跳到主要內容

臺灣博碩士論文加值系統

訪客IP:216.73.216.54
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:李嘉恩
研究生(外文):LI, CHIA-EN
論文名稱:熱蒸鍍法觀察銀層沉積位置對CZTSe薄膜的影響
論文名稱(外文):Study On The Observation Of The Effect Of Silver Layer Deposition Position On CZTSe Thin Film By Thermal Evaporation Method
指導教授:賴芳儀賴芳儀引用關係
指導教授(外文):LAI, FANG-I
口試委員:郭守義陳維鈞
口試委員(外文):KUO,SHOU-YICHEN,WEI-CHUN
口試日期:2024-01-04
學位類別:碩士
校院名稱:元智大學
系所名稱:電機工程學系丙組
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2024
畢業學年度:112
語文別:中文
論文頁數:90
中文關鍵詞:銅鋅錫硒薄膜銀摻雜熱蒸鍍法
外文關鍵詞:CZTSe thin filmSilver dopingthermal evaporation
相關次數:
  • 被引用被引用:0
  • 點閱點閱:96
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文主要探討Ag金屬摻雜與Ag金屬薄層沉積位置對吸收層薄膜品質與特性之影響。實驗部份,選擇二氧化錫摻氟(SnO2:F,FTO)透明導電玻璃作為本實驗沉積薄膜之基板,並使用熱蒸鍍法沉積金屬前驅物疊層後,搭配硒化製程完成Cu2ZnSnSe4 (CZTSe)和摻雜銀的(Ag,Cu)2ZnSnSe4 (ACZTSe)吸收層之製備。實驗發現Ag摻雜能作為助熔劑,在硒化過程中形成Cu-Ag-Sn液態合金,有效提升薄膜晶粒尺寸以及協助元素擴散。但是,改變銀層於金屬前驅物疊層中的沉積位置會對金屬前驅物薄膜於硒化過程中的生長機制產生變化,尤其是Ag3Sn合金形成時間會影響Zn元素擴散均勻性的問題,進而影響到最終ACZTSe薄膜品質。最後,本實驗發現FTO/Sn/Zn/Ag/Cu之金屬疊層順序之薄膜有最佳的元素擴散均勻性,有效改善薄膜雙層結構及缺陷數量,並且與CdS緩衝層之間具有最小CBO值,利於電荷傳輸。
This study mainly discusses the influence of Ag metal doping and Ag metal thin layer deposition position on the quality and characteristics of the absorber layer film. In the experimental section, SnO2:F (FTO) transparent conductive glass was chosen as the substrate for depositing thin films. A thermal evaporation method was employed to deposit metal precursor layers, followed by a selenization process to complete the preparation of Cu2ZnSnSe4 (CZTSe) and (Ag,Cu)2ZnSnSe4 (ACZTSe) absorber layers with silver doping. The experiments revealed that Ag doping acts as a flux agent, forming a Cu-Ag-Sn liquid alloy during selenization, effectively enhancing grain size and aiding in element diffusion. However, altering the deposition position of the silver layer in the metal precursor stack influences the growth mechanism of the metal precursor films during selenization, especially the formation time of Ag3Sn alloy, which impacted the uniformity of Zn element diffusion. Consequently, this affected the final quality of the ACZTSe film. Ultimately, it was found that the metal stacking order of FTO/Sn/Zn/Ag/Cu resulted in the optimal uniformity of element diffusion in the film, effectively improving the film's bilayer structure and reducing the number of defects. Additionally, this stacking order exhibited the minimum conduction band offset (CBO) with the CdS buffer layer, facilitating charge transfer.
