跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.134) 您好!臺灣時間:2025/12/21 05:39
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:侯藹玲
研究生(外文):Ai-Ling Hour
論文名稱:水稻第五條染色體基因組序列分析
論文名稱(外文):Comparitive Genomics and Analysis of Repetitive Sequence on Rice Chromosome 5
指導教授:劉清鄔宏潘鄔宏潘引用關係
指導教授(外文):Chin LiuHone-Pang Wu
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:農藝學研究所
學門:農業科學學門
學類:一般農業學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:137
中文關鍵詞:重複序列水稻基因組秈稻
外文關鍵詞:riceOryza sativagenomerepetitive sequenceJaponicaIndica
相關次數:
  • 被引用被引用:0
  • 點閱點閱:300
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
國際合作的水稻基因組定序工作進行多年已臻完成,各項分析工作亦相繼展開,本文採用我國負責的第五條染色體序列,利用生物資訊工具,配合適當的統計分析,探討水稻基因序列的基本特性。
本文主要包含兩個主題,一為秈稻與稉稻基因組序列之比較,以我國完成之稉稻第五條染色體基因組序列比對秈稻品種93-11的全基因組散彈槍法的草圖序列,估計此二品種第五條染色體上序列相似性。以BLAST搜尋結果,估計大約80%的序列可比對,平均相似性97%,若是去除旁系同源的比對,則有60%序列可比對,平均相似性98%。
此外也對第五條染色體基因組序列的重複序列,做一廣泛及深入探討,瞭解各種重複序列在染色體上分布,由本文之結果估計水稻第五條染色體基因組序列中約有20%以上為重複序列,其中最多的一類是轉位因子,另外有2%為短序列重複與低複雜度序列。由中節與端粒區域的分析,搜尋特定重覆序列CentO及Os48的分布範圍,分別為60kb與150kb,以303組CentO及216組Os48重複序列間的親緣分析與位置分布,推估此類連續重複的可能機制均為在附近產生重複。另外,LTR序列的相似性分析亦提供LTR-反轉位子插入基因組的演化參考,由本文結果推估LTR-反轉位子的插入並無位置上的偏好。同時,由中節與端粒重複序列的結構,可推斷第五條染色體基因組序列的完整性,目前已完成中節區域的定序,端粒區域也相當接近邊緣,顯見定序工作已克服高度重複的障礙。
這兩個工作的成果,均可提供設計高密度分子標記之參考,未來可應用於的水稻重要性狀定位與選殖,以期提高水稻品質與產量。


The IRGSP (The International Rice Genome Sequencing Program) completed a high quality sequence on schedule in December 2002. This result allows a large scale investigation on rice. We have done some detail analysis on rice chromosome 5, which sequenced by ASPGC(Academia Sinica Plant Genome Center). This work accomplished basic characteristics of rice genome with some bioinformatics tools and combination with proper statistic approach.
This work fell into two parts. The first one was the comparison between genomic sequences of Japonica and Indica. The chromosome 5 sequences of Nipponbare were aligned with whole genome shotgun sequences of 93-11 Indica variety. The similarities between them were estimated by BLAST searching. The result revealed that the average similarity under the aligned region covered 80% of genome was 97%. After those alignments duplicated or over-dispersed were removed, 60% of genome could be aligned and the similarity was up to 98%.
The other one was the studying on repetitive sequences on rice chromosome 5. The distributions of different repetitive sequences on chromosome 5 were clarified. And details on centromere and telomere regions were featured. The differences between LTR sequences reflected the histories of insertion of retrotransposons. The completeness of centromere and telomere with highly repetitive sequences has been overcome by map-based approach.
These results are important for designing molecular markers. High density of molecular markers is the helpful tool on future breeding and genetic research of rice.


