跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.172) 您好!臺灣時間:2025/09/11 08:33
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張雲妃
研究生(外文):Yun-Fei Chang
論文名稱:火害後雙軸彎曲鋼筋混凝土柱之試驗與分析
論文名稱(外文):Test and Analysis for Fire Damaged RC Columns Subject to Biaxial Bending
指導教授:許茂雄許茂雄引用關係
指導教授(外文):Maw-Shyong Sheu
學位類別:博士
校院名稱:國立成功大學
系所名稱:建築學系碩博士班
學門:建築及都市規劃學門
學類:建築學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:120
中文關鍵詞:載重—位移曲線雙軸彎矩鋼筋混凝土柱應力—應變全曲線
外文關鍵詞:Reinforced concrete columnComplete stress-strainLoad-deflection curveBiaxial bending
相關次數:
  • 被引用被引用:12
  • 點閱點閱:550
  • 評分評分:
  • 下載下載:47
  • 收藏至我的研究室書目清單書目收藏:1
  台灣建築物大多為耐火性能良好的鋼筋混凝土造,在火害中倒塌的情形並不多見,大多可利用補強而繼續居住或使用。然而,高溫後混凝土材料性能會有所折損,故如何對火害後建築物作安全評估,與有效、經濟的補強設計,就必須先確切掌握高溫作用後混凝土材料之組合律,與確定火害後混凝土構件殘餘之強度與剛度。
  鋼筋混凝土柱在實際火災中,因混凝土的熱惰性,內部實為一個不均勻溫度場,各點曾經到達的最高溫度與發生時間不盡相同,各點材料受火害軟化的程度也不同,依其受熱之最高溫度有對應的應力—應變曲線,故難以直接推導出火害後雙軸彎曲柱斷面之平衡方程式。因此,本文先將柱斷面離散成多個小元素後,引入常溫下或高溫後之材料組合律,依力的平衡定律建立斷面之力與變形關係式求解。
  有關高溫後混凝土材料之組合律,本文試驗了108個混凝土標準圓柱試體,在常溫下與無預壓力下加熱到100至800˚C後之受壓應力—應變全曲線,除了合理迴歸出高溫後抗壓強度、峰值應變與彈性模數等力學性能之預測公式外,並提出可適用於常溫下與無預壓力下加熱後之混凝土受壓應力—應變全曲線單一公式。進一步試驗51個混凝土標準圓柱試體在不同預壓力下加熱後之受壓應力—應變全曲線,研究加熱中預壓力的存在對高溫後混凝土力學性能的影響。此外,根據54個混凝土標準圓柱試體在常溫下與100至800˚C加熱後之劈裂試驗結果,也提出抗張強度之衰減公式。
  為驗證本文提出混凝土應力—應變曲線公式之適用性以及理論分析程式之正確性,本文製作12支足尺鋼筋混凝土柱,進行常溫與預壓力下加熱2、4小時後之單向與雙向偏心加載試驗,經比對試驗柱之載重-位移曲線,結果證實均屬合理。最後,利用本文發展的程式,預測火害前後雙軸彎曲鋼筋混凝土柱之側向載重—側向位移曲線,進而評估整棟純柱樑構架之鋼筋混凝土建築物,火害前後在斜向水平地震力輸入下之殘餘耐震能力。先與美國柏克萊大學試驗的二層未受火害鋼筋混凝土純柱梁構架7/10縮尺振動台模型之試驗結果作比對,再另以五層純柱梁構架建築物為例,討論火害後建築物的殘餘耐震能力。
  Concrete structures generally behave well in fires. Most fire-damaged concrete buildings can be repaired and reused even after severe fires. Certainly, they must be repaired to meet the seismic requirements specified by building code. When concrete is exposed to heat, chemical and physical reactions occur at elevated temperatures, such as loss of moisture, dehydration of cement paste and decomposition of aggregate. These changes will bring a breakdown in the structure of concrete, affecting its mechanical properties. Therefore, it is important to evaluate the residual strength and stiffness of RC members after fire events and to understand the effect of temperature on the mechanical properties of concrete, especially the stress-strain relationship used to predict the behavior in a future strong earthquake.
