跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.88) 您好!臺灣時間:2026/02/15 05:42
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張誜巗
研究生(外文):Chang, So-Yen
論文名稱:稀釋精液之保存與離心對 X、Y 精子比率與人工授精後裔性比率之影響
論文名稱(外文):Effects of storage of diluted semen and centrifugation on the ratio of X- and Y-spermatozoa and sex ratio of offsprings after artificial insemination in pigs
指導教授:陳銘正陳銘正引用關係
指導教授(外文):Chen, Ming-Cheng
口試委員:陳銘正陳威戎劉秀洲林育安
口試委員(外文):Chen, Ming-ChengChen, Wei-JungLiu, Hsiu-ChouLin, Yu-An
口試日期:2013-01-29
學位類別:碩士
校院名稱:國立宜蘭大學
系所名稱:生物技術與動物科學系生物技術碩士班
學門:農業科學學門
學類:畜牧學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:106
中文關鍵詞:選性繁殖性比率齒釉蛋白基因XY 精子分選
外文關鍵詞:Sex selectionSex ratioAmelogenin geneXY sperm selection
相關次數:
  • 被引用被引用:0
  • 點閱點閱:535
  • 評分評分:
  • 下載下載:24
  • 收藏至我的研究室書目清單書目收藏:0
本試驗乃評估藉由 X 與 Y 精子存活時間之差異,搭配離心程序,藉此分離 X 與 Y 精子,生產較多特定性別豬之可能性。試驗分二部分,試驗一為評估稀釋精液保存條件對 X 與 Y 精子比率及人工授精後裔性比率之影響,試驗二則建立快速準確之 X 與 Y 精子鑑別方法。試驗一將濃厚精液分別以短效型 (BTS) 與長效型 (Safe-Cell) 稀釋液進行稀釋,並將稀釋精液保存於精液冰箱 (16-18℃) 與室溫 (23-25℃),保存 1 日、3 日與 5 日,最後經由離心分層,評估精液之保存條件與離心分層對精液品質與 X 精子比率之影響。進一步挑選 BTS 與 Safe-Cell 稀釋液,並製成稀釋精液保存於 16-18℃ 之精液冰箱中,保存 3 日後離心分層,分別取上下層精液對繁殖場之母豬進行人工授精,評估對母豬懷孕率、分娩率、產仔數與後裔性比率之影響。試驗結果顯示,稀釋精液之精子濃度受到離心分層、稀釋液x離心分層與保存溫度 x 離心分層之影響;精子活動力受到稀釋液、保存時間、離心分層與稀釋液 x 保存時間之影響;精子頭巾完整性受到稀釋液、保存溫度、保存時間與離心分層之影響;精子存活率受到保存溫度、保存時間、離心分層、稀釋液 x 保存時間與稀釋液 x 保存溫度 x 保存時間之影響;進一步對 X 精子比率進行分析,各組間均無顯著差異;人工授精之結果顯示,不論是在懷孕率、分娩率、平均產仔數與平均活仔數各組間均無顯著差異;後裔性比率部分,BTS 上下層稀釋精液之間無顯著差異,而 Safe-Cell下層稀釋精液之後裔性比率顯著高於上層者。試驗二以齒釉蛋白基因設計專一性引子對與 X、Y 精子核酸探針,進行即時定量聚合酶鏈鎖反應,以絕對定量建立標準曲線後,分別以不同比例之公豬與母豬基因組 DNA 進行混合,評估 X、Y 精子鑑定技術之準確性。試驗結果顯示,應用齒釉蛋白基因之特異性引子對可以成功增幅 AMEL-X 與 AMEL-Y 之 DNA 片段,且利用 AMEL-X 與 AMEL-Y 螢光核酸探針可以專一性偵測即時定量聚合酶鏈鎖反應之 AMEL-X 與 AMEL-Y PCR 產物。本試驗也成功應用 37.5-600 ng 不同數量之公豬肝臟組織基因組 DNA 與 X 與 Y 染色體數量建立標準回歸曲線,R2 值均為 0.99。進一步檢測不同比例混合之公豬與母豬基因組 DNA,顯示具有高度準確性,且可以成功估算 10% 差距之 X 染色體比率。最後檢測 5 頭不同公豬精液之 X 精子比率,發現公豬精液之 X、Y 精子比率具有個體差異。總結上述,本試驗已成功建立齒釉蛋白基因即時定量聚合酶鏈鎖反應檢測 X、Y 精子比率之技術。不論是長效型 Safe-Cell 或短效型 BTS 稀釋液,皆可保存精液 3 日而不影響精液品質,但保存 5 日後之精子活動力與存活率則有顯著性降低。利用不同稀釋液、保存溫度、保存時間與離心分層未能有效分離 X 與 Y 精子,但以 Safe-Cell 稀釋精液並保存於 18℃ 保存 3 日後離心,取上層與下層精子進行人工授精,分別可以獲得較高比率之雌性與雄性仔豬。
The objective of this study was to use centrifugation and differences between X and Y sperms in terms of lifespan to separate the sperms and produce more sex-specific pigs. For this purpose we performed two experiments. First, we estimated the effects of storage conditions and centrifugation on semen quality and X-bearing sperm ratio of diluted boar semen, and determined the sex ratios of offsprings after artificial insemination in pigs. Second, we established an efficient technique to determine the proportions of X- and Y-bearing spermatozoa. In experiment 1, we used short-term (BTS) and long-term (Safe-Cell) extenders to dilute the boar semen. Semen was stored at 16-18°C or 23-25°C for 1, 3, and 5 days. Subsequently, the diluted semen was centrifuged at 250 ×g for 4 min. The effects of storage conditions and centrifugation on semen quality and X sperm ratios were estimated. BTS or Safe-Cell diluted boar semen was also stored at 16-18°C for 