the guessed values of the parameters can be adjusted gradually until the convergenced values are within the allowable tolerance. After the whole process is completed, the synchronization could be achieved, which means the parameters of two systems become the same.
The synchronization concept could be applied in the telecommunication security area. To be differentiated, two systems are named as transmitting system and receiving system separately. The transmitted signal to drive the receiving system includes the drive signal as mentioned above plus an information signal which needs to be transmitted. The same convergence criteria as mentioned above are also used to adjust the parameters of the receiving system progressively. In the same way, the synchronization could also be achieved so that the information could be recovered.
中文摘要Ⅰ
英文摘要Ⅱ
誌 謝Ⅳ
目 錄Ⅴ
圖目錄Ⅶ
表目錄Ⅹ
第一章、緒論1
1.1 研究背景與動機1
1.2 研究目的4
1.3 研究流程6
第二章、傅立葉理論7
2.1 傅立葉變換7
2.2 離散傅立葉變換8
2.3 快速傅立葉變換8
2.4 必v頻譜12
第三章、羅倫茲系統14
3.1 羅倫茲系統14
3.2 平衡點17
3.3 特徵值(Eigenvalue)17
3.3.1 平衡點(x=0,y=0,z=0)之特徵值18
3.3.2 平衡點(x= ,y= ,z= )之特徵值19
3.3.3 平衡點(x= ,y= ,z= )之特徵值20
3.4 羅倫茲系統之行為20
3.4.1 假設卅=10,γ=8/3,β變化20
3.4.2 假設卅=10,β=28,γ變化22
3.4.3 假設γ=8/3,β=28,卅變化23
第四章、混沌系統之同步化34
4-1 同步化之類型34
4-2 混沌系統同步化之另一方法36
第五章、數值實驗41
5.1 同步化41
5.2 安全通訊41
5.2.1 資訊訊號Amsin(20πt),6種不同振幅41
5.2.2 加入不同的頻率之資訊訊號0.1sin(πt)和3.0sin(40πt)43
第六章、結論及後續研究66
6.1 結論66
6.2 後續研究67
參考文獻68
附錄72
參考文獻
[1].Lorenz, E. N., "Deterministic Nonporiodic Flow," Journal of the Atmospheric Sciences, Vol.20, pp. 130-141 (1963).
[2].Rasband, S.N., "Chaotic Dynamics of Nonlinear Systems," John Wiley & Sons Inc (1980).
[3].蔡能銕,「彈跳球系統的混沌現象之探討」,彰化師範大學物理系碩士論文,第1-11頁(2001)。
[4].葉錦波,「非均質扭穠熔V沌控制」,技術學刊,第十六卷,第三期,第401-405頁(2001)。
[5].楊士賢,「混沌競爭霍普類神經網路對醫學影像的分類」,雲林科技大學電子工程與資訊工程技術研究所碩士論文,第1- 2頁(2000)。
[6].蔡文杰,「國民小學學校經營混沌現象敏銳度及組織權力關係重建之相關研究」,國立台北師範學院國民教育研究所碩士論文,第16-20頁(2002)。
[7].陳信維,「混沌與碎形理論在時間序列分析之應用」,國立台灣科技大學工業管理系碩士論文,第1-3頁(2000)。
[8].林泓遠,「混沌理論在股價上的實證研究」,國立中山大學財務管理學系研究所碩士論文,第1-3、36-38頁(2001)。
[9].藍武王、王日昌和江勁毅,「模糊控制跟車模式之探討」,運輸,第二十五期,第43-55頁(民83)。
[10].林崇智,「混沌理論在生物醫學上的應用」,科學月刊,第二十六卷,第一期,第34-40頁(民84)。
[11].Chen, G. Chen, Y. and Ogmen, H. "Identifying Chaotic Systems Via a Wiener-Type Cascade Model," IEEE Transactions Control systems, October, pp.29-36 (1997).
[12].Wray, J. and Green, G. G. R., "Calculation of Volterra Kernels of Nonlinear Dynamic Systems Using an Artificial Neural Network," Biological Cybernetics, Vol.71, pp. 187-195 (1994).
[13].Schetzen, M., "The Volterra and Wiener Theories of Nonlinear Systems," John Wiley, New York (1980).
[14].Chen, L. and Chen, G. "Fuzzy Predictive Control of Uncertain Chaotic Systems Using Time Series," International Journal of Bifurcation and Chaos, Vol. 9, No.4, pp.757-767 (1999).
[15].O''Neil, Peter V. , "Advanced Engineering Mathematics, 4th Ed," PWS, pp. 660 - 772 (1995).
[16].Kreyszig, E. , "Advance Engineering Mathematics, 8th Ed," John Wiley & Sons (1999).
