跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.17) 您好!臺灣時間:2025/09/03 02:56
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃冠傑
研究生(外文):Kuang-Chieh Huang
論文名稱:深度學習於設備剩餘壽命預測之研究
論文名稱(外文):Predicting Remaining Useful Life of Equipment based on Deep Learning-based Model
指導教授:許嘉裕許嘉裕引用關係
指導教授(外文):Chia-Yu Hsu
口試委員:林國義彭金堂
口試委員(外文):Kuo-Yi LinJin-Tang Peng
口試日期:2018-07-25
學位類別:碩士
校院名稱:元智大學
系所名稱:資訊管理學系
學門:電算機學門
學類:電算機一般學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:中文
論文頁數:54
中文關鍵詞:剩餘壽命預測性維修深度學習自動編碼器門循環單元神經網路
外文關鍵詞:remaining useful life(RUL)predictive maintenance(PDM)deep learningautoencodergated recurrent unit (GRU)
相關次數:
  • 被引用被引用:2
  • 點閱點閱:943
  • 評分評分:
  • 下載下載:1
  • 收藏至我的研究室書目清單書目收藏:1
隨著智慧製造的發展,為了即時針測設備發生異常的狀態,大量的感測器被建置於紀錄與收集生產設備相關的變數。本研究著重於預測機器剩餘壽命(Remaining Useful Life, RUL),剩餘壽命屬於零件保養中預測性維修(Predictive Maintenance, PDM)的一環,以機器狀態為依據,根據過去機器的發展趨勢判斷機器可能損壞的時間點,目的是能提早察覺機器需要更換零件或是維修,確保系統運行的永續性。既有的文獻方法往往難以萃取出感測資料中有意義的特徵。因此,本研究提出了一個深度學習(Deep Learning)的方法,建構自動編碼門循環單元 (autoencoder gated recurrent unit, AE-GRU)神經網路, 透過自動編碼器萃取原始資料中較為重要的特徵,並利用門循環單元神經網路自行挑選序列間的資訊,準確的預測機器剩餘壽命。本研究實驗階段以IEEE國際會議2008年健康管理預診斷(Prognostics and Health Management, PHM)議題中的資料集進行模型的驗證,並以5折交叉驗證法(5 folds cross-validation)評估模型。實驗結果發現,在均方根誤差(Root Mean Squared Error)的驗證上,與其他深度學習方法deep neural network(DNN)、recurrent neural network(RNN)、long short-term memory neural network(LSTM)、gated recurrent unit neural network(GRU)比較,本研究提出的方法都優於其他方法。
With the development of smart manufacturing, in order to instantly detect abnormal conditions of the equipment, a large number of sensors were built to record the variables associated with the collection of production equipment. This research focuses on the remaining useful life(RUL)prediction. Remaining useful life is a part of the predictive maintenance(PDM), it is condition based, according to the development trend of the machine in the past to detect the machine is going to malfunction, our purpose is to detect early that the machine needs to be replaced or repaired to ensure the sustainability of the system. Existing literature methods are often difficult to extract meaningful features from sensing data. This research proposes a deep learning method, constructing an autoencoder gated recurrent unit (AE-GRU) neural network model, autoencoder extracts the important features from the raw data and gated recurrent unit picks up the information of the sequences to forecasting remaining useful life precisely. In the experiment of this research, we use for the prognostics challenge competition at the IEEE International Conference on Prognostics and Health Management (PHM08) and evaluated by 5 folds cross-validation. In the verification of root mean square error(RMSE) in our experiments, our method is better than other methods, such as deep neural network(DNN)、recurrent neural network(RNN)、long short-term memory neural network(LSTM)、gated recurrent unit neural network(GRU).
書名頁 i
論文口試委員審定書 ii
授權書 iii
中文摘要 iv
英文摘要 v
誌謝 vi
目錄 vii
表目錄 ix
圖目錄 x
第一章 緒論 1
1.1 研究背景與重要性 1
1.2 研究動機 2
1.3 研究目的 3
1.4 研究架構 4
第二章 文獻探討 5
2.1 時間序列分析 5
2.1.1 時間序列介紹 5
2.1.2 時間序列預測應用 6
2.2 循環神經網路介紹 7
2.2.1 循環神經網路 7
2.2.2 長短期記憶神經網路 8
2.2.3 門循環單元神經網路 10
2.2.4 神經網路應用於時間序列預測 12
2.3 零件保養相關文獻 13
第三章 研究架構 19
3.1 資料前處理 21
3.1.1 定義剩餘壽命 21
3.1.2 資料標準化 22
3.1.3 特徵萃取 23
3.1.4 資料維度轉換 25
3.1.5 最大壽命值轉換 26
3.2 剩餘壽命預測模型 28
第四章 實證研究 30
4.1 資料蒐集與實驗設計 30
4.2 模型參數設定 32
4.2.1 激勵函數設定 33
4.2.2 優化器設定 34
4.2.3 隱藏層及神經元數目 35
4.3 模型評估 37
4.3.1 模型比較 37
4.3.2 剩餘壽命預測 40
4.3.2.1 剩餘壽命訓練結果 40
4.3.2.2 剩餘壽命測試結果 44
第五章 結論 48
參考文獻 50
Ahmed, S., Khalid, M., & Akram, U. (2017). A method for short-term wind speed time series forecasting using Support Vector Machine Regression Model. In 2017 6th International Conference on Clean Electrical Power (ICCEP), (pp. 190-195).

