跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.41) 您好!臺灣時間:2026/01/13 20:57
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:鄭景安
研究生(外文):Zheng, Jing-An
論文名稱:利用基因演算法解決印刷電路板人工插件之之生產線平衡問題
論文名稱(外文):Use Genetic Algorithm to Solving Line Balancing Problem for Dual In-line Package Assembly
指導教授:張永佳張永佳引用關係
指導教授(外文):Chang, Yung-Chia
學位類別:碩士
校院名稱:國立交通大學
系所名稱:工業工程與管理系所
學門:工程學門
學類:工業工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:69
中文關鍵詞:印刷電路板、生產線平衡、人工組裝、組裝限制、基因演算法
外文關鍵詞:Printed Circuit Board、Assembly Line Balancing Problem、Type II Problem、Genetic Algorithm
相關次數:
  • 被引用被引用:2
  • 點閱點閱:242
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
在印刷電路板組裝的製程中,部份元件的組裝已由自動化設備取代人力,但仍然有相當數量且種類繁多的雙列直插式封裝(Dual In-line Package, DIP)元件需藉由人工的方法組裝於印刷電路板上。DIP的組裝生產線由多個工作站所組成,每個工作站負責置放數個元件,而由於以人工方式置放元件,影響生產線的效率與組裝品質的因素,除了有傳統的生產線平衡問題(Assembly Line Balancing Problem, ALBP)外,還需考量人員在組裝過程的順暢度,以及為避免組裝錯誤而加入的組裝限制。本研究以DIP組裝線為研究對象,設計一套基因演算法(Genetic Algorithm, GA) ,在給定工作站數量與元件的指派限制之下,將所有元件指派於工作站中,使各工作站中的最大週期時間最小,並符合各項指派限制。本研究利用台灣某電腦主機板製造廠提供的產品資訊測試本研究所設計的演算法,結果發現本研究所設計的方法所產生元件指派方式,與該公司現行之指派方式相比,能有更短的最大週期時間,並更能符合該公司所設計的指派限制。本研究亦另行模擬了更複雜的產品資訊,在以本研究所提出的方法指派元件後,亦能順利地於短時間內找出能夠符合指派限制,並使最大週期時間最小的元件指派方式。
In the assembly line for printed circuit board assembly (PCBA), automation is a tool that is being used instead of using actual labor. However, while assembling Dual In-line Packages onto PCBs, actual labor is still required. While there are many tasks on the assembly line, assigning components is what affects the production efficiency on the assembly line. This is an Assembly Line Balancing Problem (ALBP). This research is conducted regarding assembling DIP’s onto PCB’s based on assigning the components onto a fixed number of assembly stations, in order to minimize the cycle time. This is a Type II Problem where this research applies Genetic Algorithm (GA) for solving. The GA contains constraints to be solved within a short time frame with respect to these constraints. This research uses both product information obtained from an anonymous motherboard manufacturer in Taiwan and also simulated product information in the GA. The outcome of this research met the constraints and minimized the cycle time.
摘要 i
Abstract ii
誌謝 iii
目錄 iv
圖目錄 vi
表目錄 vii
參數對照表 viii
第一章 緒論 1
1.1研究背景與動機 1
1.2 研究目的 3
1.3 研究架構 4
第二章 文獻探討 5
2.1 雙列直插式封裝 5
2.2 生產線平衡 6
2.3 基因演算法 8
第三章 研究方法 12
3.1 PCBA現況與指派限制條件 12
3.1.1 PCBA現況 12
3.1.2相關名詞與參數定義 12
3.1.3 指派限制條件 13
3.2 PCB之DIP組裝數學模型 16
3.2.1 基本假設 16
3.2.2 數學模型 16
3.3 基因演算法 18
3.3.1 編碼 20
3.3.2 產生初始解 20
3.3.3 檢查並調整染色體為可行解 28
3.3.4 基因操作及其他基因參數 41
3.3.5 給定座標 45
第四章 實例驗證與分析 47
4.1 產品資訊 47
4.1.1 A公司產品資訊 47
4.1.2 模擬產品資訊 48
4.2 參數設定 50
4.2.1 適應函數權重分配 50
4.2.2 母體數及世代數設定 51
4.2.3 基因操作參數設定 51
4.3 指派結果與分析 53
4.3.4 實際產品指派結果與分析 54
4.3.2 模擬產品資訊指派結果與分析 58
第五章 結論與未來研究方向 65
5.1 結論與貢獻 65
5.2 未來研究方向 65
參考文獻 67

Ammons, J. C., Carlyle, M., Cranmer, L., Depuy, G., Ellis, K., Mcginnis, L. F., . . . Xu, H. (1997). Component allocation to balance workload in printed circuit card assembly systems. IIE Transactions, 29(4), 265-275.
Arcus, A. L. (1965). A computer method of sequencing operations for assembly lines. International Journal Of Production Research, 4(4), 259-277.
Bryton, B. (1954). Balancing of A Continuous Production Line. Evanston, Illinois: Northwestern University.
Cakir, B., Altiparmak, F., &; Dengiz, B. (2011). Multi-objective optimization of a stochastic assembly line balancing: A hybrid simulated annealing algorithm. Computers &; Industrial Engineering, 60(3), 376-384. doi: 10.1016/j.cie.2010.08.013
Christophe, L. (2006). Making Silicon Valley: Innovation and The Growth of High Tech. Cambridge: The MIT Press.
Chutima, P., &; Chimklai, P. (2012). Multi-objective two-sided mixed-model assembly line balancing using particle swarm optimisation with negative knowledge. Computers &; Industrial Engineering, 62(1), 39-55.
Dummer, G. W. A. (1997). Electronic Inventions and Discoveries: Electronics from Its Earliest Beginnings to The Present Day. London: Taylor &; Francis.
