|
Angiolillo, A.L., C. Sgadari, D.D. Taub, F. Liao, J.M. Farber, S. Maheshwari, H.K. Kleinman, G.H. Reaman, and G. Tosato. 1995. Human interferon-inducible protein 10 is a potent inhibitor of angiogenesis in vivo. The Journal of experimental medicine. 182:155-162. Bruno, J.G. 2013. A review of therapeutic aptamer conjugates with emphasis on new approaches. Pharmaceuticals. 6:340-357. Cho, E.J., J.W. Lee, and A.D. Ellington. 2009. Applications of aptamers as sensors. Annual review of analytical chemistry. 2:241-264. Dassie, J.P., X.Y. Liu, G.S. Thomas, R.M. Whitaker, K.W. Thiel, K.R. Stockdale, D.K. Meyerholz, A.P. McCaffrey, J.O. McNamara, 2nd, and P.H. Giangrande. 2009. Systemic administration of optimized aptamer-siRNA chimeras promotes regression of PSMA-expressing tumors. Nature biotechnology. 27:839-849. Drescher, D.G., N.A. Ramakrishnan, and M.J. Drescher. 2009. Surface plasmon resonance (SPR) analysis of binding interactions of proteins in inner-ear sensory epithelia. Methods in molecular biology. 493:323-343. Ellington, A.D., and J.W. Szostak. 1990. In vitro selection of RNA molecules that bind specific ligands. Nature. 346:818-822. Ellington, A.D., and J.W. Szostak. 1992. Selection in vitro of single-stranded DNA molecules that fold into specific ligand-binding structures. Nature. 355:850-852. Famulok, M., and G. Mayer. 2011. Aptamer modules as sensors and detectors. Acc Chem Res. 44:1349-1358. Fass, L. 2008. Imaging and cancer: a review. Molecular oncology. 2:115-152. Ferreira, C.S., M.C. Cheung, S. Missailidis, S. Bisland, and J. Gariepy. 2009. Phototoxic aptamers selectively enter and kill epithelial cancer cells. Nucleic Acids Res. 37:866-876. Gold, L., N. Janjic, T. Jarvis, D. Schneider, J.J. Walker, S.K. Wilcox, and D. Zichi. 2012. Aptamers and the RNA world, past and present. Cold Spring Harbor perspectives in biology. 4. Haworth, K., F. Smith, M. Zoupa, M. Seppala, P.T. Sharpe, and M.T. Cobourne. 2007. Expression of the Scube3 epidermal growth factor-related gene during early embryonic development in the mouse. Gene expression patterns : GEP. 7:630-634. Hicke, B.J., and A.W. Stephens. 2000. Escort aptamers: a delivery service for diagnosis and therapy. The Journal of clinical investigation. 106:923-928. Hicke, B.J., A.W. Stephens, T. Gould, Y.F. Chang, C.K. Lynott, J. Heil, S. Borkowski, C.S. Hilger, G. Cook, S. Warren, and P.G. Schmidt. 2006. Tumor targeting by an aptamer. Journal of nuclear medicine : official publication, Society of Nuclear Medicine. 47:668-678. Huber, M.A., N. Kraut, and H. Beug. 2005. Molecular requirements for epithelial-mesenchymal transition during tumor progression. Current opinion in cell biology. 17:548-558. Jayasena, S.D. 1999. Aptamers: an emerging class of molecules that rival antibodies in diagnostics. Clinical chemistry. 45:1628-1650. Jiang, B.H., and L.Z. Liu. 2008. AKT signaling in regulating angiogenesis. Current cancer drug targets. 8:19-26. Jiang, B.H., and L.Z. Liu. 2009. PI3K/PTEN signaling in angiogenesis and tumorigenesis. Advances in cancer research. 102:19-65. Keefe, A.D., S. Pai, and A. Ellington. 2010. Aptamers as therapeutics. Nature reviews. Drug discovery. 9:537-550. Lee, S.J., B.S. Youn, J.W. Park, J.H. Niazi, Y.S. Kim, and M.B. Gu. 2008. ssDNA aptamer-based surface plasmon resonance biosensor for the detection of retinol binding protein 4 for the early diagnosis of type 2 diabetes. Analytical chemistry. 80:2867-2873. Levy-Nissenbaum, E., A.F. Radovic-Moreno, A.Z. Wang, R. Langer, and O.C. Farokhzad. 2008. Nanotechnology and aptamers: applications in drug delivery. Trends in biotechnology. 26:442-449. Li, S., H. Xu, H. Ding, Y. Huang, X. Cao, G. Yang, J. Li, Z. Xie, Y. Meng, X. Li, Q. Zhao, B. Shen, and N. Shao. 2009. Identification of an aptamer targeting hnRNP A1 by tissue slide-based SELEX. The Journal of pathology. 218:327-336. Luangdilok, S., C. Box, K. Harrington, P. Rhys-Evans, and S. Eccles. 2011. MAPK and PI3K signalling differentially regulate angiogenic and lymphangiogenic cytokine secretion in squamous cell carcinoma of the head and neck. European journal of cancer. 