圖目錄 IV
表目錄 IX
摘要 1
第一章、前言 4
第二章、前人研究 7
第三章、稉稻第五條染色體序列與秈稻基因組序列之比較 18
一、 目的: 18
二、 材料與方法 19
(一) 資料來源與資料庫之建立 19
(二) 序列相似性分析 21
(三) 模擬試驗驗證BLAST之正確性 24
(四) BLAST結果整理與篩選 24
三、 結果 35
(一) 秈稻品種93-11基因組序列的統計性質 35
(二) BLAST結果的統計分析 39
(三) 模擬試驗的結果 47
(四) 重複比對區域的統計分析 49
四、 討論與結論 53
第四章、水稻第五條染色體基因組重複序列之分布 57
一、 目的: 57
二、 材料與方法 59
(一) 資料來源 59
(二) 重複序列資料庫比對 61
(三) 中節區域序列的重複序列 62
(四) 端粒區域的重複序列 65
(五) 中節區域及端粒區域序列的複雜度估算 66
(六) 長端重複(LTR)的序列差異分析 67
三、 結果 68
(一) 水稻第五條染色體對TIGR水稻重複序列做BLAST比對 68
(二) 水稻第五條染色體的RepeatMasker分析: 74
(三) 中節區域的重複序列分析: 84
(四) 端粒區域的重複序列分析: 90
(五) LTR-retrotransposon序列的相似性 96
(六) CentO與Os48重複序列的親緣分析 103
四、 討論與結論 109
第五章、綜合討論與結論 110
參考文獻: 117
附錄 127


Ahn, S., J.A. Anderson, M.E. Sorrells, and S.D. Tanksley. 1993. Homoeologous relationships of rice, wheat and maize chromosomes. Mol Gen Genet 241:483-90.
Altschul, S.F., T.L. Madden, A.A. Schaffer, J. Zhang, Z. Zhang, W. Miller, and D.J. Lipman. 1997. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389-402.
Arumuganathan, K., and E.D. Earle. 1991. Nuclear DNA content of some important plant species. Plant Molecular Biology Reporter 9:208-218.
Bennetzen, J.L. 2000. Transposable element contributions to plant gene and genome evolution. Plant Mol Biol 42:251-69.
Bennetzen, J.L., and M. Freeling. 1997. The unified grass genome: synergy in synteny. Genome Res 7:301-6.
Chen, M., G. Presting, W.B. Barbazuk, J.L. Goicoechea, B. Blackmon, G. Fang, H. Kim, D. Frisch, Y. Yu, S. Sun, S. Higingbottom, J. Phimphilai, D. Phimphilai, S. Thurmond, B. Gaudette, P. Li, J. Liu, J. Hatfield, D. Main, K. Farrar, C. Henderson, L. Barnett, R. Costa, B. Williams, S. Walser, M. Atkins, C. Hall, M.A. Budiman, J.P. Tomkins, M. Luo, I. Bancroft, J. Salse, F. Regad, T. Mohapatra, N.K. Singh, A.K. Tyagi, C. Soderlund, R.A. Dean, and R.A. Wing. 2002. An integrated physical and genetic map of the rice genome. Plant Cell 14:537-45.
Cheng, Z., R.M. Stupar, M. Gu, and J. Jiang. 2001. A tandemly repeated DNA sequence is associated with both knob-like heterochromatin and a highly decondensed structure in the meiotic pachytene chromosomes of rice. Chromosoma 110:24-31.
Cheng, Z., F. Dong, T. Langdon, S. Ouyang, C.R. Buell, M. Gu, F.R. Blattner, and J. Jiang. 2002. Functional rice centromeres are marked by a satellite repeat and a centromere-specific retrotransposon. Plant Cell 14:1691-704.
Copenhaver, G.P., K. Nickel, T. Kuromori, M.I. Benito, S. Kaul, X. Lin, M. Bevan, G. Murphy, B. Harris, L.D. Parnell, W.R. McCombie, R.A. Martienssen, M. Marra, and D. Preuss. 1999. Genetic definition and sequence analysis of Arabidopsis centromeres. Science 286:2468-74.
Delcher, A.L., A. Phillippy, J. Carlton, and S.L. Salzberg. 2002. Fast algorithms for large-scale genome alignment and comparison. Nucleic Acids Res 30:2478-83.
Dong, F., J.T. Miller, S.A. Jackson, G.L. Wang, P.C. Ronald, and J. Jiang. 1998. Rice (Oryza sativa) centromeric regions consist of complex DNA. Proc Natl Acad Sci U S A 95:8135-40.