Gen, M., Cheng, R., &; Lin, L. (2008). Network Models and Optimization. London: Springer-Verlag.
Gokcen, H., &; Erel, E. (1998). Binary integer formulation for mixed-model assembly line balancing problem. Computers &; Industrial Engineering, 34(2), 451-461.
Goncalves, J. F., &; de Almeida, J. R. (2002). A hybrid genetic algorithm for assembly line balancing. Journal of Heuristics, 8(6), 629-642.
Guo, Z. X., Wong, W. K., Leung, S. Y. S., Fan, J. T., &; Chan, S. F. (2008). A genetic-algorithm-based optimization model for solving the flexible assembly line balancing problem with work sharing and workstation revisiting. Ieee Transactions on Systems Man and Cybernetics Part C-Applications and Reviews, 38(2), 218-228.
Hamta, N., Ghomi, S., Jolai, F., &; Shirazi, M. A. (2013). A hybrid PSO algorithm for a multi-objective assembly line balancing problem with flexible operation times, sequence-dependent setup times and learning effect. International Journal of Production Economics, 141(1), 99-111.
Hamzadayi, A., &; Yildiz, G. (2012). A genetic algorithm based approach for simultaneously balancing and sequencing of mixed-model U-lines with parallel workstations and zoning constraints. Computers &; Industrial Engineering, 62(1), 206-215.
Ho, W., &; Ji, P. (2003). Component scheduling for chip shooter machines: a hybrid genetic algorithm approach. Computers &; Operations Research, 30(14), 2175-2189.
Holland, J. H. (1975). Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence. USA: University of Michigan.
Hwang, R., &; Katayama, H. (2009). A multi-decision genetic approach for workload balancing of mixed-model U-shaped assembly line systems. International Journal of Production Research, 47(14), 3797-3822.
Karp, R. M. (1972). Reducibility Among Combinatorial Problems. USA: Springer.
Kim, Y. K., Kim, J. J., &; Kim, Y. H. (1996). Genetic algorithms for assembly line balancing with various objectives. Computers &; Industrial Engineering, 30(3), 397-409.
Kim, Y. K., Song, W. S., &; Kim, J. H. (2009). A mathematical model and a genetic algorithm for two-sided assembly line balancing. Computers &; Operations Research, 36(3), 853-865.
Mamun, A. A., Khaled, A. A., Ali, S. M., &; Chowdhury, M. M. (2012). A heuristic approach for balancing mixed-model assembly line of type I using genetic algorithm. International Journal of Production Research, 50(18), 5106-5116.
Manavizadeh, N., Hosseini, N. S., Rabbani, M., &; Jolai, F. (2013). A Simulated Annealing algorithm for a mixed model assembly U-line balancing type-I problem considering human efficiency and Just-In-Time approach. Computers &; Industrial Engineering, 64(2), 669-685.
Millman, S. (1984). A History of Engineering and Science in The Bell System. USA: AT &; T Bell Laboratories.
Mutlu, O., Polat, O., &; Supciller, A. A. (2013). An iterative genetic algorithm for the assembly line worker assignment and balancing problem of type-II. Computers &; Operations Research, 40(1), 418-426.
Ozcan, U., &; Toklu, B. (2009). A tabu search algorithm for two-sided assembly line balancing. International Journal of Advanced Manufacturing Technology, 43(7-8), 822-829.
Rada-Vilela, J., Chica, M., Cordon, O., &; Damas, S. (2013). A comparative study of Multi-Objective Ant Colony Optimization algorithms for the Time and Space Assembly Line Balancing Problem. Applied Soft Computing, 13(11), 4370-4382.
Rekiek, B., &; Delchambre, A. (2006). The Balancing of Mixed-Model Hybrid Assembly Lines with Genetic Algorithms. London: Springer-Verlag.
Roberts, S. D., &; Villa, C. D. (1970). On a multiproduct assembly line-balancing problem. AIIE Transactions, 2(4), 361-364.
Rymaszewski, E. J., Tummala, R. R., &; Watari, T. (1997). Microelectronics Packaging - An Overview Microelectronics Packaging Handbook. USA: Springer.
Schaffer, J. D., Caruana, R. A., Eshelman, L. J., &; Das, R. (1989). A study of control parameters affecting online performance of genetic algorithms for function optimization. the third international conference on genetic algorithms, 51-60.
Simaria, A. S., &; Vilarinho, P. M. (2004). A genetic algorithm based approach to the mixed-model assembly line balancing problem of type II. Computers &; Industrial Engineering, 47(4), 391-407.
Tapkan, P., Ozbakir, L., &; Baykasoglu, A. (2012). Modeling and solving constrained two-sided assembly line balancing problem via bee algorithms. Applied Soft Computing, 12(11), 3343-3355.
Wang, W., Nelson, P. C., &; Tirpak, T. M. (1999). Optimization of high-speed multistation SMT placement machines using evolutionary algorithms. Electronics Packaging Manufacturing, IEEE Transactions on, 22(2), 137-146.
Yang, C. J., Gao, J., &; Sun, L. Y. (2013). A multi-objective genetic algorithm for mixed-model assembly line rebalancing. Computers &; Industrial Engineering, 65(1), 109-116.
Zheng, Q. X., Li, M., Li, Y. X., &; Tang, Q. H. (2013). Station ant colony optimization for the type 2 assembly line balancing problem. International Journal of Advanced Manufacturing Technology, 66(9-12), 1859-1870.
李藍怡. (2002). PCB手插件工作指派之知識管理系統. (碩士), 華梵大學, 新北市.
林人宇. (2013). 應用基因演算法建構印刷電路板人工插件生產線排程系統. 國立交通大學, 新竹.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top