Banerjee, D. (2014). Forecasting of Indian stock market using time-series ARIMA model. In 2014 2nd International Conference on Business and Information Management (ICBIM), (pp. 131-135).

Bao, W., Yue, J., & Rao, Y. (2017). A deep learning framework for financial time series using stacked autoencoders and long-short term memory. PloS one, 12(7), e0180944.

Cenggoro, T. W., & Siahaan, I. (2016). Dynamic bandwidth management based on traffic prediction using Deep Long Short Term Memory. In 2016 2nd International Conference on Science in Information Technology (ICSITech), (pp. 318-323).

Chen, Z., Liu, Y., & Liu, S. (2017). Mechanical state prediction based on LSTM neural netwok. In 2017 36th Chinese Control Conference (CCC), (pp. 3876-3881).

Chung, J., Gulcehre, C., Cho, K., & Bengio, Y. (2014). Empirical evaluation of gated recurrent neural networks on sequence modeling. arXiv preprint arXiv:1412.3555.

Dong, D., Li, X. Y., & Sun, F. Q. (2017). Life prediction of jet engines based on LSTM-recurrent neural networks. In 2017 Prognostics and System Health Management Conference (PHM-Harbin), (pp. 1-6).

Dozat, T. (2016). Incorporating nesterov momentum into adam.

ElSaid, A., Wild, B., Higgins, J., & Desell, T. (2016). Using LSTM recurrent neural networks to predict excess vibration events in aircraft engines. In 2016 IEEE 12th International Conference on e-Science (e-Science), (pp. 260-269).

Fu, R., Zhang, Z., & Li, L. (2016). Using LSTM and GRU neural network methods for traffic flow prediction. In Chinese Association of Automation (YAC), Youth Academic Annual Conference of (pp. 324-328).

Guin, A. (2006). Travel time prediction using a seasonal autoregressive integrated moving average time series model. In Intelligent Transportation Systems Conference, 2006. ITSC'06. IEEE (pp. 493-498).

Heimes, F. O. (2008). Recurrent neural networks for remaining useful life estimation. In International Conference on Prognostics and Health Management, 2008. PHM 2008. (pp. 1-6).

Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural computation, 9(8), 1735-1780.

How, D. N. T., Sahari, K. S. M., Yuhuang, H., & Kiong, L. C. (2014). Multiple sequence behavior recognition on humanoid robot using long short-term memory (LSTM). In 2014 IEEE International Symposium on Robotics and Manufacturing Automation (ROMA), (pp. 109-114).

Jozefowicz, R., Zaremba, W., & Sutskever, I. (2015). An empirical exploration of recurrent network architectures. In International Conference on Machine Learning (pp. 2342-2350).

Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980.

Kothamasu, R., Huang, S. H., & VerDuin, W. H. (2006). System health monitoring and prognostics—a review of current paradigms and practices. The International Journal of Advanced Manufacturing Technology, 28(9-10), 1012-1024.

Kuan, L., Yan, Z., Xin, W., Yan, C., Xiangkun, P., Wenxue, S., Zhe, J., Yong, Z., Nan, X., & Xin, Z. (2017). Short-term electricity load forecasting method based on multilayered self-normalizing GRU network. In 2017 IEEE Conference on Energy Internet and Energy System Integration (EI2), (pp. 1-5).