書 名 頁 I
論文口試委員審定書 II
中文摘要 III
英文摘要 IV
誌 謝 VI
目 錄 VII
表 目 錄 IX
圖 目 錄 X
第一章、緒論 1
1.1 前言 1
1.2 太陽能電池基本原理 2
1.3 CZTSe薄膜太陽能電池發展背景 7
第二章、文獻回顧 9
2.1 CZTSe材料介紹 9
2.2 CZTSe薄膜太陽能電池的基本結構 14
2.3 CZTSe薄膜的製備介紹 17
2.3.1 蒸鍍法 (Evaporation) 17
2.3.2 濺鍍法(Sputtering) 22
2.3.3 電鍍法(Electrodeposition) 25
2.3.4 噴霧熱解法(Spary-Pyrolysis) 29
2.3.5 旋轉塗佈法(Spin coating) 32
2.4 Ag摻雜對CZTSe的影響 37
2.5 金屬前驅物疊層順序對CZTSe的影響 42
2.6 FTO透明背電極製備CZTSe太陽能電池 46
2.7 研究動機與目的 50
第三章、實驗步驟及分析儀器 51
3.1 實驗設備 51
3.1.1 熱蒸鍍機 51
3.1.2 高溫硒化爐管 52
3.2 實驗流程 52
3.2.1 基板清洗 52
3.2.2 蒸鍍金屬前驅物薄膜 53
3.2.3 硒化退火 53
3.3 分析儀器介紹 54
3.3.1 場發射型掃描電子顯微鏡(FE-SEM)與能量解析光譜儀(EDS) 54
3.3.2 X光繞射儀(XRD) 55
3.3.3 拉曼光譜儀(Raman spectrometer) 56
3.3.4 紫外-可見光-近紅外光譜儀(UV-Vis-NIR Spectrophotometer) 57
3.3.5 二次離子質譜分析儀(SIMS) 58
3.3.6 接觸式原子力顯微鏡(AFM)與導電式原子力顯微鏡(CAFM) 59
3.3.7 紫外光電子能譜(UPS) 59
第四章、結果與討論 62
第五章、結論 83
參考文獻 84


1.https://www.moeaboe.gov.tw/ecw/populace/content/Content.aspx?menu_id=14437
2.https://zh.wikipedia.org/zhtw/%E5%A4%AA%E9%99%BD%E8%BC%BB%E5%B0%84
3.https://enlitechnology.com/zh-hant/blog-zh-hant/pv-zh-hant/ss-x-solar-simulatior-zh-hant/solar-simulator-01/
4.https://jtchen.lab.nycu.edu.tw/research/c-research-opv.htm
5.Nakamura, Motoshi, et al. "Cd-free Cu (In, Ga) (Se, S) 2 thin-film solar cell with record efficiency of 23.35%." IEEE Journal of Photovoltaics 9.6 (2019): 1863-1867.
6.https://strategicmetalsinvest.com/
7.Li, Xinchen, et al. "Achieving 11.95% efficient Cu 2 ZnSnSe 4 solar cells fabricated by sputtering a Cu–Zn–Sn–Se quaternary compound target with a selenization process." Journal of Materials Chemistry A 7.16 (2019): 9948-9957.
8.Khare, Ankur, et al. "Calculation of the lattice dynamics and Raman spectra of copper zinc tin chalcogenides and comparison to experiments." Journal of Applied Physics 111.8 (2012).
9.Persson, Clas. "Electronic and optical properties of Cu2ZnSnS4 and Cu2ZnSnSe4." Journal of Applied Physics 107.5 (2010).
10.Maeda, T., S. Nakamura, and T. Wada. "Phase stability and electronic structure of In-Free photovoltaic semiconductors, Cu 2 ZnSnSe 4 and Cu 2 ZnSnS 4 by first-principles calculation." MRS Online Proceedings Library 1165 (2009): 1-7.
11.Nakamura, Satoshi, Tsuyoshi Maeda, and Takahiro Wada. "Phase stability and electronic structure of In-free photovoltaic materials Cu2IISnSe4 (II: Zn, Cd, Hg)." Japanese Journal of Applied Physics 50.5S2 (2011): 05FF01.
12.Schorr, Susan. "The crystal structure of kesterite type compounds: A neutron and X-ray diffraction study." Solar Energy Materials and Solar Cells 95.6 (2011): 1482-1488.
13.Chen, Shiyou, et al. "Classification of lattice defects in the kesterite Cu2ZnSnS4 and Cu2ZnSnSe4 earth‐abundant solar cell absorbers." Advanced materials 25.11 (2013): 1522-1539.
14.Chen, Shiyou, et al. "Intrinsic point defects and complexes in the quaternary kesterite semiconductor Cu 2 ZnSnS 4." Physical Review B 81.24 (2010): 245204.
15.Temgoua, Solange, et al. "Effects of SnSe2 secondary phases on the efficiency of Cu2ZnSn (Sx, Se1− x) 4 based solar cells." Thin Solid Films 582 (2015): 215-219.
16.Fairbrother, Andrew, et al. "Secondary phase formation in Zn‐rich Cu2ZnSnSe4‐based solar cells annealed in low pressure and temperature conditions." Progress in Photovoltaics: Research and Applications 22.4 (2014): 479-487.
17.Khare, Ankur, et al. "Calculation of the lattice dynamics and Raman spectra of copper zinc tin chalcogenides and comparison to experiments." Journal of Applied Physics 111.8 (2012).
18.Wada, T., et al. "Characterization of the Cu (In, Ga) Se2/Mo interface in CIGS solar cells." Thin solid films 387.1-2 (2001): 118-122.
19.Temgoua, S., et al. "Comparative study of Cu2ZnSnSe4 solar cells growth on transparent conductive oxides and molybdenum substrates." Solar Energy 194 (2019): 121-127.