  An experimental research is performed on the residual compressive stress-strain relationship for concrete after heating to temperatures of 100-800˚C. All concrete specimens are standard cylinders,Ø15cm×30cm, made with siliceous aggregate. From the results of 108 specimens heated without pre-load, the relationships of the mechanical properties with temperature are proposed to fit the test results, including the residual compressive strength, peak strain and elastic modulus. A single equation for the complete stress-strain curves of unheated and heated concrete is developed to consider the shape varying with temperature. Furthermore, a total of 54 specimens heated under pre-load are carried out to study the effect of stress level on the residual compressive stress-strain curves. For split-cylinder tests, a total of 54 specimens are tested to provide the splitting tensile strength for different temperatures.
  For fire-damaged RC member analysis, the heat conduction equation is solved by using the finite difference method to calculate the maximum temperature distribution in the cross section exposed to a fire. Based on the assumption that plan section remains plan, and utilizing the residual stress-strain curves of concrete and steel after exposure to high temperature, the finite element method is introduced to calculate the sectional stress and strain distributions which satisfy the equilibrium and compatibility equations. To verify the accuracy, 12 full-size columns are constructed and subjected to uniaxial or biaxial bending after exposed to the CNS Standard fire for 0, 2, 4 hours. Not only the crack pattern due to heating but the decrease of flexural strength, stiffness and ductility after fires are investigated. Comparing with the experimental load-deflection curves, the analytical results show a good agreement.
  For seismic evaluation of RC building, a 2-story pure framing RC structure of a shaking table test under biaxial motion, tested by Oliva, M. G., is analyzed. Furthermore, a numerical example for evaluating residual seismic resistant performance of a 5-story fired-damaged RC structure is presented in this paper.
表目錄 V
圖目錄 VI
符號說明 X

第一章 緒論
1.1 研究動機與目的 3
1.2 研究方法與流程 4
1.3 適用範圍 6
參考文獻 7
第二章 無預壓力下加熱後鋼筋與混凝土之力學性能
2.1 前言 11
2.2 鋼筋試驗內容與方法 11
   2.2.1 加熱試驗 11
   2.2.2 常溫下與高溫後之抗拉試驗 12
   2.2.3 試驗結果與分析 12
2.3 混凝土試驗內容與方法 13
   2.3.1 試體規劃與試驗溫度 13
   2.3.2 加熱設備與加熱速率 13
   2.3.3 常溫下與高溫後之試驗設備 14
   2.3.4 試驗流程 14
2.4 試驗結果與分析 15
   2.4.1 抗壓強度 15
   2.4.2 峰值應變 16
   2.4.3 彈性模數 17
   2.4.4 抗拉強度 18
   2.4.5 受壓應力-應變全曲線之特性 18
   2.4.6 加熱中試體無爆裂情形發生 19
