|
1.https://www.moeaboe.gov.tw/ecw/populace/content/Content.aspx?menu_id=14437 2.https://zh.wikipedia.org/zhtw/%E5%A4%AA%E9%99%BD%E8%BC%BB%E5%B0%84 3.https://enlitechnology.com/zh-hant/blog-zh-hant/pv-zh-hant/ss-x-solar-simulatior-zh-hant/solar-simulator-01/ 4.https://jtchen.lab.nycu.edu.tw/research/c-research-opv.htm 5.Nakamura, Motoshi, et al. "Cd-free Cu (In, Ga) (Se, S) 2 thin-film solar cell with record efficiency of 23.35%." IEEE Journal of Photovoltaics 9.6 (2019): 1863-1867. 6.https://strategicmetalsinvest.com/ 7.Li, Xinchen, et al. "Achieving 11.95% efficient Cu 2 ZnSnSe 4 solar cells fabricated by sputtering a Cu–Zn–Sn–Se quaternary compound target with a selenization process." Journal of Materials Chemistry A 7.16 (2019): 9948-9957. 8.Khare, Ankur, et al. "Calculation of the lattice dynamics and Raman spectra of copper zinc tin chalcogenides and comparison to experiments." Journal of Applied Physics 111.8 (2012). 9.Persson, Clas. "Electronic and optical properties of Cu2ZnSnS4 and Cu2ZnSnSe4." Journal of Applied Physics 107.5 (2010). 10.Maeda, T., S. Nakamura, and T. Wada. "Phase stability and electronic structure of In-Free photovoltaic semiconductors, Cu 2 ZnSnSe 4 and Cu 2 ZnSnS 4 by first-principles calculation." MRS Online Proceedings Library 1165 (2009): 1-7. 11.Nakamura, Satoshi, Tsuyoshi Maeda, and Takahiro Wada. "Phase stability and electronic structure of In-free photovoltaic materials Cu2IISnSe4 (II: Zn, Cd, Hg)." Japanese Journal of Applied Physics 50.5S2 (2011): 05FF01. 12.Schorr, Susan. "The crystal structure of kesterite type compounds: A neutron and X-ray diffraction study." Solar Energy Materials and Solar Cells 95.6 (2011): 1482-1488. 13.Chen, Shiyou, et al. "Classification of lattice defects in the kesterite Cu2ZnSnS4 and Cu2ZnSnSe4 earth‐abundant solar cell absorbers." Advanced materials 25.11 (2013): 1522-1539. 14.Chen, Shiyou, et al. "Intrinsic point defects and complexes in the quaternary kesterite semiconductor Cu 2 ZnSnS 4." Physical Review B 81.24 (2010): 245204. 15.Temgoua, Solange, et al. "Effects of SnSe2 secondary phases on the efficiency of Cu2ZnSn (Sx, Se1− x) 4 based solar cells." Thin Solid Films 582 (2015): 215-219. 16.Fairbrother, Andrew, et al. "Secondary phase formation in Zn‐rich Cu2ZnSnSe4‐based solar cells annealed in low pressure and temperature conditions." Progress in Photovoltaics: Research and Applications 22.4 (2014): 479-487. 17.Khare, Ankur, et al. "Calculation of the lattice dynamics and Raman spectra of copper zinc tin chalcogenides and comparison to experiments." Journal of Applied Physics 111.8 (2012). 18.Wada, T., et al. "Characterization of the Cu (In, Ga) Se2/Mo interface in CIGS solar cells." Thin solid films 387.1-2 (2001): 118-122. 19.Temgoua, S., et al. "Comparative study of Cu2ZnSnSe4 solar cells growth on transparent conductive oxides and molybdenum substrates." Solar Energy 194 (2019): 121-127. 20.Kim, Jung-Sik, Jin-Kyu Kang, and Dae-Kue Hwang. "High efficiency bifacial Cu2ZnSnSe4 thin-film solar cells on transparent conducting oxide glass substrates." APL Materials 4.9 (2016). 21.Yoon, Ju-Heon, et al. "Optical analysis of the microstructure of a Mo back contact for Cu (In, Ga) Se2 solar cells and its effects on Mo film properties and Na diffusivity." Solar Energy Materials and Solar Cells 95.11 (2011): 2959-2964. 22.Hernández-Calderón, V., et al. "CdS/ZnS bilayer thin films used as buffer layer in 10%-efficient Cu2ZnSnSe4 solar cells." ACS Applied Energy Materials 3.7 (2020): 6815-6823. 