Durbin, R., S.R. Eddy, A. Krogh, and G. Mitchison. 1998. Biological Sequence Analysis: Probabilistic Models of Proteins and Nucleic Acids Cambridge University Press, New York.
Felsenstein, J. 2004. PHYLIP. Release 3.62. University of Washington, Seattle.
Feltus, F.A., J. Wan, S.R. Schulze, J.C. Estill, N. Jiang, and A.H. Paterson. 2004. An SNP resource for rice genetics and breeding based on subspecies indica and japonica genome alignments. Genome Res 14:1812-9.
Feng, Q., Y. Zhang, P. Hao, S. Wang, G. Fu, Y. Huang, Y. Li, J. Zhu, Y. Liu, X. Hu, P. Jia, Y. Zhang, Q. Zhao, K. Ying, S. Yu, Y. Tang, Q. Weng, L. Zhang, Y. Lu, J. Mu, Y. Lu, L.S. Zhang, Z. Yu, D. Fan, X. Liu, T. Lu, C. Li, Y. Wu, T. Sun, H. Lei, T. Li, H. Hu, J. Guan, M. Wu, R. Zhang, B. Zhou, Z. Chen, L. Chen, Z. Jin, R. Wang, H. Yin, Z. Cai, S. Ren, G. Lv, W. Gu, G. Zhu, Y. Tu, J. Jia, Y. Zhang, J. Chen, H. Kang, X. Chen, C. Shao, Y. Sun, Q. Hu, X. Zhang, W. Zhang, L. Wang, C. Ding, H. Sheng, J. Gu, S. Chen, L. Ni, F. Zhu, W. Chen, L. Lan, Y. Lai, Z. Cheng, M. Gu, J. Jiang, J. Li, G. Hong, Y. Xue, and B. Han. 2002. Sequence and analysis of rice chromosome 4. Nature 420:316-20.
Gale, M.D., and K.M. Devos. 1998. Comparative genetics in the grasses. Proc Natl Acad Sci U S A 95:1971-4.
Gao, L., E.M. McCarthy, E.W. Ganko, and J.F. McDonald1. 2004. Evolutionary history of Oryza sativa LTR retrotransposons: a preliminary survey of the rice genome sequences. BMC Genomics 5:1-18.
Goff, S.A., D. Ricke, T.H. Lan, G. Presting, R. Wang, M. Dunn, J. Glazebrook, A. Sessions, P. Oeller, H. Varma, D. Hadley, D. Hutchison, C. Martin, F. Katagiri, B.M. Lange, T. Moughamer, Y. Xia, P. Budworth, J. Zhong, T. Miguel, U. Paszkowski, S. Zhang, M. Colbert, W.L. Sun, L. Chen, B. Cooper, S. Park, T.C. Wood, L. Mao, P. Quail, R. Wing, R. Dean, Y. Yu, A. Zharkikh, R. Shen, S. Sahasrabudhe, A. Thomas, R. Cannings, A. Gutin, D. Pruss, J. Reid, S. Tavtigian, J. Mitchell, G. Eldredge, T. Scholl, R.M. Miller, S. Bhatnagar, N. Adey, T. Rubano, N. Tusneem, R. Robinson, J. Feldhaus, T. Macalma, A. Oliphant, and S. Briggs. 2002. A draft sequence of the rice genome (Oryza sativa L. ssp. japonica). Science 296:92-100.
Guyot, R., and B. Keller. 2004. Ancestral genome duplication in rice. Genome 47:610-4.
Harushima, Y., M. Yano, A. Shomura, M. Sato, T. Shimano, Y. Kuboki, T. Yamamoto, S.Y. Lin, B.A. Antonio, A. Parco, H. Kajiya, N. Huang, K. Yamamoto, Y. Nagamura, N. Kurata, G.S. Khush, and T. Sasaki. 1998. A high-density rice genetic linkage map with 2275 markers using a single F2 population. Genetics 148:479-94.
Jiang, J., S. Nasuda, F. Dong, C.W. Scherrer, S.S. Woo, R.A. Wing, B.S. Gill, and D.C. Ward. 1996. A conserved repetitive DNA element located in the centromeres of cereal chromosomes. Proc Natl Acad Sci U S A 93:14210-3.