3 days and then centrifuged. The semen from upper and lower layers was used to inseminate sows in a breeding farm. The pregnancy rates, farrowing rates, and litter sizes of the sows and the sex ratios of offspring were estimated. The results showed that centrifugation, extender × centrifugation and extender × storage temperature influenced the concentration of diluted semen; extender, storage time, centrifugation and extender × storage time influenced the sperm motility; extender, storage temperature, storage time, centrifugation influenced the sperm acrosome integrity; storage temperature, storage time, centrifugation, extender × storage time and extender × storage temperature × storage time influenced the sperm viability. The proportions of X sperm were not significantly different in all of these groups. The results of artificial insemination showed that pregnancy rate, farrowing rate, litter size, and live piglets of the sows inseminated by these semens were not significantly different in all of the groups. The sex ratio of offspring using the upper layer of BTS semen was not significantly different from that using the lower layer, while the sex ratio of offspring from Safe-Cell semen from the lower layer was higher than that from the upper layer (P < 0.05). In experiment 2, we used one set of primers and two probes designed based on the specific sequences of AMEL-X and AMEL-Y genes on the X and Y chromosomes, respectively. A standard curve for X- and Y-chromosome copies was established using Q-PCR. This was used to detect the different X ratios from mixtures of different male and female gDNA to estimate the accuracies of X- or Y-bearing spermatozoa determination. These results showed that specific AMEL-X and AMEL-Y DNA fragments were amplified successfully using AMEL gene-specific primers, and that the AMEL-X or AMEL-Y probe could specifically detect AMEL-X or AMEL-Y PCR products by Q-PCR. Furthermore we successfully used 37.5–600 ng of male liver gDNA to establish standard curves for X- and Y-chromosome numbers. The R2 values were 0.99 for both chromosomes. Further, we detected different X ratios in male and female gDNA mixtures and found that Q-PCR could quantify the proportion of X chromosomes with 10% differences. Finally, we estimated the proportions of X sperms in semen of 5 individual boars and found that the proportions of X sperm were differenct among 5 boar semen. In conclusion, we established Q-PCR for X- and Y-bearing spermatozoa as determined by the amelogenin gene. Boar semen diluted in Safe-Cell or BTS extenders and stored for 3 days did not influence semen quality. However, diluted semen stored for 5 days had significantly reduced sperm motility and viability. The external factors combined with centrifugation could not efficiently separate X- and Y-bearing spermatozoa. However, we used the upper and lower layers of Safe-Cell semen that were stored at 18°C for 3 days and subsequently centrifuged to inseminate sows which tended to produce more female and male offspring, respectively.