2.5 混凝土受壓應力-應變全曲線公式 19
   2.5.1 基本方程式之選用 19
   2.5.2 本文建議適用於常溫下與高溫後之混凝土
      應力-應變全曲線公式 20
   2.5.3 試驗曲線之驗證 21
2.6 小結 21
參考文獻 23
附圖 24

第三章 有預壓力下加熱後混凝土之力學性能
3.1 前言 31
3.2 試驗內容與方法  32
   3.2.1 試體規劃 33
   3.2.2 加熱設備 33
   3.2.3 高溫中加壓與應變量測設備 33
3.3 試驗結果與分析 33
   3.3.1 冷卻後殘餘應變(RFTS與RLTS) 33
   3.3.2 應力引起的溫度應變(LITS) 35
   3.3.3 抗壓強度 36
   3.3.4 峰值應變 36
   3.3.5 彈性模數 37
   3.3.6 受壓應力-應變曲線 38
   3.3.7 裂縫形式 38
3.4 小結 39
參考文獻 40
附圖 41

第四章 火害後鋼筋混凝土柱之雙軸彎曲試驗
4.1 前言 47
4.2 試體規劃 .47
   4.2.1 試體尺寸與配筋 47
   4.2.2 熱偶計配置 48
   4.2.3 應變計配置 49
   4.2.4 試體製作 49
4.3 試驗裝置與方法 49
   4.3.1 加熱裝置 49
   4.3.2 爐外雙向偏心加載裝置 50
   4.3.3 試驗方法 50
4.4 爐內加熱試驗結果 52
   4.4.1 試體表面溫度 52
   4.4.2 試體內部溫度分布 52
   4.4.3 試體內部之升溫速率 .53
   4.4.4 軸向變形 53
   4.4.5 裂縫形式 54
4.5 爐外加載試驗結果 55
   4.5.1 加熱時間對撓曲強度的影響 55
   4.5.2 加熱時間對撓曲剛度的影響 56
   4.5.3 韌性 56
4.6 小結 56
參考文獻 58
附表 59
附圖 61

第五章 雙軸彎曲鋼筋混凝土柱之理論分析
5.1 前言 71
5.2 鋼筋混凝土斷面之溫度分析 72
   5.2.1 暫態熱傳導基本方程式 72
   5.2.2 熱工參數 73
   5.2.3 求解方法 73
   5.2.4 與試驗驗證 74
5.3 圍束區混凝土之受壓應力-應變全曲線 
   5.3.1 常溫下未加熱圍束區混凝土 75
   5.3.2 高溫後圍束區混凝土 76
5.4 鋼筋混凝土柱之斷面分析 
   5.4.1 基本假設 78
   5.4.2 分析程序 79
   5.4.3 與試驗驗證 81
   5.4.4 雙向彎矩強度互制圖 81
5.5 鋼筋混凝土柱之變位分析 81
   5.5.1 張力加勁 82
   5.5.2 受壓混凝土剝落與極限應變 83
   5.5.3 柱中點處斷面之有效撓曲剛度 83
   5.5.4 預測本文試驗柱之載重—位移全曲線 84
5.6 小結 84
參考文獻 86
附表 89
附圖 90

第六章 火害後鋼筋混凝土建築物之耐震診斷案例
6.1 前言 101
6.2 本文耐震診斷方法 101
   6.2.1 試體資料 101
   6.2.2 試驗結果 101
   6.2.3 分析方法與結果 102
6.3 案例分析 105
   6.3.1 基本資料 105
   6.3.2 柱斷面最高溫度分佈 105
   6.3.3 分析結果 105
6.4 小結 106
參考文獻 108 
附表 109
附圖 110

第七章 結論與建議
7.1 結論 117
   7.1.1 材料試驗 117
   7.1.2 實尺寸柱試驗 117
   7.1.3 雙軸彎曲鋼筋混凝土柱之理論分析 118
   7.1.4 純柱樑構架建築物之耐震診斷 119
7.2 建議 119
[1.1] Tovey A. K., Crook, R. N.,“Experience of fires in concrete structures,”ACI Publication SP-92, pp. 1-14, (1984).
[1.2] 楊旻森,「火害後鋼筋混凝土桿件之扭力行為」,博士論文,國立台灣工業技術學院工程技術研究所,台北(1996)。
[1.3] 林慶昌,「複材圍束補強含箍筋混凝土火害高溫影響之承載模式探討與分析」,碩士論文,逢甲大學土木及水利工程研究所,台中(2002)。
[1.4] Molhotra, H. L., "The effect of temperature on the compressive strength of concrete,”Magazine of Concrete Research, Vol. 8, No. 22, pp. 85-94,(1956).
[1.5] Harada, T., Takeda, J., Yamane, S., Furumura, F., "Strength, elasticity and thermal properties of concrete subject to elevated temperature,”Concrete for nuclear reactors, ACI SP-34, American Concrete Institute, Detroit, pp. 377-406, (1972).
[1.6] Abrams, M. S.,“Compressive strength of concrete at temperature to 600F,”ACI Publication SP-25, pp. 33-58, (1971)
[1.7] Papayianni, J., and Valoasis, T., "Residual mechanical properties of heated concrete incorporating different pozzolanic material,” Materials and Structures, Vol.24, pp. 115-121,(1991).