Juretic, N., T.E. Bureau, and R.M. Bruskiewich. 2004. Transposable element annotation of the rice genome. Bioinformatics 20:155-60.
Katagiri, S., Wu.J., Y. Ito, W. Karasawa, M. Shibata, H. Kanamori, Y. Katayose, N. Namiki, T. Matsumoto, and T. Sasaki. 2004. End Sequencing and Chromosomal in silico Mapping of BAC Clone Derived from an indica Rice Cultivar, Kasalath. Breeding Science 54:273-279.
Korf, I., M. Yandell, and J. Bedell. 2003. BLAST O''Reilly & Associates, Sebastopol, CA.
Kumar, A., and J.L. Bennetzen. 1999. Plant retrotransposons. Annual Review of Genetics 33:479-532.
Lewin, B. 2003. Genes VIII Oxford University Press.
Li, C., Y. Zhang, K. Ying, X. Liang, and B. Han. 2004. Sequence variations of simple sequence repeats on chromosome-4 in two subspecies of the Asian cultivated rice. Theor Appl Genet 108:392-400.
Ma, J., and J.L. Bennetzen. 2004. Rapid recent growth and divergence of rice nuclear genomes. Proc Natl Acad Sci U S A 101:12404-10.
Ma, J., K.M. Devos, and J.L. Bennetzen. 2004. Analyses of LTR-retrotransposon structures reveal recent and rapid genomic DNA loss in rice. Genome Res 14:860-9.
Mao, L., T.C. Wood, Y. Yu, M.A. Budiman, J. Tomkins, S. Woo, M. Sasinowski, G. Presting, D. Frisch, S. Goff, R.A. Dean, and R.A. Wing. 2000. Rice transposable elements: a survey of 73,000 sequence-tagged-connectors. Genome Res 10:982-90.
McCarthy, E.M., and J.F. McDonald. 2003. LTR_STRUC: a novel search and identification program for LTR retrotransposons. Bioinformatics 19:362-7.
McCouch, S.R., G. Kochert, Z.H. Yu, Z.Y. Wang, G.S. Khush, W.R. Coffman, and S.D. Tanksley. 1988. Molecular mapping of rice chromosomes. Theoretical and Applied Genetics 76:815-829.
McCouch, S.R., X. Chen, O. Panaud, S. Temnykh, Y. Xu, Y.G. Cho, N. Huang, T. Ishii, and M. Blair. 1997. Microsatellite marker development, mapping and applications in rice genetics and breeding. Plant Mol Biol 35:89-99.
McCouch, S.R., L. Teytelman, Y. Xu, K.B. Lobos, K. Clare, M. Walton, B. Fu, R. Maghirang, Z. Li, Y. Xing, Q. Zhang, I. Kono, M. Yano, R. Fjellstrom, G. DeClerck, D. Schneider, S. Cartinhour, D. Ware, and L. Stein. 2002. Development and mapping of 2240 new SSR markers for rice (Oryza sativa L.). DNA Res 9:199-207.
Nagaki, K., Z. Cheng, S. Ouyang, P.B. Talbert, M. Kim, K.M. Jones, S. Henikoff, C.R. Buell, and J. Jiang. 2004. Sequencing of a rice centromere uncovers active genes. Nat Genet 36:138-45.
Nonomura, K., and N. Kurata. 2001. The centromere composition of multiple repetitive sequences on rice chromosome 5. Chromosoma 110:284-91.
Ohmido, N., K. Kijima, Y. Akiyama, J.H. de Jong, and K. Fukui. 2000. Quantification of total genomic DNA and selected repetitive sequences reveals concurrent changes in different DNA families in indica and japonica rice. Mol Gen Genet 263:388-94.
Ouyang, S., and C.R. Buell. 2004. The TIGR Plant Repeat Databases: a collective resource for the identification of repetitive sequences in plants. Nucleic Acids Res 32 Database issue:D360-3.
Parsons, J.D. 1995. Miropeats: graphical DNA sequence comparisons. Comput Appl Biosci 11:615-9.
Paterson, A.H., J.E. Bowers, and B.A. Chapman. 2004. Ancient polyploidization predating divergence of the cereals, and its consequences for comparative genomics. Proc Natl Acad Sci U S A 101:9903-8.