23.Neuschitzer, Markus, et al. "Towards high performance Cd-free CZTSe solar cells with a ZnS (O, OH) buffer layer: the influence of thiourea concentration on chemical bath deposition." Journal of Physics D: Applied Physics 49.12 (2016): 125602. 24.Khadka, Dhruba B., SeongYeon Kim, and JunHo Kim. "A nonvacuum approach for fabrication of Cu2ZnSnSe4/In2S3 thin film solar cell and optoelectronic characterization." The Journal of Physical Chemistry C 119.22 (2015): 12226-12235. 25.Shen, Hong-lie, et al. "Preparation and properties of AZO thin films on different substrates." Progress in Natural Science: Materials International 20 (2010): 44-48. 26.Kim, Kang Min, et al. "Cu2ZnSnSe4 thin-film solar cells fabricated using Cu2SnSe3 and ZnSe bilayers." Applied Physics Express 8.4 (2015): 042301. 27.Mwakyusa, Lwitiko P., et al. "CZTSe solar cells prepared by co-evaporation of multilayer Cu–Sn/Cu, Zn, Sn, Se/ZnSe/Cu, Zn, Sn, Se stacks." Physica Scripta 94.10 (2019): 105007. 28.Wei, Yaowei, et al. "Effects of selenium atmosphere on grain growth for CZTSe absorbers fabricated by selenization of as-sputtered precursors." Journal of Alloys and Compounds 755 (2018): 224-230. 29.Li, Xinchen, et al. "Achieving 11.95% efficient Cu 2 ZnSnSe 4 solar cells fabricated by sputtering a Cu–Zn–Sn–Se quaternary compound target with a selenization process." Journal of Materials Chemistry A 7.16 (2019): 9948-9957. 30.Li, Ji, et al. "The Cu2ZnSnSe4 thin films solar cells synthesized by electrodeposition route." Applied Surface Science 258.17 (2012): 6261-6265. 31.Yao, Liyong, et al. "A CZTSe solar cell with 8.2% power conversion efficiency fabricated using electrodeposited Cu/Sn/Zn precursor and a three-step selenization process at low Se pressure." Solar Energy Materials and Solar Cells 159 (2017): 318-324. 32.Kim, SeongYeon, and JunHo Kim. "Effect of selenization on sprayed Cu2ZnSnSe4 thin film solar cell." Thin Solid Films 547 (2013): 178-180. 33.Liu, Shang-En, Yu-Hsuan Lin, and Hou-Ying Huang. "Preparation of Cu2ZnSnSe4 absorber layer by nonvacuum method." Japanese Journal of Applied Physics 52.12R (2013): 121201. 34.Fang, Yikun, et al. "Efficient Cu2ZnSnSe4 thin film solar cells prepared from an ethanolamine-dimethyl formamide based sulfur/selenium-free solution." Journal of Alloys and Compounds 946 (2023): 169374. 35.Mwakyusa, Lwitiko P., et al. "Impact of silver incorporation at the back contact of Kesterite solar cells on structural and device properties." Thin Solid Films 709 (2020): 138223. 36.Hages, Charles J., Mark J. Koeper, and Rakesh Agrawal. "Optoelectronic and material properties of nanocrystal-based CZTSe absorbers with Ag-alloying." Solar Energy Materials and Solar Cells 145 (2016): 342-348. 37.Wang, Dongxiao, et al. "Formation of the front-gradient bandgap in the Ag doped CZTSe thin films and solar cells." Journal of Energy Chemistry 35 (2019): 188-196. 38.Kumar, Vishvas, and Udai P. Singh. "Optimization of annealing temperature on the formation CZTSe absorber layer." Applied Physics A 129.6 (2023): 414. 39.Fairbrother, Andrew, et al. "Precursor stack ordering effects in Cu2ZnSnSe4 thin films prepared by rapid thermal processing." The Journal of Physical Chemistry C 118.31 (2014): 17291-17298. 40.Sawa, Hezekiah B., Margaret E. Samiji, and Nuru R. Mlyuka. "Effects of Selenized DC Sputtered Precursor Stacking Orders on the Properties of Cu2ZnSnSe4 Absorber Layer for Thin Film Solar Cells." Tanzania Journal of Science 44.4 (2018): 1-11. 41.Ismail, Agus, et al. "Synthesis of solution-processed Cu 2 ZnSnSe 4 thin films on transparent conducting oxide glass substrates." Bulletin of the Korean Chemical Society 35.7 (2014): 1985-1988. 