中文摘要……………………………………………………………………… I
英文摘要……………………………………………………………………… III
致謝…………………………………………………………………………… VI
表目錄………………………………………………………………………… VIII
表目錄………………………………………………………………………… XIII
圖目錄………………………………………………………………………… XIV
附次…………………………………………………………………………… XVI
壹、前言……………………………………………………………………… 1
貳、文獻檢討………………………………………………………………… 3
一、性別與性比率…………………………………………………………… 3
二、影響性比率之因素……………………………………………………… 4
(一) 卵母細胞成熟程度……………………………………………… 4
(二) 體外受精時間…………………………………………………… 5
(三) 人工授精時間…………………………………………………… 6
(四) 體外培養液之能量來源………………………………………… 7
(五) 胚移置…………………………………………………………… 7
(六) 雌性動物之營養狀態…………………………………………… 8
(七) 環境因子………………………………………………………… 8
三、選性繁殖之方法………………………………………………………… 9
(一) 胚性別篩選……………………………………………………… 9
(二) 調整受精條件…………………………………………………… 10
(三) X、Y精子分離…………………………………………………… 10
1. 白蛋白管柱分離法……………………………………………… 10
2. 密度梯度離心法………………………………………………… 11
3. 上游法…………………………………………………………… 12
4. 免疫分離法……………………………………………………… 13
5. 流式細胞儀原理與缺點………………………………………… 14
(四) X、Y 精子鑑別方法..………………………………………… 15
1. 巢式聚合酶鏈鎖反應…………………………………………… 15
2. 螢光原位雜交…………………………………………………… 16
3. 流式細胞儀……………………………………………………… 18
4. 即時定量聚合酶鏈鎖反應……………………………………… 19
(五) 性別特異性基因………………………………………………… 20
1. SRY 基因……………………………………………………… 20
2. ZF 基因………………………………………………………… 21
3. Amelogenin 基因…………………………………………… 22
四、選性繁殖之專利趨勢分析…………………………………………… 22
五、豬選性繁殖之發展現況……………………………………………… 24
(一) 流式細胞儀在養豬產業應用之侷限性………………………… 24
(二) 人工授精與生殖技術之改良與應用…………………………… 24
(三) X 與 Y 精子表面特異性抗原及其應用……………………… 25
(四) 應用 X 與 Y 精子差異性開發新穎之選性繁殖方法……… 27
參、材料方法……………………………………………………………… 28
一、精液來源……………………………………………………………… 28
二、母豬來源……………………………………………………………… 28
三、精液品質檢測………………………………………………………… 28
(一) 精子濃度……………………………………………………… 28
(二) 精子活力……………………………………………………… 29
(三) 精子成熟率、形態正常率與頭巾完整性…………………… 29
(四) 精子存活率…………………………………………………… 29
四、核酸萃取……………………………………………………………… 30
(一) 組織基因組 DNA萃取………………………………………… 30
(二) 精子基因組 DNA萃取………………………………………… 31
(三) 質體DNA萃取………………………………………………… 31
五、即時定量PCR檢測X與Y精子比率…………………………………… 32
(一) SYBR green 系統…………………………………………… 32
(二) Taq-Man 系統………………………………………………… 33
六、試驗設計……………………………………………………………… 35
(一) 評估公豬稀釋精液之保存與離心條件對 X、Y 精子比率及人工授精後代性比率之影響……………………………… 35
1. 公豬稀釋精液之離心時間……………………………………… 35
2. 稀釋液、保存溫度、保存時間與離心分層對精液品質與 X 精子比率之影響…………………………………………… 36
3. 稀釋精液保存 3 日後離心對人工授精母豬分娩性能與後代性比率之影響……………………………………………… 37
(二) 建立齒釉蛋白基因即時定量聚合酶鏈鎖反應檢測 X、Y 精子比率……………………………………………………… 37
七、統計分析………………………………………………………………… 39
肆、結果……………………………………………………………………… 40
一、 評估公豬稀釋精液之保存與離心條件對 X、Y 精子比率及人工授精後代性比率之影響……………………………… 40
(一) 公豬稀釋精液之離心時間……………………………………… 40
(二) 稀釋液、保存溫度、保存時間與離心分層對精液品質與 X 精子比率之影響…………………………………………… 43
