跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.41) 您好!臺灣時間:2026/01/13 06:14
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:宋振明
研究生(外文):SUNG, CHEN-MING
論文名稱:比較骨質密度值與骨小樑評分於預測骨折風險的差異
論文名稱(外文):Comparison of Bone Mineral Density and Trabecular Bone Score in The Prediction of Fracture Risk
指導教授:郭瓊文郭瓊文引用關係
指導教授(外文):KUO, CHIUNG-WEN
口試委員:郭瓊文張東浩黃昭源
口試委員(外文):KUO, CHIUNG-WENCHANG, TUNG-HAOHUANG, CHAO-YUAN
口試日期:2018-06-10
學位類別:碩士
校院名稱:元培醫事科技大學
系所名稱:醫學影像暨放射技術系碩士班
學門:醫藥衛生學門
學類:醫學技術及檢驗學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:中文
論文頁數:73
中文關鍵詞:骨質疏鬆症骨質密度骨小樑評分值骨折
外文關鍵詞:osteoporosisbone mineral densitytrabecular bone scorefracture
相關次數:
  • 被引用被引用:0
  • 點閱點閱:2135
  • 評分評分:
  • 下載下載:13
  • 收藏至我的研究室書目清單書目收藏:0
隨著現今人口老化,骨質疏鬆症已成為公眾重要議題。雙能量X光骨質密度儀所量測的骨質密度值 (Bone Mineral Density, BMD) 一直是診斷骨質疏鬆症的標準。骨小樑評分值 (Trabecular Bone Score, TBS) 是評估骨質結構另一項新的分析工具,本研究目的為利用回溯性方式,比較BMD與TBS兩者於預測骨折風險的差異並分析TBS數值預估骨折風險的最佳切點(cut-off value)。自2016年1月到2017年9月期間,50-80歲共1751位 (平均年齡63.0 ± 8.1歲) 的停經後婦女與男性,依一般脊椎X光分骨折及無骨折族群,全部受檢者均接受雙能量X光骨質密度儀 (Lunar iDXA; GE Healthcare, Madison, WI) 測量腰椎的骨質密度值,再利用其腰椎骨質密度影像結果,以TBS軟體 (TBS iNsight version 3.0.1, Medimaps Group, Geneva, Switzerland) 分析取得TBS數值。研究結果顯示骨折發生率隨著骨質疏鬆的程度越高,相對骨折的發生率也越高 (女性20.9%;男性40.5%) 尤其於TBS數值≦1.30的族群,骨折發生率最高 (女性84.7%;男性54.4%)。此外,TBS數值和BMD呈現顯著的正相關 (女性r = 0.585;男性r = 0.546, p < 0.05)。當以ROC曲線 (receiver operating characteristic curve)分析骨折的最佳切點,結果顯示女性的最佳切點為TBS≦1.239,其勝算比(odds ratio, OR) 為2.3 (95% CI: 1.7-3.1);男性的最佳切點為TBS≦1.364,其OR值3.3 (95% CI: 2.0-5.4)。依照骨質正常、骨質減少及骨質疏鬆分類中,僅有女性的最佳切點具有顯著意義,分別為TBS≦1.387 (OR= 4.4, 95% CI: 1.8-10.8)、TBS≦1.222 (OR=3.5, 95% CI: 2.0-6.0)、TBS≦1.236其勝算比 (OR= 1.6, 95% CI: 1.0-2.6)。研究結果顯示TBS數值能有效預測骨折風險,尤其是停經後的婦女,以BMD值分類病患的骨質結構後,再以TBS數值分析病患的骨小樑分佈,更能準確地預測未來骨折的風險。
With the aging of the world population, osteoporosis has become an important public health issue. Bone mineral density (BMD) is usually considered as an effective predictor of the risk of osteoporotic fracture by using dual-energy x-ray absorptiometry (DXA). Trabecular bone score (TBS) is a novel analysis tool to assess trabecular microarchitecture for the prediction of fracture risk. The purpose of this study was to compare the efficacy of two analysis techniques (BMD vs. TBS) in the assessment of fracture risk and to determine the appropriate cut-off value. Totally 1,751 patients (aged 50-80 years, 63.0 ± 8.1 years) were recruited from January 2016 to September 2017. All patients were performed DXA (Lunar iDXA; GE Healthcare, Madison, WI) at the lumbar spine. TBS was determined by the results of lumbar spine BMD by using TBS software (TBS iNsight version:3.0.1, Medimaps Group, Geneva, Dwitzerland). Our results demonstrated the fracture occurred in osteoporosis patients (women 29.9% and men 40.5%). The majority