20.Kim, Jung-Sik, Jin-Kyu Kang, and Dae-Kue Hwang. "High efficiency bifacial Cu2ZnSnSe4 thin-film solar cells on transparent conducting oxide glass substrates." APL Materials 4.9 (2016).
21.Yoon, Ju-Heon, et al. "Optical analysis of the microstructure of a Mo back contact for Cu (In, Ga) Se2 solar cells and its effects on Mo film properties and Na diffusivity." Solar Energy Materials and Solar Cells 95.11 (2011): 2959-2964.
22.Hernández-Calderón, V., et al. "CdS/ZnS bilayer thin films used as buffer layer in 10%-efficient Cu2ZnSnSe4 solar cells." ACS Applied Energy Materials 3.7 (2020): 6815-6823.
23.Neuschitzer, Markus, et al. "Towards high performance Cd-free CZTSe solar cells with a ZnS (O, OH) buffer layer: the influence of thiourea concentration on chemical bath deposition." Journal of Physics D: Applied Physics 49.12 (2016): 125602.
24.Khadka, Dhruba B., SeongYeon Kim, and JunHo Kim. "A nonvacuum approach for fabrication of Cu2ZnSnSe4/In2S3 thin film solar cell and optoelectronic characterization." The Journal of Physical Chemistry C 119.22 (2015): 12226-12235.
25.Shen, Hong-lie, et al. "Preparation and properties of AZO thin films on different substrates." Progress in Natural Science: Materials International 20 (2010): 44-48.
26.Kim, Kang Min, et al. "Cu2ZnSnSe4 thin-film solar cells fabricated using Cu2SnSe3 and ZnSe bilayers." Applied Physics Express 8.4 (2015): 042301.
27.Mwakyusa, Lwitiko P., et al. "CZTSe solar cells prepared by co-evaporation of multilayer Cu–Sn/Cu, Zn, Sn, Se/ZnSe/Cu, Zn, Sn, Se stacks." Physica Scripta 94.10 (2019): 105007.
28.Wei, Yaowei, et al. "Effects of selenium atmosphere on grain growth for CZTSe absorbers fabricated by selenization of as-sputtered precursors." Journal of Alloys and Compounds 755 (2018): 224-230.
29.Li, Xinchen, et al. "Achieving 11.95% efficient Cu 2 ZnSnSe 4 solar cells fabricated by sputtering a Cu–Zn–Sn–Se quaternary compound target with a selenization process." Journal of Materials Chemistry A 7.16 (2019): 9948-9957.
30.Li, Ji, et al. "The Cu2ZnSnSe4 thin films solar cells synthesized by electrodeposition route." Applied Surface Science 258.17 (2012): 6261-6265.
31.Yao, Liyong, et al. "A CZTSe solar cell with 8.2% power conversion efficiency fabricated using electrodeposited Cu/Sn/Zn precursor and a three-step selenization process at low Se pressure." Solar Energy Materials and Solar Cells 159 (2017): 318-324.
32.Kim, SeongYeon, and JunHo Kim. "Effect of selenization on sprayed Cu2ZnSnSe4 thin film solar cell." Thin Solid Films 547 (2013): 178-180.
33.Liu, Shang-En, Yu-Hsuan Lin, and Hou-Ying Huang. "Preparation of Cu2ZnSnSe4 absorber layer by nonvacuum method." Japanese Journal of Applied Physics 52.12R (2013): 121201.
34.Fang, Yikun, et al. "Efficient Cu2ZnSnSe4 thin film solar cells prepared from an ethanolamine-dimethyl formamide based sulfur/selenium-free solution." Journal of Alloys and Compounds 946 (2023): 169374.
35.Mwakyusa, Lwitiko P., et al. "Impact of silver incorporation at the back contact of Kesterite solar cells on structural and device properties." Thin Solid Films 709 (2020): 138223.
36.Hages, Charles J., Mark J. Koeper, and Rakesh Agrawal. "Optoelectronic and material properties of nanocrystal-based CZTSe absorbers with Ag-alloying." Solar Energy Materials and Solar Cells 145 (2016): 342-348.
37.Wang, Dongxiao, et al. "Formation of the front-gradient bandgap in the Ag doped CZTSe thin films and solar cells." Journal of Energy Chemistry 35 (2019): 188-196.
38.Kumar, Vishvas, and Udai P. Singh. "Optimization of annealing temperature on the formation CZTSe absorber layer." Applied Physics A 129.6 (2023): 414.
39.Fairbrother, Andrew, et al. "Precursor stack ordering effects in Cu2ZnSnSe4 thin films prepared by rapid thermal processing." The Journal of Physical Chemistry C 118.31 (2014): 17291-17298.