Paterson, A.H., J.E. Bowers, M.D. Burow, X. Draye, C.G. Elsik, C.X. Jiang, C.S. Katsar, T.H. Lan, Y.R. Lin, R. Ming, and R.J. Wright. 2000. Comparative genomics of plant chromosomes. Plant Cell 12:1523-40.
Saji, S., Y. Umehara, B.A. Antonio, H. Yamane, H. Tanoue, T. Baba, H. Aoki, N. Ishige, J. Wu, K. Koike, T. Matsumoto, and T. Sasaki. 2001. A physical map with yeast artificial chromosome (YAC) clones covering 63% of the 12 rice chromosomes. Genome 44:32-7.
Sasaki, T. 2003. Rice Genome Analysis: Understanding the Genetic Secrets of the Rice Plant. Breeding Science 53:281-289.
Sasaki, T., T. Matsumoto, K. Yamamoto, K. Sakata, T. Baba, Y. Katayose, J. Wu, Y. Niimura, Z. Cheng, Y. Nagamura, B.A. Antonio, H. Kanamori, S. Hosokawa, M. Masukawa, K. Arikawa, Y. Chiden, M. Hayashi, M. Okamoto, T. Ando, H. Aoki, K. Arita, M. Hamada, C. Harada, S. Hijishita, M. Honda, Y. Ichikawa, A. Idonuma, M. Iijima, M. Ikeda, M. Ikeno, S. Ito, T. Ito, Y. Ito, Y. Ito, A. Iwabuchi, K. Kamiya, W. Karasawa, S. Katagiri, A. Kikuta, N. Kobayashi, I. Kono, K. Machita, T. Maehara, H. Mizuno, T. Mizubayashi, Y. Mukai, H. Nagasaki, M. Nakashima, Y. Nakama, Y. Nakamichi, M. Nakamura, N. Namiki, M. Negishi, I. Ohta, N. Ono, S. Saji, K. Sakai, M. Shibata, T. Shimokawa, A. Shomura, J. Song, Y. Takazaki, K. Terasawa, K. Tsuji, K. Waki, H. Yamagata, H. Yamane, S. Yoshiki, R. Yoshihara, K. Yukawa, H. Zhong, H. Iwama, T. Endo, H. Ito, J.H. Hahn, H.I. Kim, M.Y. Eun, M. Yano, J. Jiang, and T. Gojobori. 2002. The genome sequence and structure of rice chromosome 1. Nature 420:312-6.
Schueler, M.G., A.W. Higgins, M.K. Rudd, K. Gustashaw, and H.F. Willard. 2001. Genomic and genetic definition of a functional human centromere. Science 294:109-15.
Shen, Y.J., H. Jiang, J.P. Jin, Z.B. Zhang, B. Xi, Y.Y. He, G. Wang, C. Wang, L. Qian, X. Li, Q.B. Yu, H.J. Liu, D.H. Chen, J.H. Gao, H. Huang, T.L. Shi, and Z.N. Yang. 2004. Development of genome-wide DNA polymorphism database for map-based cloning of rice genes. Plant Physiol 135:1198-205.
Singh, N.K., S. Raghuvanshi, S.K. Srivastava, A. Gaur, A.K. Pal, V. Dalal, A. Singh, I.A. Ghazi, A. Bhargav, M. Yadav, A. Dixit, K. Batra, K. Gaikwad, T.R. Sharma, A. Mohanty, A.K. Bharti, A. Kapur, V. Gupta, D. Kumar, S. Vij, R. Vydianathan, P. Khurana, S. Sharma, W.R. McCombie, J. Messing, R. Wing, T. Sasaki, P. Khurana, T. Mohapatra, J.P. Khurana, and A.K. Tyagi. 2004. Sequence analysis of the long arm of rice chromosome 11 for rice-wheat synteny. Funct Integr Genomics 4:102-17.
Smit, AFA, Hubley, R & Green, P. RepeatMasker Open-3.0.
1996-2004 <http://www.repeatmasker.org>.
THE ARABIDOPSIS GENOME INITIATIVE. 2000. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408:796-815.
The Rice Chromosome 10 Sequencing Consortium. 2003. In-depth view of structure, activity, and evolution of rice chromosome 10. Science 300:1566-9.
