|
1.呂宗昕; 吳偉宏, 奈米科技與二氧化鈦光觸媒. 科學發展 2004, 376, 73-77. 2.Photocatalysts: Technologies and Global Markets. BBC Research: 2010/03 and 2015/10. 3.碳的同素異形體. http://www.hk-phy.org/atomic_world/carbon/carbon01_c.html. 4.Kroto, H. W.; Heath, J. R.; O''Brien, S. C.; Curl, R. F.; Smalley, R. E., C60: Buckminsterfullerene. Nature 1985, 318 (6042), 162-163. 5.Hebard, A. F.; Rosseinsky, M. J.; Haddon, R. C.; Murphy, D. W.; Glarum, S. H.; Palstra, T. T. M.; Ramirez, A. P.; Kortan, A. R., Superconductivity at 18 K in potassium-doped C60. Nature 1991, 350 (6319), 600-601. 6.Dambournet, D.; Belharouak, I.; Amine, K., Tailored Preparation Methods of TiO2 Anatase, Rutile, Brookite: Mechanism of Formation and Electrochemical Properties. Chem.Mater. 2010, 22, 1173-1179. 7.Kohtani, S.; Yoshioka, E.; Miyabe, H., Photocatalytic Hydrogenation on Semiconductor Particles. 2012. 8.馬遠榮, 低維奈米材料. 科學發展 2004, 382, 73-75. 9.Tian, J.; Zhao, Z.; Kumar, A.; Boughton, R. I.; Liu, H., Recent progress in design, synthesis, and applications of one-dimensional TiO2 nanostructured surface heterostructures: a review. Chem. Soc. Rev. 2014, 43, 6920-6937. 10.Baker, D. R.; Kamat, P., Photosensitization of TiO2 Nanostructures with CdS Quantum Dots: Particulate versus Tubular Support Architectures Authors. Adv. Funct. Mater. 2009, 19 (5), 805-811. 11.Rodríguez-Reyes, M.; Dorantes-Rosales, H. J., A simple route to obtain TiO2 nanowires by the sol–gel method. J. Sol-Gel Sci. Technol. 2011, 59, 658-661. 12.Xu, X.; Ray, R.; Gu, Y.; Ploehn, H. J.; Gearheart, L.; Raker, K.; Scrivens, W. A., Electrophoretic Analysis and Purification of Fluorescent Single-Walled Carbon Nanotube Fragments. J. AM. CHEM. SOC. 2004, 126 (40), 12736-12737. 13.Wang, X.; Cao, L.; Lu, F.; Meziani, M. J.; Li, H.; Qi, G.; Zhou, B.; Harruff, B. A.; Kermarrec, F.; Sun, Y.-P., Photoinduced electron transfers with carbon dots. Chem.Commun. 2009, 3774-3776. 14.Li, H.; Kang, Z.; Liu, Y.; Lee, S.-T., Carbon nanodots: synthesis, properties and applications. J. Mater. Chem. 2012, 22, 24230-24253. 15.Wang, Y.; Hu, A., Carbon quantum dots: synthesis, properties and applications. J. Mater. Chem. C 2014, 2, 6921-6939. 16.Zhou, J.; Booker, C.; Li, R.; Zhou, X.; Sham, T.-K.; Sun, X.; Ding, Z., An Electrochemical Avenue to Blue Luminescent Nanocrystals from Multiwalled Carbon Nanotubes (MWCNTs). J. Am. Chem. Soc. 2007, 129 (4), 744-745. 17.Zheng, L.; Chi, Y.; Dong, Y.; Lin, J.; Wang, B., Electrochemiluminescence of Water-Soluble Carbon Nanocrystals Released Electrochemically from Graphite. J. Am. Chem. Soc. 2009, 131 (13), 4564-4565. 18.Li, H.; He, X.; Kang, Z.; Huang, H.; Liu, Y.; Liu, J.; Lian, S.; Tsang, C. H. A.; Yang, X.; Lee, S.-T., Water-Soluble Fluorescent Carbon Quantum Dots and Photocatalyst Design. Angewandte Chemie International Edition 2010, 49 (26), 4430-4434. 19.Ming, H.; Ma, Z.; Liu, Y.; Pan, K.; Yu, H.; Wang, F.; Kang, Z., Large scale electrochemical synthesis of high quality carbon nanodots and their photocatalytic property. Dalton Trans. 2012, 41 (31), 9526-9531. 20.Asahi, R.; Morikawa, T.; Ohwaki, T.; Aoki, K.; Taga, Y., Visible-Light Photocatalysis in Nitrogen-Doped Titanium Oxides. Science 2001, 293 (5528), 269-271. 21.Shah, S. I.; Li, W.; Huang, C.-P.; Jung, O.; Ni, C., Study of Nd3+, Pd2+, Pt4+, and Fe3+ dopant effect on photoreactivity of TiO2 nanoparticles. Proc Natl Acad Sci U S A 2002, 99, 6482-6486. 22.Cho, Y.; Choi, W.; Lee, C.-H.; Hyeon, T.; Lee, H.-I., Visible Light-Induced Degradation of Carbon Tetrachloride on Dye-Sensitized TiO2. Environ. Sci. Technol. 2001, 35 (5), 966-970. 23.Sun, W.-T.; Yu, Y.; Pan, H.-Y.; Gao, X.-F.; Chen, Q.; Peng, L.-M., CdS Quantum Dots Sensitized TiO2 Nanotube-Array Photoelectrodes. J. Am. Chem. Soc. 2008, 130 (4), 1124-1125. 24.Sun, M.; Ma, X.; Chen, X.; Sun, Y.; Cui, X.; Lin, Y., A nanocomposite of carbon quantum dots and TiO2 nanotube arrays: enhancing photoelectrochemical and photocatalytic properties. RSC Adv. 2013, 4, 1120-1127. 25.Jang, Y. H.; Xin, X.; Byun, M.; Jang, Y. J.; Lin, Z.; Kim, D. H., An Unconventional Route to High-Efficiency Dye-Sensitized Solar Cells via Embedding Graphitic Thin Films into TiO2 Nanoparticle Photoanode. Nano Letters 2012, 12 (1), 479-485. 26.Xuelian, Y.; Rongji, L.; Guangjin, Z.; Hongbin, C., Carbon quantum dots as novel sensitizers for photoelectrochemical solar hydrogen generation and their size-dependent effect. Nanotechnology 2013, 24 (33), 335401. 27.Lu, J.; Yang, J.-x.; Wang, J.; Lim, A.; Wang, S.; Loh, K. P., One-Pot Synthesis of Fluorescent Carbon Nanoribbons, Nanoparticles, and Graphene by the Exfoliation of Graphite in Ionic Liquids. ACS Nano 2009, 3 (8), 2367-2375. 28.Zhu, B.; Sun, S.; Wang, Y.; Deng, S.; Qian, G.; Wang, M.; Hu, A., Preparation of carbon nanodots from single chain polymeric nanoparticles and theoretical investigation of the photoluminescence mechanism. Journal of Materials Chemistry C 2013, 1 (3), 580-586. 29.Feng, X.; Yang, J.; Lu, Q.; Wang, J.; Nuli, Y., Facile approach to SiOx/Si/C composite anode material from bulk SiO for lithium ion batteries. Physical Chemistry Chemical Physics 2013, 15 (34), 14420-14426.
|