(三) 稀釋精液保存 3 日後離心對人工授精母豬分娩性能與後代性比率之影響……………………………………………… 57
二、建立齒釉蛋白基因即時定量聚合酶鏈鎖反應檢測 X、Y 精子比率… 59
伍、討論……………………………………………………………………… 69
陸、結論……………………………………………………………………… 78
柒、附錄……………………………………………………………………… 79
捌、參考文獻………………………………………………………………… 81
馬春祥。1971。家畜育種學。國立編譯館
馬春祥、楊錫坤。2003。生殖學要義。鼎文書局
郭妍希。2009。建立即時定量 PCR 與螢光原位雜交法評估不同 pH 稀釋保存液對X、Y精子比率之影響。國立宜蘭大學生物技術研究所碩士論文
Agung, B., Otoi, T., Wongsrikeao, P., Taniguchi, M., Shimizu, R., Watari, H., and Nagai, T. 2006. Effect of maturation culture period of oocytes on the sex ratio of in vitro fertilized bovine embryos. J. Reprod. Dev. 52:123-127.
Alexenko, A. P., Mao, J., Ellersieck, M. R., Davis, A. M., Whyte, J. J., Rosenfeld, C. S., and Roberts, R. M. 2007. The contrasting effects of ad libitum and restricted feeding of a diet very high in saturated fats on sex ratio and metabolic hormones in mice. Biol. Reprod. 77:599-604.
Bathgate, R., Morton, K. M., Eriksson, B. M., Rath, D., Seig, B., Maxwell, W. M. C., and Evansa, G. 2007. Non-surgical deep intra-uterine transfer of in vitro produced porcine embryos derived from sex-sorted frozen–thawed boar sperm. Anim. Reprod. Sci. 99:82-92.
Brandriff, B. F., Gordon, L. A., Haendel, S., Singer, S., Moore, D. H., and Gledhill, B. 1986. Sex chromosome ratios determined by karyotypic analysis in albumin-isolated human sperm. Fertil. Steril. 46:678-685.
Chapman, V. M., Keitz, B. T., Disteche, C. M., Lau, E. C., and Snead, M.L. 1991. Linkage of amelogenin (Amel) to the distal portion of the mouse X chromosome. Genomics. 10:23-28.
Colley, A., Buhr, M., and Golovan S. P. 2008. Single bovine sperm sex typing by amelogenin nested PCR. Theriogenology 70:978-98.
Dominko, T., and First, N. 1997. Relationship between the maturational state of oocytes at the time of insemination and sex ratio of subsequent early bovine embryos. Theriogenology 47:1041-1050.
Ericsson, R., Langevin, C., and Nishino, M. 1973. Isolation of fractions rich in human Y sperm. Nature 246:421-424.
Ennis, S., Vaughan, L., and Gallagher, T. F. 1999. The diagnosis of freemartinism in cattle using sex-specific DNA sequences. Res. Vet. Sci. 67:111-112.
Fincham, A. G., Belcourt, A. B., Lyaruu, D. M., and Termine, J. D. 1982. Comparative protein biochemistry of developing dental enamel matrix from five mammalian species. Calcif. Tissue Int. 34:182-189.
Fincham, A. G., Belcourt, A. B., Termine, J. D., Butler, W. T., and Cothran, W. C. 1983. Amelogenins sequence homologies in enamel-matrix proteins from three mammalian species. Biochem. J. 211:149-54.