Mathew, V., Toby, T., Singh, V., Rao, B. M., & Kumar, M. G. (2017). Prediction of Remaining Useful Lifetime (RUL) of turbofan engine using machine learning. In 2017 IEEE International Conference on Circuits and Systems (ICCS), (pp. 306-311).

Medjaher, K., Tobon-Mejia, D. A., & Zerhouni, N. (2012). Remaining useful life estimation of critical components with application to bearings. IEEE Transactions on Reliability, 61(2), 292-302.

Ongsulee, P. (2017). Artificial intelligence, machine learning and deep learning. In 2017 15th International Conference on ICT and Knowledge Engineering (ICT&KE), (pp. 1-6).

Park, K. T., & Baek, J. G. (2017). Various type of wavelet filters on time series forecasting. 2017 IEEE 11th International Conference on In Semantic Computing (ICSC), (pp. 258-259).

Peng, Y., Dong, M., & Zuo, M. J. (2010). Current status of machine prognostics in condition-based maintenance: a review. The International Journal of Advanced Manufacturing Technology, 50(1-4), 297-313.

Shrouf, F., Ordieres, J., & Miragliotta, G. (2014). Smart factories in Industry 4.0: A review of the concept and of energy management approached in production based on the Internet of Things paradigm. In 2014 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM), (pp. 697-701).

Soh, S. S., Radzi, N. H., & Haron, H. (2012). Review on scheduling techniques of preventive maintenance activities of railway. In 2012 Fourth International Conference on Computational Intelligence, Modelling and Simulation (CIMSiM), (pp. 310-315).

Tian, Y., & Pan, L. (2015). Predicting Short-Term Traffic Flow by Long Short-Term Memory Recurrent Neural Network. In 2015 IEEE International Conference on Smart City/SocialCom/SustainCom (SmartCity), (pp. 153-158).

Truong, A. M., & Yoshitaka, A. (2017). Structured LSTM for human-object interaction detection and anticipation. In 2017 14th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS), (pp. 1-6).

Wadhvani, R. (2017). Review on various models for time series forecasting. In International Conference on Inventive Computing and Informatics (ICICI), (pp. 405- 410).

Wang, S., Wan, J., Li, D., & Zhang, C. (2016). Implementing smart factory of industrie 4.0: an outlook. International Journal of Distributed Sensor Networks, 12(1), 3159805.

Xiong, L., & Lu, Y. (2017). Hybrid ARIMA-BPNN model for time series prediction of the Chinese stock market. In 2017 3rd International Conference on Information Management (ICIM), (pp. 93-97).

Yongxiang, L., Jianming, S., Gong, W., & Xiaodong, L. (2016). A data-driven prognostics approach for RUL based on principle component and instance learning. In 2016 IEEE International Conference on Prognostics and Health Management (ICPHM), (pp. 1-7).

Yujun, Y., Yimei, Y., & Jianping, L. (2016). Research on financial time series forecasting based on SVM. In 2016 13th International Computer Conference on Wavelet Active Media Technology and Information Processing (ICCWAMTIP), (pp. 346-349).

Zhang, D., & Kabuka, M. R. (2018). Combining weather condition data to predict traffic flow: a GRU-based deep learning approach. IET Intelligent Transport Systems.

Zhang, Q., Wang, H., Dong, J., Zhong, G., & Sun, X. (2017). Prediction of Sea Surface Temperature using Long Short-Term Memory. arXiv preprint arXiv:1705.06861.

Zhang, Y., Xiong, R., He, H., & Liu, Z. (2017). A LSTM-RNN method for the lithuim-ion battery remaining useful life prediction. In 2017 Prognostics and System Health Management Conference (PHM-Harbin), (pp. 1-4).

Zheng, J., Xu, C., Zhang, Z., & Li, X. (2017). Electric load forecasting in smart grids using Long-Short-Term-Memory based Recurrent Neural Network. In 2017 51st Annual Conference on Information Sciences and Systems (CISS), (pp. 1-6).

Zheng, S., Ristovski, K., Farahat, A., & Gupta, C. (2017). Long Short-Term Memory Network for Remaining Useful Life estimation. In 2017 IEEE International Conference on Prognostics and Health Management (ICPHM), (pp. 88-95).
電子全文 電子全文(本篇電子全文限研究生所屬學校校內系統及IP範圍內開放)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