跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.108) 您好!臺灣時間:2025/09/02 05:15
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳家文
研究生(外文):Chia-Wen Chen
論文名稱:電力負載型態分類之研究
論文名稱(外文):The Study of Load Pattern Classification
指導教授:陸臺根陸臺根引用關係
指導教授(外文):Tai-Ken Lu
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:96
中文關鍵詞:負載型態分類階層式叢集法小波理論
外文關鍵詞:ACFCCFLoad Pattern ClassificationHierarchical Clustering Algorithmwavelet
相關次數:
  • 被引用被引用:3
  • 點閱點閱:442
  • 評分評分:
  • 下載下載:56
  • 收藏至我的研究室書目清單書目收藏:0
摘要

近年來,電業解構,民營化、自由化的趨勢已在全球各地如火如荼地進行。要隨時隨地因應市場的變化,開發適宜的電力商品,勢必須對用戶用電行為有所認知,並建立適合的典型負載型態作為研擬方案的基礎。用戶負載型態分析可產生各行各業用戶的代表型態。本文使用小波轉換分析用戶負載資料,以分析其趨勢及變動性:接著使用叢集技術進行負載曲線及用戶分類。

本文除對序列叢集所需的前置處理及各種叢集方法加以比較說明,並使用訊號分析方法ACF與CCF函數分析序列,以及說明小波解析應用於負載序列分析的特性及進行叢集的效果。根據模擬結果,建立一基於ACF函數與CCF函數分析的快速分類演算流程。本文的演算流程可應用於實際資料的分析上作為負載型態分類之參考,進而產生有代表性的負載序列。
Abstract

In recent years, the electrical industries are deregulated, the trend of privatization and liberalization like a raging fire has carried on in global. The suitable electric power commodity is developed according to the market change anytime and anywhere to the user. Planner must have cognition of the behavior of the load, and establish suitable typical load pattern for program planning as the foundation. The load pattern analysis may produce all representative pattern of the various trades and occupations. This thesis uses the wavelet transform to analyze user’s load curve, to analyze its tendency and the mobility, then uses clustering technology to carry on the load curve and the user classification.

This thesis shows and compares pre-process and each kind of clustering method which the pattern clustering needs. The signal analysis method ACF and CCF function are used to analyze the load pattern, as well as shows the characteristic and the clustering affect when wavelet analysis is applied in the load pattern analysis. According to the above results, establishes one fast classified algorithm based on the ACF function and the CCF function analysis. This algorithm may be applied in the actual material as the reference of the load pattern classification, to produce the representative load sequence.
目錄
致謝 …………………………………………………………………….i
摘要 …………………………………………………………………… ii
英文摘要 ……………………………………………………………… iii
目錄 …………………………………………………………………… iv
圖目錄 ………………………………………………………………….vi
表目錄 …………………………………………………………………..x
第一章、緒論 …………………………………………………………. 1
1-1研究背景 …………………………………………………….....1
1-2研究文獻探討 ……………………………………………….....2
1-3研究目的 ……………………………………………………….5
1-4本文章節之說明 ……………………………………………….6
第二章、分類問題描述 ………………………………………………..7
2-1 負載型態分類 …………………………………………………7
2-2 負載型態分類所需考慮的因素 ……………………………..10
第三章、理論描述 ……………………………………………………12
3-1總述 …………………………………………………………...12
3-2負載曲線分析 ………………………………………………...12
3-3 ACF函數 ……………………………………………………...17
3-4 CCF函數 ……………………………………………………...19
3-5正規化 ………………………………………………………...21
3-6小波理論 ……………………………………………………...22
3-7叢集理論 ……………………………………………………...31
第四章、案例模擬與分析 …………………………………………….34
4-1 ACF與CCF案例模擬與分析 ………………………………..34
4-2 CCF係數設定選擇 …………………………………………...41
4-3小波係數特性驗證 …………………………………………...43
4-4序列正規化 …………………………………………………...45
4-5叢集分析 ……………………………………………………...46
4-6小波係數叢集分析 …………………………………………...49
4-7小波分層係數叢集與直接叢集比較 ………………………...50
4-8門檻值的設定 ………………………………………………...57
4-9模擬序列叢集 ………………………………………………...59
第五章、結論及未來研究方向 ………………………………………71
5-1結論 …………………………………………………………...71
5-2未來研究方向 ………………………………………………...73
參考文獻 ………………………………………………………………74
附錄 ……………………………………………………………………77