proportion in TBS score ≦1.30 groups (women 84.7%, men 54.4%). We also observed TBS was significant correlated with BMD (women, r= 0.585;men, r= 0.546, p < 0.05). Using receiver operating characteristic curve (ROC) technique, our results determined that the optimal cut-off values in women with TBS≦1.239 (odds ratio (OR) OR= 2.3, 95% CI: 1.7-3.1), and in the men TBS≦1.364 (OR= 3.3, 95% CI: 2.0-5.4). Moreover, we observed the optimal cut-off values for evaluation of fracture risk in the postmenopausal women based on BMD classification. We found the optimal cut-off values were TBS≦1.387 (OR= 4.4, 95% CI: 1.8-10.8), TBS≦1.222 (OR=3.5, 95% CI: 2.0-6.0) and TBS≦1.236 (OR= 1.6, 95% CI: 1.0-2.6) in the groups of normal, osteopenia and osteoporosis, respectively. Our results suggested that TBS score was a reliable method to evaluate the fracture risk, especially combination BMD and TBS score in post-menopausal women.
論文口試委員審定書....….I
誌謝..................II
中文摘要..............III
英文摘要...............IV
目錄....................V
圖目錄................Ⅷ
表目錄..................Ⅹ


第一章 緒論......................1
1.1 研究動機......................1
1.2研究目的.......................3
第二章 研究背景與原理.............4
2.1 骨骼的構造與功能...............4
2.1.1 骨骼的結構..................5
2.1.2 骨骼的化學成分...............7
2.1.3 骨骼結構與賀爾蒙關係..........7
2.1.4 骨骼中成骨細胞和破骨細胞......8
2.1.5骨骼的功能....................9
2.2 骨質疏鬆......................10
2.2.1 骨質疏鬆的定義...............10
2.2.2骨質疏鬆的診斷................10
2.2.3 骨質疏鬆下海綿骨的變化........11
2.3 骨小樑評分數值.................13
2.3.1骨質密度不再是骨質疏鬆唯一診斷..13
2.3.2 骨小樑評分數值取得............13
2.3.3 骨小樑數目...................15
2.4 統計分析.......................17
2.5 相關研究文獻....................19
第三章 材料與方法...................20
3.1 研究對象.......................20
3.2 儀器設備及檢查流程..............21
3.3 儀器掃描原理....................26
3.4 實驗設計........................27
3.5 資料整理........................29
第四章 結果.........................30
4.1 研究對象人數的統計...............30
4.2 各參數對骨折t檢定................33
4.3 TBS評估分數分析..................36
4.4 Pearson分析.....................40
4.5 BMD及TBD數值對骨折評估的ROC分析...47
4.6 利用ROC尋求TBS最佳切點............54
第五章 討論..........................58
5.1 敘述性的統計及對骨折t檢定討論.....58
5.2 TBS評估數值的討論................60
5.3 Pearson分析討論..................61
5.4 BMD及TBS數值對骨折評估的ROC分析討論.61
5.6 TBS最佳切點討論...................63
5.7研究限制..........................65
5.8 未來展望.........................65
第六章 結論..........................66
參考文獻.............................68
附錄一 IRB核准證明文件................72


Baim, S., Wilson, C. R., Lewiecki, E. M., Luckey, M. M., Downs, R. W., Jr., Lentle, B. C. (2005). Precision assessment and radiation safety for dual-energy X-ray absorptiometry: position paper of the International Society for Clinical Densitometry. J Clin Densitom, 8(4), 371-378.