42.Kim, Jung-Sik, Jin-Kyu Kang, and Dae-Kue Hwang. "High efficiency bifacial Cu2ZnSnSe4 thin-film solar cells on transparent conducting oxide glass substrates." APL Materials 4.9 (2016). 43.Sayed, Mohamed H., et al. "Influence of silver incorporation on CZTSSe solar cells grown by spray pyrolysis." Materials Science in Semiconductor Processing 76 (2018): 31-36. 44.You, Xiaochen, et al. "Ag alloying for modifications of carrier density and defects in Zn-rich (Ag, Cu) 2ZnSnSe4 thin film solar cells." Journal of Alloys and Compounds 842 (2020): 155884. 45.Kumar, Vishvas, and Udai P. Singh. "Effect of selenization temperature on the formation of CZTSe absorber layer." Applied Physics A 125.12 (2019): 808. 46.Fouad, S. S., et al. "Multifunctional CZTS thin films: structural, optoelectrical, electrical and photovoltaic properties." Journal of Alloys and Compounds 757 (2018): 124-133. 47.Rawat, Kusum, and P. K. Shishodia. "Thermal annealing induced modification on structural and optical properties of Cu2ZnSnS4 thin films for solar cell application." Superlattices and Microstructures 122 (2018): 444-452. 48.Márquez-Prieto, Jose, et al. "The influence of precursor Cu content and two-stage processing conditions on the microstructure of Cu2ZnSnSe4." Thin Solid Films 582 (2015): 220-223. 49.Saragih, Albert Daniel, et al. "Characterization of Ag-doped Cu2ZnSnSe4 bulks material and their application as thin film semiconductor in solar cells." Materials Science and Engineering: B 225 (2017): 45-53. 50.Lai, Fang‐I., et al. "Suppressing the formation of double‐layer in Cu2ZnSnSe4 (CZTSe) absorber layer by facile heating process through nontoxic selenium atmosphere." International Journal of Energy Research 46.3 (2022): 3686-3696. 51.You, Xiaochen, et al. "Ag alloying for modifications of carrier density and defects in Zn-rich (Ag, Cu) 2ZnSnSe4 thin film solar cells." Journal of Alloys and Compounds 842 (2020): 155884. 52.Zhang, Zhaojing, et al. "Modified back contact interface of CZTSe thin film solar cells: elimination of double layer distribution in absorber layer." Advanced Science 5.2 (2018): 1700645. 53.Wang, Dongxiao, et al. "Synergistic effect of Na and Se on CZTSe solar cells through a soft chemical process." Solar Energy Materials and Solar Cells 198 (2019): 35-43. 54.Kaur, Kulwinder, and Mukesh Kumar. "Progress and prospects of CZTSSe/CdS interface engineering to combat high open-circuit voltage deficit of kesterite photovoltaics: a critical review." Journal of Materials Chemistry A 8.41 (2020): 21547-21584. 55.Lai, Fang-I., et al. "Investigation into complex defect properties of near-stoichiometric Cu2ZnSnSe4 thin film." Solar Energy 251 (2023): 240-248. 56.Yoo, Hyesun, et al. "Influence of the reaction pathway on the defect formation in a Cu2ZnSnSe4 thin film." ACS Applied Materials & Interfaces 13.11 (2021): 13425-13433. 57.Chen, Wei-Chao, et al. "Enhanced solar cell performance of Cu2ZnSn (S, Se) 4 thin films through structural control by using multi-metallic stacked nanolayers and fast ramping process for sulfo-selenization." Nano Energy 30 (2016): 762-770. 58.Gu, Kang, et al. "Influence of Ag Layer Location on the Performance of Cu 2 ZnSnS 4 Thin Film Solar Cells." Journal of Electronic Materials 49 (2020): 1819-1826. 59.Jolaoso, Oluwatosin. " Spray Pyrolysis of CuInSe2 for Thin Film Photovoltaic Solar Cells." nnin.org (2008). 60.Kim, SeongYeon, et al. "Characterization of CBO and defect states of CZTSe solar cells prepared by using two-step process." Current Applied Physics 18.2 (2018): 191-199. 61.Haight, Richard, et al. "Band alignment at the Cu2ZnSn (SxSe1− x) 4/CdS interface." Applied Physics Letters 98.25 (2011).
|