圖目錄
圖3-1負載型態研究流程 ……………………………………………..13
圖3-2分類流程圖 ……………………………………………………..16
圖3-3 sin函數之ACF函數 …………………………………………...18
圖3-4隨機序列之ACF函數 …………………………………………18
圖3-5週期7序列之ACF函數 ………………………………………18
圖3-6週期24序列之ACF函數 ……………………………………..18
圖3-7 sin函數與cos函數之CCF函數 ………………………………19
圖3-8相隔期數2之兩訊號 …………………………………………..20
圖3-9相隔2時期兩訊號之CCF函數 ………………………………20
圖3-10序列A之圖形 …………………………………………………21
圖3-11序列B之圖形 …………………………………………………22
圖3-12.a HAAR母函數 ………………………………………………23
圖3-12.b DB2母函數 …………………………………………………24
圖3-12.c Morlet母函數 ……………………………………………….24
圖3-12.d Mexican Hat母函數 ………………………………………...24
圖3-13 HAAR與db2母函數之近似係數 ……………………………28
圖3-14 HAAR與db2母函數之差值係數 ……………………………29
圖3-15序列A循環序列 ……………………………………………..30
圖3-16聚合式階層叢集演算法流程 …………………………………32
圖3-17叢集結果的樹狀結構圖 ……………………………………....33
圖4-1序列A ……………………………………………………………35
圖4-2序列B ……………………………………………………………35
圖4-3序列A之ACF函數 ……………………………………………35
圖4-4序列B之ACF函數 ……………………………………………36
圖4-5序列A和B之CCF函數圖形 ………………………………..37
圖4-6模擬實際用電曲線 …………………………………………….37
圖4-7模擬序列之ACF函數 …………………………………………37
圖4-8測試序列C …..………………………………………………….38
圖4-9 20段12小時遺失序列圖形…………………………………….39
圖4-10 20段12小時遺失序列ACF函數……………………………39
圖4-11 5段6小時遺失序列圖形 …………………………………….39
圖4-12 5段6小時遺失序列ACF函數 ………………………………40
圖4-13五條測試序列 …………………………………………………41
圖4-14小波係數測試序列……………………………………………43
圖4-15 HAAR小波係數,近似係數(a),差值係數(b) ……………44
圖4-16 db2小波係數,近似係數(a),差值係數(b) ……………….44
圖4-17 db3小波係數,近似係數(a),差值係數(b) ………………...44
圖4-18未進行正規化之原始序列C、D …………………………...45
圖4-19序列C、D進行正規化後之圖形 …………………………....46
圖4-20測試資料的叢集結果 ………………………………………...47
圖4-21序列正規化後的叢集結果 ……………………………………48
圖4-22使用小波係數之叢集結果 ……………………………………49
圖4-23 階層1近似係數叢集 ………………………………………..51
圖4-24 階層2近似係數叢集 ………………………………………..52
圖4-25 階層3近似係數叢集 ………………………………………..53
圖4-26 階層1差值係數叢集 ………………………………………..54
圖4-27 階層2差值係數叢集 ………………………………………..55
圖4-28 階層3差值係數叢集 ………………………………………..56
圖4-29 十組一週為週期之樣本序列 ………………………………60
圖4-30 十組一日為週期之序列樣本 ………………………………..61
圖4-31 二組八小時為週期之序列樣本 ……………………………..62
圖4-32 模擬序列分類直接叢集結果 ………………………………..62
圖4-33 模擬序列直接分類14組叢集結果 …………………………63
圖4-34 週期8叢集結果 ……………………………………………..64
圖4-35 週期8之叢集 ………………………………………………..65
圖4-36 週期24叢集結果 ……………………………………………65
圖4-37 週期24叢集 …………………………………………………66
圖4-38 週期168叢集結果 …………………………………………..67
圖4-39 週期168叢集 ………………………………………………..68
圖4-40 週期24叢集,門檻值為1/2距離值標準差 ………………. 70