Fu, Q., Zhang, M., Qin, W. S., Lu, Y. Q., Zheng, H. Y., Meng, B., Lu, S. S., and Lu, K. H. 2007. Cloning the swamp buffalo SRY gene for embryo sexing with multiplex-nested PCR. Theriogenology 68:1211-1218.
Garner, D. 2006. Flow cytometric sexing of mammalian sperm. Theriogenology 65:943-957.
Handyside, A. H., Pattinson, J. K., Penketh, R. J., Delhanty, J. D., Winston, R. M., and Tuddenham, E. G. 1989. Biopsy of human preimplantation embryos and sexing by DNA amplification. Lancet. 1:347-349.
Hendriksen, P., Tieman, M., Van Der Lende, T., and Johnson, L. 1993. Binding of anti-HY monoclonal antibodies to separated X and Y chromosome bearing porcine and bovine sperm. Mol. Reprod. Dev. 35:189-196.
Hendriksen, P., Welch, G., Grootegoed, J., Van Der Lende, T., and Johnson, L. 1996. Comparison of detergent-solubilized membrane and soluble proteins from flow cytometrically sorted X-and Y-chromosome bearing porcine spermatozoa by high resolution 2-D electrophoresis. Mol. Reprod. Dev. 45:342-350.
Ishihara, K., Ohsako, S., Tasaka, K., Harayama, H., Miyake, M., Warita, K., Tanida, T., Mitsuhashi, T., Nanmori, T., Tabuchi, Y., Yokoyama, T., Kitagawa, H., and Hoshi, N. 2010. When does the sex ratio of offspring of the paternal 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) exposure decrease: in the spermatozoa stage or at fertilization. Reprod. Toxicol. 29:68-73.
Iizuka, R., Kaneko, S., Aoki, R., and Kobayashi, T. 1987. Sexing of human sperm by discontinuous Percoll density gradient and its clinical application. Hum. Reprod. 2:573-575.
Iwata, H., Shiono, H., Kon, Y., Matsubara, K., Kimura, K., Kuwayama, T., and Monji, Y. 2008. Effects of modification of in vitro fertilization techniques on the sex ratio of the resultant bovine embryos. Anim. Reprod. Sci. 105:234-244.
Johnson, L. 1995. Sex preselection by flow cytometric separation of X and Y chromosome-bearing sperm based on DNA difference : a review. Reprod. Fert. Dev. 7:893-904.
Kaneko, S., Yamaguchi, J., Kobayashi, T., and Iizuka, R. 1983. Separation of human X- and Y-bearing sperm using Percoll density gradient centrifugation. Fertil. Steril. 40:661-665.
Kawarasaki, T., Welch, G., Long, C., Yoshida, M., and Johnson, L. 1998. Verification of flow cytometorically-sorted X- and Y-bearing porcine spermatozoa and reanalysis of spermatozoa for DNA content using the fluorescence in situ hybridization (FISH) technique. Theriogenology 50:625-635.
Kochhar, H. S., Kochhar, K. P., Basrur, P. K., and King, W. A. 2003. Influence of the duration of gamete interaction on cleavage, growth rate and sex distribution of in vitro produced bovine embryos. Anim. Reprod. Sci. 77:33-49.
Kunieda, T., Xian, M., Kobayashi, E., Imamichi, T., Moriwaki, K., and Toyoda, Y. 1992. Sexing of mouse preimplantation embryos by detection of Y chromosome-specific sequences using polymerase chain reaction. Biol. Reprod. 46:692-697.
Lau, E. C., Mohandas, T. K., Shapiro, L. J., Slavkin, H. C., and Snead, M. L. 1989. Human and mouse amelogenin gene loci are on the sex chromosomes. Genomics. 4:162-168.
Lin, P. Y., Huang, F. J., Kung, F. T., Wang, L. J., Chang, S. Y., and Lan, K. C. 2010. Comparison of the offspring sex ratio between cleavage stage embryo transfer and blastocyst transfer. Taiwan. J. Obstet. Gynecol. 49:9-35.