Cummings, S. R., Melton, L. J. (2002). Epidemiology and outcomes of osteoporotic fractures. Lancet, 359(9319), 1761-1767. doi:10.1016/s0140-6736(02)08657-9
Dharmarajan, T. S., Banik, P. (2006). Hip fracture. Risk factors, preoperative assessment, and postoperative management. Postgrad Med, 119(1), 31-38.
Elliot-Gibson, V., Bogoch, E. R., Jamal, S. A., Beaton, D. E. (2004). Practice patterns in the diagnosis and treatment of osteoporosis after a fragility fracture: a systematic review. Osteoporos Int, 15(10), 767-778. doi:10.1007/s00198-004-1675-5
Henry, Y. M., Fatayerji, D., Eastell, R. (2004). Attainment of peak bone mass at the lumbar spine, femoral neck and radius in men and women: relative contributions of bone size and volumetric bone mineral density. Osteoporos Int, 15(4), 263-273. doi:10.1007/s00198-003-1542-9
Lin, Y. C., Pan, W. H. (2011). Bone mineral density in adults in Taiwan: results of the Nutrition and Health Survey in Taiwan 2005-2008 (NAHSIT 2005-2008). Asia Pac J Clin Nutr, 20(2), 283-291.
Meunier, P., Courpron, P., Edouard, C., Bernard, J., Bringuier, J., Vignon, G. (1973). Physiological senile involution and pathological rarefaction of bone. Quantitative and comparative histological data. Clin Endocrinol Metab, 2(2), 239-256.
Paksima, N., Koval, K. J., Aharanoff, G., Walsh, M., Kubiak, E. N., Zuckerman, J. D., Egol, K. A. (2008). Predictors of mortality after hip fracture: a 10-year prospective study. Bull NYU Hosp Jt Dis, 66(2), 111-117.
Schousboe, J. T., Vokes, T., Broy, S. B., Ferrar, L., McKiernan, F., Roux, C., Binkley, N. (2008). Vertebral Fracture Assessment: the 2007 ISCD Official Positions. J Clin Densitom, 11(1), 92-108. doi:10.1016/j.jocd.2007.12.008
Tsai, K., Twu, S., Chieng, P., Yang, R., Lee, T. (1996). Prevalence of vertebral fractures in chinese men and women in urban Taiwanese communities. Calcif Tissue Int, 59(4), 249-253.
Vainionpaa, A., Korpelainen, R., Leppaluoto, J., Jamsa, T. (2005). Effects of high-impact exercise on bone mineral density: a randomized controlled trial in premenopausal women. Osteoporos Int, 16(2), 191-197. doi:10.1007/s00198-004-1659-5
von Friesendorff, M., Besjakov, J., Akesson, K. (2008). Long-term survival and fracture risk after hip fracture: a 22-year follow-up in women. J Bone Miner Res, 23(11), 1832-1841. doi:10.1359/jbmr.080606
Cooper, C., Atkinson, E. J., Jacobsen, S. J., O'Fallon, W. M., Melton, L. J., 3rd. (1993). Population-based study of survival after osteoporotic fractures. Am J Epidemiol, 137(9), 1001-1005.
Davies, K. M., Stegman, M. R., Heaney, R. P., Recker, R. R. (1996). Prevalence and severity of vertebral fracture: the Saunders County Bone Quality Study. Osteoporos Int, 6(2), 160-165.