表目錄
表3-1曲線A正規化後之值 …………………………………………22
表3-2曲線B正規化後之值 …………………………………………22
表3-3曲線A之HAAR近似係數 …………………………………..26
表3-4曲線A之HAAR差值係數 …………………………………..26
表3-5曲線B之HAAR近似係數 …………………………………..26
表3-6曲線B之HAAR差值係數 …………………………………..26
表3-7 db2小波母函數 ……………………………………………….27
表3-8曲線A正規化後前端與後段各填補二元素 ………………...30
表3-9序列A之第一層db2小波轉換差值係數與一週期係數 …...30
表4-1序列遺失資料與ACF週期鑑定………………………………40
表4-2五組測試樣本 …………………………………………………42
表4-3五組序列之交叉相關函數(CCF) ……………………………..42
表4-4原始序列叢集結果 …………………………………………...47
表4-5正規化後之序列叢集結果 …………………………………...47
表4-6小波係數之叢集結果 ………………………………………...49
表4-7直接叢集與小波係數叢集時間比較 ………………………...51
表4-8 階層1近似係數叢集結果 …………………………………..52
表4-9 階層2近似係數叢集結果 …………………………………..52
表4-10 階層3近似係數叢集結果 ………………………………….53
表4-11 階層1差值係數叢集結果 ………………………………….54
表4-12 階層2差值係數叢集結果 ………………………………….55
表4-13 階層3差值係數叢集結果 ………………………………….56
表4-14 階層1近似係數叢集結果 thd=2.21 ……………………….57
表4-15 階層2近似係數叢集結果 thd=1.96 ……………………….57
表4-16 階層3近似係數叢集結果 thd=1.75 ……………………….57
表4-17 階層1差值係數叢集結果 thd=1.00 ……………………….58
表4-18 階層2差值係數叢集結果 thd=1.15 ……………………….58
表4-19 階層3差值係數叢集結果 thd=1.15 ……………………….58
表4-20 模擬序列ACF-CCF叢集時間 ……………………………..64
研究文獻