[17].Brigham, E. O. , "The Fast Fourier Transform And Its Applications," Prentice-Hall International, Inc (1988).
[18].James, W. Cooley and John, W. Tukey, "An algorithm for the machine calculation of complex Fourier series," Math. Comput. Vol.19, pp.297 - 301 (1965).
[19].Cooley, J. W. , Garwin R. L., Rader C. M., Bogert B. P. & Stockham T. G. "The 1968 Arden House workshop on fast Fourier transform processing," IEEE Trans. Acousl. Speech Signal Process. Vol.17, pp66-76 (1969).
[20].Danielson, G. C. and Lanczos, C., "Some improvements in practical Fourier analysis and their application to X-ray scattering from liquids," J. Franklin Inst. Vol.233, pp.365-380 and 435-452 (1942).
[21].Gauss, C. F. Theoria interpolations methodo nova tracts (A tract on a new method in interpolation theory). Carl Fhedrich Gauss: Werke. Band 3. (Carl Friedrich Gauss: works. Volume 3). Göttingen, Germany: Königlichen Gesellschaft der Wissenschaften, pp. 265-303 (1866).
[22].Li, Tien-Yien and Yorke, James A., "Period Three Implies Chaos," - American Mathematical Monthly, Vol.82, pp.985-992 (1975)
[23].Feigenbaum, M. J. , "Universal Behavior in Nonlinear Systems," Los Alamos Sci(summer), pp. 4-27 (1984).
[24].Pecora, L. M. and Carroll, T. L. , "Synchronization in Chaotic Systems," Physical Review Letter, Vol.64, No.8, pp.821-824 (1990).
[25].Tang, Y. S., Mees, A. I., and Chua, L. O., "Synchronization and chaos(triggered oscillator model)," IEEE Transactions on Circuits and Systems, Sept. , Vol.cas-30 (No.9,pt.2), pp.620-626 (1983).
[26].References to "all systems" in this paper include the Lorenz (Ref.3), Rössler (Ref. 4), scroll (Ref.5), Newcomb hysteresis (Ref. 6), three-mode spin system (Ref.7), and laser emulation (Ref. 8)systems.We hope to report on these results in the future.
[27].Gukenheimer, J. and Holmes, P., "Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields," Springer-Verlag, New York, pp.92-102 (1983).
[28].Rössler, O. E., "An Equation for Continuous Chaos," phys. Lett., 57A, pp. 397-398 (1976).
[29].Matsumotot, T., Chua, L. O., and Komuro, M., "The double scroll," IEEE Trans. Circuits Syst., Vol.32, Vol.32, no.8, pp.798-817 (1985).
[30].Yu, X. and Song, Y., "Chaos Synchronization Via Controlling Partial State of Chaotic Systems," International Journal of Bifurcation and Chaos, Vol.11, No.6, pp. 1737-1741 (2001).
[31].Di Bernard, M. "An adaptive approach to the control and synchronization of continuous time chaotic systems," International Journal of Bifurcation and Chaos, Vol.6, pp.557-568 (1996).
[32].Nijmeijer, H., "On synchronization of chaotic systems," Proc. 36th IEEE Conf. Decision and Control, San Diego, pp. 384-388 (1997).
[33].Wu, C. W., Yang, T. & Chua, L. O. "On adaptive synchronization and control of nonlinear dynamicalsystems," International Journal of Bifurcation and Chaos, Vol.6, pp.455-471 (1996).
[34].Liao, T. L., "Adaptive Synchronization of Two Lorenz Systems," Chaos, Solitons and Fractals, Vol. 9, No.9, pp.1555-1562 (1998).
[35].Kocarev, Lj., Halle, K. S., Eckert, K. and Chua, L.O., "Experimental Demonstration Of Sscure Communications Via Chaotic Synchronization," International Journal of Bifurcation and Chaos, Vol.2, No.3, pp.709-713 (1992).
[36].Chua, L.O., Kocarev, Lj. , Halle, K.S. and Shang A., "Transmission of digital signals by chaotic synchronization," International Journal of Bifurcation and Chaos, Vol.2,No.4, pp.973-977 (1992).
[37].Halle, K.S., Wu, Chai-Wah, Itoh,Makoto and Chua L. O., "Spread Spectrum Communication Through Modulation Of Chaos," Journal of Bifurcation and Chaos, Vol.3, No.2, pp.469-477 (1993).
[38].Milton, J. S. and Arnold, J. E. , Introduction to Probability and Statistics, McGraw-Hill Publishing Company, New York (1990).
[39].Slotine, J. J. E. & Li, W., "Applied Nonlinear Control," Prentice-Hall, Englewood Cliffs, NJ (1993).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top