Hernlund, E., Svedbom, A., Ivergard, M., Compston, J., Cooper, C., Stenmark, J., Kanis, J. A. (2013). Osteoporosis in the European Union: medical management, epidemiology and economic burden. A report prepared in collaboration with the International Osteoporosis Foundation (IOF) and the European Federation of Pharmaceutical Industry Associations (EFPIA). Arch Osteoporos, 8, 136. doi:10.1007/s11657-013-0136-1
Johnell, O., Kanis, J. A., Oden, A., Johansson, H., De Laet, C., Delmas, P., Tenenhouse, A. (2005). Predictive value of BMD for hip and other fractures. J Bone Miner Res, 20(7), 1185-1194. doi:10.1359/jbmr.050304
Kanis, J. A., Borgstrom, F., De Laet, C., Johansson, H., Johnell, O., Jonsson, B., Khaltaev, N. (2005). Assessment of fracture risk. Osteoporos Int, 16(6), 581-589. doi:10.1007/s00198-004-1780-5
Kanis, J. A., McCloskey, E. V., Johansson, H., Oden, A., Melton, L. J., 3rd, Khaltaev, N. (2008). A reference standard for the description of osteoporosis. Bone, 42(3), 467-475. doi:10.1016/j.bone.2007.11.001
Marshall, D., Johnell, O., Wedel, H. (1996). Meta-analysis of how well measures of bone mineral density predict occurrence of osteoporotic fractures. Bmj, 312(7041), 1254-1259.
Miller, P. D., Siris, E. S., Barrett-Connor, E., Faulkner, K. G., Wehren, L. E., Abbott, T. A., Sherwood, L. M. (2002). Prediction of fracture risk in postmenopausal white women with peripheral bone densitometry: evidence from the National Osteoporosis Risk Assessment. J Bone Miner Res, 17(12), 2222-2230. doi:10.1359/jbmr.2002.17.12.2222
Netelenbos, J. C., Lems, W. F., Geusens, P. P., Verhaar, H. J., Boermans, A. J., Boomsma, M. M., Papapoulos, S. E. (2009). Spine radiographs to improve the identification of women at high risk for fractures. Osteoporos Int, 20(8), 1347-1352. doi:10.1007/s00198-008-0801-1
Pothuaud, L., Carceller, P., & Hans, D. (2008). Correlations between grey-level variations in 2D projection images (TBS) and 3D microarchitecture: applications in the study of human trabecular bone microarchitecture. Bone, 42(4), 775-787. doi:10.1016/j.bone.2007.11.018
The relationship between bone density and incident vertebral fracture in men and women. (2002). J Bone Miner Res, 17(12), 2214-2221. doi:10.1359/jbmr.2002.17.12.2214
Sambrook, P., Cooper, C. (2006). Osteoporosis. Lancet, 367(9527), 2010-2018. doi:10.1016/s0140-6736(06)68891-0
Schuit, S. C., van der Klift, M., Weel, A. E., de Laet, C. E., Burger, H., Seeman, E., Pols, H. A. (2004). Fracture incidence and association with bone mineral density in elderly men and women: the Rotterdam Study. Bone, 34(1), 195-202.
Siris, E. S., Miller, P. D., Barrett-Connor, E., Faulkner, K. G., Wehren, L. E., Abbott, T. A., Sherwood, L. M. (2001). Identification and fracture outcomes of undiagnosed low bone mineral density in postmenopausal women: results from the National Osteoporosis Risk Assessment. Jama, 286(22), 2815-2822.
Stone, K. L., Seeley, D. G., Lui, L. Y., Cauley, J. A., Ensrud, K., Browner, W. S., Cummings, S. R. (2003). BMD at multiple sites and risk of fracture of multiple types: long-term results from the Study of Osteoporotic Fractures. J Bone Miner Res, 18(11), 1947-1954. doi:10.1359/jbmr.2003.18.11.1947
Vogt, T. M., Ross, P. D., Palermo, L., Musliner, T., Genant, H. K., Black, D.,Thompson, D. E. (2000). Vertebral fracture prevalence among women screened for the Fracture Intervention Trial and a simple clinical tool to screen for undiagnosed vertebral fractures. Fracture Intervention Trial Research Group. Mayo Clin Proc, 75(9), 888-896.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