[1] B. Murray, Electricity Markets-Investment Performance and Analysis: JOHN WILEY & SONS, 1998.
[2] J. Abaravicius, J. Pyrko, and K. Sernhed, "Analysing Load Demand in Households," http://mail.mtprog.com/CD_Layout/Day_2_22.06.06/1115-1300/ID2_Abaravicius_final.pdf.
[3] U. Bergstr�卌, "Traditional Load Management Versus Real Time Load Control," http://www.enersearch.se/knowledgebase/publications/by_project/ISES/ises5/rtlc/benefits6.pdf.
[4] S. Gašperič, D. Gerbec, and F. Gubina, "Determination of the Consumer's Load Porfiles," http://www.telmark.org/2002Sep/2-5_Gasperic.pdf.
[5] E. B. Hreinsson, "Optimal Load Management Policies in the Icelandic Power Syatem," in Department of Electrical Engineering University of Iceland: http://www.hi.is/~egill/rit/pscc/pscc90_1.pdf.
[6] "General Characteristics of the Power Industry and Its Components," http://www.gateway2russia.com/art.php?artid=24163&rubid=.
[7] G. Chicco, R. Napoli, P. Postolache, M. Scutariu, and C. Toader, "Customer Characterization Options for Improving the Tariff Offer," IEEE Transcation on Power Systems, vol. 18, pp. 381-387, 2003.
[8] G. Chicco, R. Napoli, P. Postolache, M. Scutariu, and C. Toader, "Electric Energy Customer Characterisation for Developing Dedicated Market Strategies," in Power Tech Proceedings, 2001.
[9] C. S. Chen, J. C. Hwang, and C. W. Wuang, "Application of Load Survey Systems to Proper Tariff disign," IEEE Transactions on Power Systems, vol. 12, pp. 1746-1751, 1997.
[10] M.Y.Cho and Y.W.Chen, "Fixed/switched Type Shunt Capacitor Planning of Distribution Systems by Considering Customer Load Patterns and Simplified Feeder Model," IEE Proceeding Cenference Transmission and Distribution, vol. 144, pp. 533-540, 1997.
[11] S.-S. Lee, J.-K. Park, S.-I. Moon, and Y.-T. Yoon, "Northeast Asia Interconnection, and Power Flow Considering Seasonal Load Patterns," IEEE Power Engineering Society General Meeting, pp. 2904-2909, 2005.
[12] Y.-L. Ke, "Distribution Feeder Reconfiguration for Load Balancing and Service Restoration by Using G-Nets Inference Mechanism," IEEE TRANSACTIONS ON POWER DELIVERY, vol. 19, pp. 1426-1433, 2004.
[13] C.-H. Lin, C.-S. Chen, H.-J. Chuang, and C.-Y. Ho, "Heuristic Rule-Based Phase Balancing of Distribution Systems by Considering Customer Load Patterns," IEEE Transactions on Power Systems, vol. 20, pp. 709-716, 2005.
[14] R. Lamedica, L. Santolamazza, G. Fracassi, G. Martinelli, and A. Prudenzi, "A Novel Methodology Based on Clustering Techniques for Automatic Processing of MV Feeder Daily Load Patterns," IEEE Power Engineering Society Summer Meeting, pp. 96-101, 2000.
[15] E. M. Sroczan and A. Urbaniak, "Simulation of Variation the Power Load of Industrial Plant for Choice an Economy Rates of Energy," http://www.scs-europe.net/services/ess2002/PDF/manuf-9.pdf.
[16] H.-C. Cuo and Y.-Y. HSU, "Distribution System Load Estimation And Service Restoration Using a Fuzzy Set Approach," IEEE Transactions on Power Delivery, vol. 8, pp. 1950-1957, 1993.
[17] G. Chicco, R. Napoli, and F. Piglione, "Load Pattern Clustering for Short-Term Load Forecasting of Anomalous Days," in IEEE Porto Power Tech Conference, 2001.
[18] J.-Y. Boivin and Y. Anguill, "Efficiency Home Automation For the Future," http://tdworld.com/mag/power_efficiency_home_automation/index.html, 1996.
[19] B. D. Pitt and D. S. Kirschen, "Application of Data Mining Techniques to Load Profiling," in Proc. 21st IEEE Int. Conf. Power Ind. Comput., 1999, pp. 131-136.
[20] V. Figueiredo, F. Rodrigues, Z. Vale, and J. B. Gouveia, "An Electric Energy Consumer Characterization Framework Based on Data Mining Techniques," IEEE Transactions on Power Systems, vol. 20, pp. 596-602, 2005.
[21] D. Gerbec, S. Gašperič, I. Šmon, and F. Gubina, "Allocation of the Load Profiles to Consumers Using Probabilistic Neural Networks," IEEE Transactions on Power Systems, vol. 20, pp. 548-555, 2005.
[22] A. Cagni, E. Carpaneto, G. Chicco, and R. Napoli, "Characterisation of the Aggregated Load Patterns for Extra-Urban Residential Customer Groups," in IEEE MELECON, 2004, pp. 951-954.
[23] H. Liao and D. Niebur, "Load Profile Estimation in Electric Transmission Networks Using Independent Component Analysis," IEEE Transactions on Power Systems, vol. 18, pp. 707-715, 2003.
[24] D. Gerbec, S. Gašperič, I. Šmon, and F.Gubina, "An Approach to Customers Daily Load Profile Determination," in Proc. IEEE Power Eng. Soc. Summer Meeting, 2002, pp. 587-591.
[25] "ELECTRICITY TARIFF RESTRUCTURING," National Energy Policy Office, 2001.
[26] J. Han and M. Kamber, Data Mining Concepts and Techniques: Morgan Kanufmann.
[27] S. L. Lauritzen, "The EM Algorithm for Graphical Association Models With Missing Data," Computational Statistics and Data Analysis, vol. 19, pp. 191-201, 1995.
[28] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu, "A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise," Published in Proceedings of 2nd International Conference on Knowledge Discovery and Data Mining (KDD-96).
[29] M. Ankerst, M. Breunig, H.-P. Kriegel, and J. Sander, "OPTIC:Ordering points to identify the clustering structure," in ACM-SIGMD Int. Conf. Management of Data, 1999, pp. 49-60.
[30] J. Y. Wei Wang, Richard Muntz, "STING: A Statistical Information Grid Approach to Spatial Data MINING," Proceedings of 1997 International Conference of the Very Large Data Bases (VLDB'97), pp. 186-195, 1997.
[31] S. C. Gholamhosein Sheikholeslami, Aidong Zhang, "WaveCluster: A Multi-Resolution Clustering Approach for Very Large Spatial Databases *," In Proc. 1998 Int. Conf. Very Large Databases (VLDB'98), pp. 428-439, 1998.
[32] D. H. FISHER, "Knowledge Acquisition Via Incremental Conceptual Clustering," Machine Learning, vol. 2, pp. 139-172, 1987.
[33] G. Chicco, R. Napoli, F. Piglione, P. Postolache, M. Scutariu, and C. Toader, "Load Pattern-Based Classification of Electricity Customers," IEEE Transactions on Power Systems, vol. 19, pp. 1232-1239, 2004.
[34] P. J. Brockwell and R. A. Davis, Introduction to Time Series and Forecasting: Springer, 1996.
[35] R. M. Rao and A. S. Bopardikar, Wavelet Transforms: Introduction to Theorey and Applications: Addison-Wesley, 1998.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top