跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.172) 您好!臺灣時間:2025/09/10 10:57
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:彭康軒
研究生(外文):Kang-Syuan Peng
論文名稱:VPIN與市場極端特性之探討:以臺灣指數期貨市場為例
論文名稱(外文):VPIN and extreme market conditions: evidence from Taiwan index futures market
指導教授:邱敬貿邱敬貿引用關係
指導教授(外文):JUN-MAO CHIU
口試委員:陳煒朋吳志強
口試委員(外文):Wei-Peng ChenChih-Chiang Wu
口試日期:2015-07-01
學位類別:碩士
校院名稱:元智大學
系所名稱:財務金融暨會計碩士班(財務金融學程)
學門:商業及管理學門
學類:一般商業學類
論文種類:學術論文
畢業學年度:103
語文別:英文
論文頁數:34
中文關鍵詞:VPIN指標高頻交易總體經濟宣告VIX
外文關鍵詞:VPIN metrichigh frequency tradingmacroeconomics announcementsVIX
相關次數:
  • 被引用被引用:0
  • 點閱點閱:976
  • 評分評分:
  • 下載下載:36
  • 收藏至我的研究室書目清單書目收藏:0
本篇論文使用了Easley et al. (2012a)所提出的VPIN指標來預測市場上因為流動性造成的波動。VPIN指標是根據訂單不均衡(order imbalance)和交易的強度(trade intensity)下去做估計,所以在現在高頻交易的市場上,VPIN可以更準確的預測市場上的波動。因為在高頻交易的環境下,訂單所傳達的資訊遠比時間所傳達的資訊來的多。我們利用了臺灣指數期貨的資料來估計VPIN指標,樣本期間從2007年1月1日至2008年12月31日,去研究VPIN指標是否可以預測臺指期的波動。接者我們定義了一些市場的極端特性,例如:總體經濟宣告、極端波動以及極端VIX。我們發現如果前一個bucket是極端波動和極端VIX,它的VPIN會顯著高於極它bucket的VPIN,但是這個結果沒有發生在總體經濟宣告的情況下。我們也發現VPIN指標能夠預測臺指期的波動,這種情況在金融海嘯時期更為明顯,但沒有任何結果顯示VPIN指標能夠預測VIX。
This research use the new procedure presented by Easley et al. (2012a) to estimate flow toxicity, which named volume-synchronized probability of informed trading, or the VPIN flow-toxicity metric. The VPIN metric is based on volume imbalance and trade intensity which can more accurate to predict the volatility in the high frequency trading (HFT) environment. Because in HFT, trade volume convey more information than clock-time. We use the Taiwan index futures’ (TX) data from 2007/01/01 to 2008/12/31 to estimate the VPIN metric to see whether the VPIN metric can predict TX’s volatility. Then, we define some extreme market conditions, including macroeconomics announcements, extreme volatility, and extreme VIX. We find that if it is the one bucket before extreme volatility and extreme VIX, it VPIN are more higher than the others buckets. But this results not happened in the pre-macroeconomics announcements. We also find the evidence the VPIN metric can forecast TX’s volatility, especially in the financial crisis period this phenomenon is more significant, but we find a little evidence that the VPIN metric can forecast the VIX.
Title Page…………………………………………………………………i
Letter of Approval………………………………………………………ii
Letter of Authority……………………………………………………iii
Abstract in Chinese……………………………………………………vi
Abstract in English……………………………………………………vii
Acknowledgement…………………………………………………………viii
Contents……………………………………………………………………ix
Table Contents……………………………………………………………x
Figure Contents……………………………………………………………x
1. Introduction………………………………………………………1
2. Literature review………………………………………………4
2.1 High frequency trading…………………………………………4
2.2 The characteristics of VPIN…………………………………5
2.3 Extreme market condition and VPIN…………………………7
3. Methodology………………………………………………………8
3.1 Data…………………………………………………………………8
3.2 Extreme market conditions……………………………………9
3.3 The VPIN toxicity metric……………………………………10
3.3.1 Time bars………………………………………………………10
3.3.2 Volume buckets…………………………………………………11
3.3.3 Buy volume and sell volume classification………………11
3.3.4 Order imbalance....................................12
3.3.5 Sample length……………………………………………………12
3.4 Empirical model…………………………………………………13
4. Empirical results………………………………………………14
4.1 Descriptive statistics and correlation…………………14
4.2 Extreme market conditions and VPIN………………………15
4.3 VPIN and Volatility/VIX………………………………………16
5. Conclusion………………………………………………………18
Reference……………………………………………………………………20