[1.8] Nassif, A. Y., Rigden, S. and Burley, E., “The effects of rapid cooling by water quenching on the stiffness properties of fire-damaged concrete,” Magazine of Concrete Research, Vol. 51, No. 4, pp. 255-261, (1999).
[1.9] 吳波、馬中誠、歐進萍,「高溫後混凝土變形特性及本構關係的試驗研究」,建築結構學報(中華人民共和國),第二十卷,第五期,第42-48頁,(1999)。
[1.10]Lie, T. T., Rowe, T. J., Lin, T. D, “Residual strength of fire-exposed reinforced concrete columns,” ACI Publication SP-92, pp. 153-174,(1984).
[1.11]Lin, C. H., Chen, S. T., Hwang, T. L., “Residual strength of reinforced concrete columns exposed to fire,”Journal of the Chinese Institute of Engineers, Vol. 12, No. 5, pp. 557-595, (1989).
[1.12]Lin, C. H., Tsai, C. S., “Deterioration of strength and stiffness of reinforced concrete columns after fire,” Journal of the Chinese Institute to Engineers, Vol. 13, No. 3, pp. 273-283, (1990).
[1.13]Peaceman, D. W., Rachford, H. H., “The numerical solution of parabolic and elliptic differential equations,” J. Soc. Ind. Appl. Math., Vol. 3, (1955).
[1.14]Oliva, M. G.,“Shaking table testing of a reinforced concrete frame with biaxial response”, Earthquake Engineering Research Center, University of California, Berkeley, EERC-80/28, (1980).
[2.1] 楊旻森,「火害後鋼筋混凝土桿件之扭力行為」,博士論文,國立台灣工業技術學院工程技術研究所,台北(1996)。
[2.2] 林慶昌,「複材圍束補強含箍筋混凝土火害高溫影響之承載模式探討與分析」,碩士論文,逢甲大學土木及水利工程研究所,台中(2002)。
[2.3] Molhotra, H. L., “The effect of temperature on the compressive strength of concrete,” Magazine of Concrete Research, Vol. 8, No. 22, pp. 85-94, (1956).
[2.4] Harada, T., Takeda, J., Yamane, S., Furumura, F., “Strength, elasticity and thermal properties of concrete subject to elevated temperature,”Concrete for nuclear reactors, ACI SP-34, American Concrete Institute,     Detroit, pp. 377-406, (1972).
[2.5] Abrams, M. S., "Compressive strength of concrete at temperature to 1600F,”ACI Publication SP-25, pp. 33-58, (1971)
[2.6] Papayianni, J., and Valiasis, T., “Residual mechanical properties of heated concrete incorporating different pozzolanic material,” Materials and Structures, Vol.24, pp. 115-121, (1991).
[2.7] Nassif, A. Y., Rigden, S. and Burley, E., “The effects of rapid cooling by water quenching on the stiffness properties of fire-damaged concrete,” Magazine of Concrete Research, Vol. 51, No. 4, pp. 255-261, (1999).
[2.8] 吳波、馬中誠、歐進萍,「高溫後混凝土變形特性及本構關係的試驗研究」,建築結構學報(中華人民共和國),第二十卷,第五期,第42-48頁,(1999)。
[2.9] 吳波,「火害後鋼筋混凝土結構的力學性能」,科學出版社,北京,2003。
[2.10]Edwards, W. T., Gamble, W. L., “Strength of Grade 60 reinforcing bars after exposure to fire temperatures,” Concrete International, pp. 17-19, (1986).
[2.11]Harmathy, T. Z, Concrete at High Temperatures: Material Properties and thematical Models, Longman Group Limited, England, (1996).
[2.12]Dougill, J. W., “Some effects of thermal volume changes on the properties and behaviour of concrete,”The Structure of Concrete, Cement and Concrete Association, London, pp. 499-513, (1968).
[2.13]Roux, F.J.P., Concrete at elevated temperature, PhD Thesis, University of Cape Town, (1974).