Martinez, E. A., Vazquez, J. M., Roca, J., Lucas, X., Gil1, M. A., Parrilla, I., Vazquez, J. L., and Day, B. N. 2001. Successful non-surgical deep intrauterine insemination with small numbers of spermatozoa in sows. Reproduction 122:289-296.
Martinez, F., Kaabi, M., Martinez-Pastor, F., Alvarez, M., Anel, E., Boixo, J., de Paz, P., and Anel, L. 2004. Effect of the interval between estrus onset and artificial insemination on sex ratio and fertility in cattle : a field study. Theriogenology 62:1264-1270.
Oliver, G., Novak, S., Patterson, J. L., Pasternak, J. A., Paradis, F., Norrby, M., Oxtoby, K., Dyck, M. K., Dixon, W. T., and Foxcroft, G. R. 2011. Restricted feed intake in lactating primiparous sows. II. Effects on subsequent litter sex ratio and embryonic gene expression. Reprod. Fertil. Dev. 23:899-911.
Parrilla, I., Vazquez, J., Oliver-Bonet, M., Navarro, J., Yelamos, J., Roca, J., and Martinez, E. 2003. Fluorescence in situ hybridization in diluted and flow cytometrically sorted boar spermatozoa using specific DNA direct probes labelled by nick translation. Reproduction 126:317-325.
Pande, A. and Totey, S. M. 1998. ZFX and ZFY loci in water buffalo (Bubalus bubalis): Potential for sex identification. Genet. Anal-Biomol. E. 14:85-88.
Parati, K., and Aleandri, R. 2006. Sex ratio determination in bovine semen: A new approach by quantitative real time PCR. Theriogenology 66:2202-2209.
Peura, T., Hyttinen, J. M., Turunen, M., Aalto, J., Rainio, V., and Jänne, J. 1991. Birth of calves developed from embryos of predetermined sex. Acta. Vet. Scand. 32:283-286.
Pfeiffer, I., and Brenig, B. 2005. X- and Y-chromosome specific variants of the amelogenin gene allow sex determination in sheep (Ovis aries) and European red deer (Cervus elaphus). BMC Genet. 6:16.
Pomp, D., Good, B. A., Geisert, R. D., Corbin, C. J., and Conley, A. J. 1995. Sex identification in mammals with polymerase chain reaction and its use to examine sex effects on diameter of day-10 or -11 pig embryos. J. Anim. Sci. 73:1408-1415.
Puglisi, R., Vanni, R., Galli, A., Balduzzi, D., Parati, K., Bongioni, G., Crotti, G., Duchi, R., Galli, C., and Lazzari, G. 2006. In vitro fertilisation with frozen–thawed bovine sperm sexed by flow cytometry and validated for accuracy by real-time PCR. Reproduction 132:519-526.
Rheingantz, M., Pegoraro, L., Dellagostin, O., Pimentel, A., Bernardi, M., and Deschamps, J. 2006. The sex ratio of in vitro produced bovine embryos is affected by the method of sperm preparation. Anim. Reprod. Sci. 3:423-430.
Rizos, D., Bermejo-Alvarez, P., Gutierrez-Adan, A., and Lonergan, P. 2008. Effect of duration of oocyte maturation on the kinetics of cleavage, embryo yield and sex ratio in cattle. Reprod. Fertil. Dev. 20:734-40.
Robbins, W. A., Wei, F., Elashoff, D. A., Wu, G., Xun, L., and Jia, J. 2008. Y:X sperm ratio in boron-exposed men. J. Androl. 29:115-121.
Roelofs, J., Bouwman, E., Pedersen, H., Rasmussen, Z., Soede, N., Thomsen, P., and Kemp, B. 2006. Effect of time of artificial insemination on embryo sex ratio in dairy cattle. Anim. Reprod. Sci. 93:366-371.