Table Contents
Table 1. Extreme market condition days……………………………22
Table 2. Taiwan macroeconomics announcements……………………22
Table 3. Macroeconomics announcement dates………………………23
Table 4. The descriptive statistics…………………………………24
Table 5. Pearson correlation…………………………………………25
Table 6. Extreme market conditions…………………………………26
Table 7. Volatility and VPIN…………………………………………28
Table 8. VIX and VPIN……………………………………………………31



Figure Contents
Figure 1. The VPIN metric innovations………………………………34
Figure 2. The VPIN metric………………………………………………34

Abad, D., Yag#westeur061#e, J., 2012. From PIN to VPIN: An introduction to order flow toxicity. Spanish Review of Financial Economics 10, 74-83.
Andersen, T. G., Bondarenko, O., 2014a. VPIN and the flash crash. Journal of Financial Markets 17, 1-46.
Andersen, T. G., Bondarenko, O., 2014b. Reflecting on the VPIN dispute. Journal of Financial Markets 17, 53-64.
Bauwens, L., Omrane, W. B., Giot, P., 2005. News announcements, market activity and volatility in the Euro/Dollar foreign exchange market. Journal of International Money and Finance 24, 1108–1125.
Bollerslev, T., Cai, J., Song, F. M., 2000. Intraday periodicity, long memory volatility, and macroeconomic announcement effects in the US Treasury bond market. Journal of Empirical Finance 7, 37-55.
Brogaard, J.A., 2010. High-frequency trading and its impact on market quality. Working Paper, Northwestern University.
Brogaard, J., Hendershott, T., Riordan, R., 2014. High frequency trading and price discovery. Review of Financial Studies 27, 2267-2306.
Chaboud, A.P., Chiquoine, B., Hjalmarsson, E., Vega, C., 2014. Rise of the machines: Algorithmic trading in the foreign market. Journal of Finance 69, 2045-2084.
Easley, D., Kiefer, N.M., O’Hara, M., Paperman, J.B., 1996. Liquidity, information, and infrequently traded stocks. Journal of Finance 51, 1405-1436.
Easley, D., L#westeur052#pez de Pardo, M.M., O’Hara, M., 2011a. The microstructure of the “Flash Crash”: Flow toxicity, liquidity crash, and the probability of informed trading. Journal of Portfolio Management 37, 118-128.
Easley, D., L#westeur052#pez de Pardo, M.M., O’Hara, M., 2012a. Flow toxicity and liquidity in a high-frequency world. Review of Financial Studies 25, 1457-1493.
Easley, D., L#westeur052#pez de Pardo, M.M., O’Hara, M., 2014. VPIN and the flash crash: A rejoinder. Journal of Financial Markets 17, 47-52.
Ederington, L. H., Lee, J. H., 1993. How markets process information: news releases and volatility. Journal of Finance 48, 1161-1191.
Hendershott, J., Jones, C.M., Menkveld, A.J, 2011. Does algorithmic trading improve liquidity? Journal of Finance 66, 1-33.
Hasbrouck, J., Saar, G., 2013. Low-latency trading. Journal of Financial Markets 16, 646-679.
Kirilenko, A., Kyle, A.S., Samadi, M., Tuzun, T., 2011. The flash crash: The impact of high-frequency trading on an electronic market. Unpublished Working Paper, Available at: http://ssrn.com/abstract=1686004.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top