40.Sawa, Hezekiah B., Margaret E. Samiji, and Nuru R. Mlyuka. "Effects of Selenized DC Sputtered Precursor Stacking Orders on the Properties of Cu2ZnSnSe4 Absorber Layer for Thin Film Solar Cells." Tanzania Journal of Science 44.4 (2018): 1-11.
41.Ismail, Agus, et al. "Synthesis of solution-processed Cu 2 ZnSnSe 4 thin films on transparent conducting oxide glass substrates." Bulletin of the Korean Chemical Society 35.7 (2014): 1985-1988.
42.Kim, Jung-Sik, Jin-Kyu Kang, and Dae-Kue Hwang. "High efficiency bifacial Cu2ZnSnSe4 thin-film solar cells on transparent conducting oxide glass substrates." APL Materials 4.9 (2016).
43.Sayed, Mohamed H., et al. "Influence of silver incorporation on CZTSSe solar cells grown by spray pyrolysis." Materials Science in Semiconductor Processing 76 (2018): 31-36.
44.You, Xiaochen, et al. "Ag alloying for modifications of carrier density and defects in Zn-rich (Ag, Cu) 2ZnSnSe4 thin film solar cells." Journal of Alloys and Compounds 842 (2020): 155884.
45.Kumar, Vishvas, and Udai P. Singh. "Effect of selenization temperature on the formation of CZTSe absorber layer." Applied Physics A 125.12 (2019): 808.
46.Fouad, S. S., et al. "Multifunctional CZTS thin films: structural, optoelectrical, electrical and photovoltaic properties." Journal of Alloys and Compounds 757 (2018): 124-133.
47.Rawat, Kusum, and P. K. Shishodia. "Thermal annealing induced modification on structural and optical properties of Cu2ZnSnS4 thin films for solar cell application." Superlattices and Microstructures 122 (2018): 444-452.
48.Márquez-Prieto, Jose, et al. "The influence of precursor Cu content and two-stage processing conditions on the microstructure of Cu2ZnSnSe4." Thin Solid Films 582 (2015): 220-223.
49.Saragih, Albert Daniel, et al. "Characterization of Ag-doped Cu2ZnSnSe4 bulks material and their application as thin film semiconductor in solar cells." Materials Science and Engineering: B 225 (2017): 45-53.
50.Lai, Fang‐I., et al. "Suppressing the formation of double‐layer in Cu2ZnSnSe4 (CZTSe) absorber layer by facile heating process through nontoxic selenium atmosphere." International Journal of Energy Research 46.3 (2022): 3686-3696.
51.You, Xiaochen, et al. "Ag alloying for modifications of carrier density and defects in Zn-rich (Ag, Cu) 2ZnSnSe4 thin film solar cells." Journal of Alloys and Compounds 842 (2020): 155884.
52.Zhang, Zhaojing, et al. "Modified back contact interface of CZTSe thin film solar cells: elimination of double layer distribution in absorber layer." Advanced Science 5.2 (2018): 1700645.
53.Wang, Dongxiao, et al. "Synergistic effect of Na and Se on CZTSe solar cells through a soft chemical process." Solar Energy Materials and Solar Cells 198 (2019): 35-43.
54.Kaur, Kulwinder, and Mukesh Kumar. "Progress and prospects of CZTSSe/CdS interface engineering to combat high open-circuit voltage deficit of kesterite photovoltaics: a critical review." Journal of Materials Chemistry A 8.41 (2020): 21547-21584.
55.Lai, Fang-I., et al. "Investigation into complex defect properties of near-stoichiometric Cu2ZnSnSe4 thin film." Solar Energy 251 (2023): 240-248.
56.Yoo, Hyesun, et al. "Influence of the reaction pathway on the defect formation in a Cu2ZnSnSe4 thin film." ACS Applied Materials & Interfaces 13.11 (2021): 13425-13433.
57.Chen, Wei-Chao, et al. "Enhanced solar cell performance of Cu2ZnSn (S, Se) 4 thin films through structural control by using multi-metallic stacked nanolayers and fast ramping process for sulfo-selenization." Nano Energy 30 (2016): 762-770.
58.Gu, Kang, et al. "Influence of Ag Layer Location on the Performance of Cu 2 ZnSnS 4 Thin Film Solar Cells." Journal of Electronic Materials 49 (2020): 1819-1826.
59.Jolaoso, Oluwatosin. " Spray Pyrolysis of CuInSe2 for Thin Film Photovoltaic Solar Cells." nnin.org (2008).
60.Kim, SeongYeon, et al. "Characterization of CBO and defect states of CZTSe solar cells prepared by using two-step process." Current Applied Physics 18.2 (2018): 191-199.
61.Haight, Richard, et al. "Band alignment at the Cu2ZnSn (SxSe1− x) 4/CdS interface." Applied Physics Letters 98.25 (2011).

電子全文 電子全文(網際網路公開日期:20290123)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top