Rorie, R. 1999. Effect of timing of artificial insemination on sex ratio. Theriogenology 52:1273-1280.
Rubessa, M., Boccia, L., Campanile, G., Longobardi, V., Albarella, S., Tateo, A., Zicarelli, L., and Gasparrini, B. 2011. Effect of energy source during culture on in vitro embryo development, resistance to cryopreservation and sex ratio. Theriogenology 76:1347-1355.
Samardija, M., Dobrani, T., Karadjole, M., Getz, I., Vince, S., Graner, D., Maei, N., and Filakovi, I. 2006. The efficacy of gradient PercollR on bull sperm separation for in vitro fertilization. Vet. Arhiv 76:37-44.
Sang, L., Yang, W. C., Han, L., Liang, A. X., Hua, G. H., Xiong, J. J., Huo, L. J., and Yang, L. G. 2011. An immunological method to screen sex-specific proteins of bovine sperm. J. Dairy Sci. 94:2060-2070.
Sattar, A., Rubessa, M., Di Francesco, S., Longobardi, V., Di Palo, R., Zicarelli, L., Campanile, G., and Gasparrini, B. 2011. The influence of gamete co-incubation length on the in vitro fertility and sex ratio of bovine bulls with different penetration speed. Reprod. Domest. Anim. 46:1090-1097.
Scott, D., Ehrmann, I., Ellis, P., Bishop, C., Agulnik, A., Simpson, E., and Mitchell, M. 1995. Identification of a mouse male-specific transplantation antigen, H-Y. Nature 376:695-698.
Sharpe, J. C., and Evans, K. M. 2009. Advances in flow cytometry for sperm sexing. Theriogenology 71:4-10.
Spinaci, M., Ambrogi, M., Volpe, S., Galeati, G., Tamanini, C., and Seren, E. 2005. Effect of staining and sorting on boar sperm membrane integrity, mitochondrial activity and in vitro blastocyst development. Theriogenology 64:191-201.
Tiido, T., Rignell-Hydbom, A., Jonsson, B. A., Giwercman, Y. L., Pedersen, H. S., Wojtyniak, B., Ludwicki, J. K., Lesovoy, V., Zvyezday, V., Spano, M., Manicardi, G. C., Bizzaro, D., Bonefeld-Jorgensen, E. C., Toft, G., Bonde, J. P., Rylander, L., Hagmar, L., and Giwercman, A. 2006. Impact of PCB and p,p'-DDE contaminants on human sperm Y:X chromosome ratio: studies in three European populations and the Inuit population in Greenland. Environ. Health. Perspect. 114:718-724.
Ueda, K., and Yanagimachi, R. 1987. Sperm chromosome analysis as a new system to test human X-and Y-sperm separation. Gamete Res. 17:221-228.
Vazquez, J. M., Martinez, E. A., Parrilla, I., Roca, J., Gil, M. A., and Vazquez, J. L. 2003. Birth of piglets after deep intrauterine insemination with flow cytometrically sorted boar spermatozoa. Theriogenology 59:1605-1614.
Vinsky, M. D., Novak, S., Dixon, W. T., Dyck, M. K., and Foxcroft, G. R. 2006. Nutritional restriction in lactating primiparous sows selectively affects female embryo survival and overall litter development. Reprod. Fertil. Dev. 18:347-355.
Wyrobek, A., Alhborn, T., Balhorn, R., Stanker, L., and Pinkel, D. 1990. Fluorescence in situ hybridization to Y chromosomes in decondensed human sperm nuclei. Mol. Reprod. Dev. 27:200-208.
Xu, K. P., Yadav B. R., King W. A., and Betteridge K. J. 1992. Sex related differences in developmental rates of bovine embryos produced and cultured in vitro. Mol. Reprod. Dev. 31:249-252.
Yan J., Feng, H. L., Chen, Z. J., Hu, J., Gao X., and Qin, Y. 2006. Influence of swim-up time on the ratio of X- and Y-bearing spermatozoa. Eur. Obstet. Gynecol. Reprod. Bio. 192:150-154.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top