47:520-529. Majumder, P., K.N. Gomes, and H. Ulrich. 2009. Aptamers: from bench side research towards patented molecules with therapeutic applications. Expert opinion on therapeutic patents. 19:1603-1613. Nagata, D., M. Mogi, and K. Walsh. 2003. AMP-activated protein kinase (AMPK) signaling in endothelial cells is essential for angiogenesis in response to hypoxic stress. J Biol Chem. 278:31000-31006. Ng, E.W., D.T. Shima, P. Calias, E.T. Cunningham, Jr., D.R. Guyer, and A.P. Adamis. 2006. Pegaptanib, a targeted anti-VEGF aptamer for ocular vascular disease. Nature reviews. Drug discovery. 5:123-132. Ni, X., M. Castanares, A. Mukherjee, and S.E. Lupold. 2011. Nucleic acid aptamers: clinical applications and promising new horizons. Curr Med Chem. 18:4206-4214. Osborne, S.E., I. Matsumura, and A.D. Ellington. 1997. Aptamers as therapeutic and diagnostic reagents: problems and prospects. Curr Opin Chem Biol. 1:5-9. Perlikos, F., K.J. Harrington, and K.N. Syrigos. 2013. Key molecular mechanisms in lung cancer invasion and metastasis: a comprehensive review. Critical reviews in oncology/hematology. 87:1-11. Radi, A.-E. 2011. Electrochemical Aptamer-Based Biosensors: Recent Advances and Perspectives. International Journal of Electrochemistry. 2011. Song, G.H., J. Wang, J.C. Lu, H.Y. Xu, Z.Q. Zhao, Q.L. Tang, C.Y. Zou, J.Q. Yin, X. Xie, and J.N. Shen. 2014. Role of SCUBE3 in promoting osteosarcoma cell growth and its association with prognosis. Journal of Southern Medical University. 34:617-621. Song, K.M., S. Lee, and C. Ban. 2012. Aptamers and their biological applications. Sensors. 12:612-631. Steeg, P.S. 2003. Metastasis suppressors alter the signal transduction of cancer cells. Nature reviews. Cancer. 3:55-63. Steeg, P.S. 2006. Tumor metastasis: mechanistic insights and clinical challenges. Nature medicine. 12:895-904. Tan, W., H. Wang, Y. Chen, X. Zhang, H. Zhu, C. Yang, R. Yang, and C. Liu. 2011. Molecular aptamers for drug delivery. Trends in biotechnology. 29:634-640. Tang, S.Y., and T. Alliston. 2013. Regulation of postnatal bone homeostasis by TGFbeta. BoneKEy reports. 2:255. Tu, C.F., K.C. Tsao, S.J. Lee, and R.B. Yang. 2014. SCUBE3 (Signal Peptide-CUB-EGF Domain-containing Protein 3) Modulates Fibroblast Growth Factor Signaling during Fast Muscle Development. J Biol Chem. Tuerk, C., and L. Gold. 1990. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science. 249:505-510. Wang, R.E., Y. Zhang, J. Cai, W. Cai, and T. Gao. 2011. Aptamer-based fluorescent biosensors. Curr Med Chem. 18:4175-4184. Wu, B.T., Y.H. Su, M.T. Tsai, S.M. Wasserman, J.N. Topper, and R.B. Yang. 2004. A novel secreted, cell-surface glycoprotein containing multiple epidermal growth factor-like repeats and one CUB domain is highly expressed in primary osteoblasts and bones. J Biol Chem. 279:37485-37490. Wu, Y.Y., K. Peck, Y.L. Chang, S.H. Pan, Y.F. Cheng, J.C. Lin, R.B. Yang, T.M. Hong, and P.C. Yang. 2011. SCUBE3 is an endogenous TGF-beta receptor ligand and regulates the epithelial-mesenchymal transition in lung cancer. Oncogene. 30:3682-3693. Xavier, G.M., L. Panousopoulos, and M.T. Cobourne. 2013. Scube3 is expressed in multiple tissues during development but is dispensable for embryonic survival in the mouse. PloS one. 8:e55274. Yang, H.Y., C.F. Cheng, B. Djoko, W.S. Lian, C.F. Tu, M.T. Tsai, Y.H. Chen, C.C. Chen, C.J. Cheng, and R.B. Yang. 2007. Transgenic overexpression of the secreted, extracellular EGF-CUB domain-containing protein SCUBE3 induces cardiac hypertrophy in mice. Cardiovasc Res. 75:139-147. Yang, M., M. Guo, Y. Hu, and Y. Jiang. 2013. Scube regulates synovial angiogenesis-related signaling. Medical hypotheses. 81:948-953. Yu, H., and R. Jove. 2004. The STATs of cancer--new molecular targets come of age. Nature reviews. Cancer. 4:97-105. Zhang, Y., H. Hong, and W. Cai. 2011. Tumor-targeted drug delivery with aptamers. Curr Med Chem. 18:4185-4194. Zhao, C., Q. qin, Q. Wang, J. Zhang, Y. Xu, W. Li, M. Gu, S. Chen, and A. Deng. 2013. SCUBE3 overexpression predicts poor prognosis in non-small cell lung cancer. Bioscience trends. 7:264-269.
|