Turcotte, K., S. Srinivasan, and T. Bureau. 2001. Survey of transposable elements from rice genomic sequences. Plant J 25:169-79.
Wendel, J.F. 2000. Genome evolution in polyploids. Plant Molecular Biology Reporter 42:225-249.
Wilson, W.A., S.E. Harrington, W.L. Woodman, M. Lee, M.E. Sorrells, and S.R. McCouch. 1999. Inferences on the genome structure of progenitor maize through comparative analysis of rice, maize and the domesticated panicoids. Genetics 153:453-73.
Wu, J., T. Maehara, T. Shimokawa, S. Yamamoto, C. Harada, Y. Takazaki, N. Ono, Y. Mukai, K. Koike, J. Yazaki, F. Fujii, A. Shomura, T. Ando, I. Kono, K. Waki, K. Yamamoto, M. Yano, T. Matsumoto, and T. Sasaki. 2002. A comprehensive rice transcript map containing 6591 expressed sequence tag sites. Plant Cell 14:525-35.
Wu, J., H. Yamagata, M. Hayashi-Tsugane, S. Hijishita, M. Fujisawa, M. Shibata, Y. Ito, M. Nakamura, M. Sakaguchi, R. Yoshihara, H. Kobayashi, K. Ito, W. Karasawa, M. Yamamoto, S. Saji, S. Katagiri, H. Kanamori, N. Namiki, Y. Katayose, T. Matsumoto, and T. Sasaki. 2004. Composition and structure of the centromeric region of rice chromosome 8. Plant Cell 16:967-76.
Wu, K.S., and S.D. Tanksley. 1993. Genetic and physical mapping of telomeres and macrosatellites of rice. Plant Mol Biol 22:861-72.
Wu, T., Y. Wang, and R. Wu. 1994. Transcribed repetitive DNA sequences in telomeric regions of rice (Oryza sativa). Plant Mol Biol 26:363-75.
Yamamoto, K., and T. Sasaki. 1997. Large-scale EST sequencing in rice. Plant Mol Biol 35:135-44.
Yoshimura, A., O. Ideta, and N. Iwata. 1997. Linkage map of phenotype and RFLP markers in rice. Plant Mol Biol 35:49-60.
Yu, J., S. Hu, J. Wang, G.K. Wong, S. Li, B. Liu, Y. Deng, L. Dai, Y. Zhou, X. Zhang, M. Cao, J. Liu, J. Sun, J. Tang, Y. Chen, X. Huang, W. Lin, C. Ye, W. Tong, L. Cong, J. Geng, Y. Han, L. Li, W. Li, G. Hu, X. Huang, W. Li, J. Li, Z. Liu, L. Li, J. Liu, Q. Qi, J. Liu, L. Li, T. Li, X. Wang, H. Lu, T. Wu, M. Zhu, P. Ni, H. Han, W. Dong, X. Ren, X. Feng, P. Cui, X. Li, H. Wang, X. Xu, W. Zhai, Z. Xu, J. Zhang, S. He, J. Zhang, J. Xu, K. Zhang, X. Zheng, J. Dong, W. Zeng, L. Tao, J. Ye, J. Tan, X. Ren, X. Chen, J. He, D. Liu, W. Tian, C. Tian, H. Xia, Q. Bao, G. Li, H. Gao, T. Cao, J. Wang, W. Zhao, P. Li, W. Chen, X. Wang, Y. Zhang, J. Hu, J. Wang, S. Liu, J. Yang, G. Zhang, Y. Xiong, Z. Li, L. Mao, C. Zhou, Z. Zhu, R. Chen, B. Hao, W. Zheng, S. Chen, W. Guo, G. Li, S. Liu, M. Tao, J. Wang, L. Zhu, L. Yuan, and H. Yang. 2002. A draft sequence of the rice genome (Oryza sativa L. ssp. indica). Science 296:79-92.
Zhang, Y., Y. Huang, L. Zhang, Y. Li, T. Lu, Y. Lu, Q. Feng, Q. Zhao, Z. Cheng, Y. Xue, R.A. Wing, and B. Han. 2004. Structural features of the rice chromosome 4 centromere. Nucleic Acids Res 32:2023-30.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top