[2.14]Kent, D.C., Park, R., Flexural members with confined concrete, Journal of Structural Engineering, Vol. 97, No. 7, pp.1969-1990, (1971).
[2.15]Popovics, S., “A Numerical approach to the complete stress-strain curve of concrete,” Cement and Concrete Research, Vol. 3, No. 5, pp. 583-599, (1973).
[2.16]Tsai, W. T., “Uniaxial compressional stress-strain relation of concrete,” Journal of Structural Engineering, Vol. 114, No. 9, pp.2133-2136, (1988).
[2.17]Mander, J. B., M. J. N. Priestley, R. Park, Theoretical stress-strain model for confined concrete, Journal of Structural Engineering, Vol.114, No. 8, pp. 1804-1826, (1988).
[3.1] Khoury, G. A., Grainger, B. N., Sullivan, P. J. E., “Strain of concrete during first cooling from 600°C under load,” Magazine of Concrete Research, Vol. 38, No. 134, pp. 3-12, (1986).
[3.2] Zhukov, V. V., “Characteristics of concrete after fire exposure,”Proceedings of the Institution of Mechanical Engineers, Mechanical Engineering Publications Limited, London, pp. 135-141, (1992).
[3.3] 陳舜田、沈進發、楊旻森,「壓力作用下混凝土材料火害後之力學行為」,國科會專題研究計畫報告,NSC78-0410-E011-13,台北 (1989)。
[3.4] 楊旻森、陳舜田、林英俊,「火害後混凝土之殘留應變」,中國土木水利工程學刊,第九卷,第二期,第327-333頁 (1997)。
[3.5] Khoury, G. A., Grainger, B. N., Sullivan, P. J. E., “Strain of concrete during first heating to 600°C under load,” Magazine of Concrete Research, Vol. 37, No. 133, pp. 195-215, (1986).
[3.6] Hsu, T. T., Slate, F. O., Sturman, G. M., Winter, G., “Microcracking of plain concrete and the shape of the stress-strain curve,” ACI Journal, V. 60, pp. 209-224, (1963).
[4.1] Lie, T. T., Rowe, T. J., Lin, T. D, “Residual strength of fire-exposed reinforced concrete columns,” ACI Publication SP-92, pp. 153-174, (1984).
[4.2] Lin, C. H., Chen, S. T., Hwang, T. L., “Residual strength of reinforced concrete columns exposed to fire,” Journal of the Chinese Institute of Engineers, Vol. 12, No. 5, pp. 557-595, (1989).
[4.3] Lin, C. H., Tsai, C. S., “Deterioration of strength and stiffness of reinforced concrete columns after fire,” Journal of the Chinese Institute to Engineers, Vol. 13, No. 3, pp. 273-283, (1990).
[4.4] Lie, T. T., Allen, D. E., Calculations of the fire resistance of reinforced concrete columns, National Research Council of Canada,  Division of Building Research, NRCC 12797, Ottwa, (1972).
[4.5] 許崇堯,「火害後鋼筋握裹衰退及其對梁柱接頭特性影響之探討」,博士論文,國立台灣工業技術學院工程技術研究所,台北(1991)。
[5.1] Weber, D. C., “ Ultimate strength design charts for columns with biaxial bending,” Proceedings of ACI Journal, Vol. 63, No. 11, pp. 1205-1230, (1966).
[5.2] Row, D. G., Paulay, T., “Biaxial flexure and axial load interaction in short rectangular reinforced concrete columns,” Bulletin of the New Zealand Society for Earthquake Engineering, Vol.6, No.3, pp. 110-121,(1973).
[5.3] Bresler, B., “Design criteria for reinforced columns under axial load and biaxial bending,” Proceedings of ACI Journal, Vol. 57, pp.481-490,(1960).
[5.4] Pannel, F. N., “Failure surfaces for members in compression and biaxial bending,” proceedings of ACI Journal, Vol. 60, pp. 129-140, (1963).
[5.5] Parme, A. L., Nieves, J. M., Gouwens, A., “Capacity of reinforced rectangular columns subject to biaxial bending,” proceedings of ACI Journal, Vol. 63, No. 9, pp. 911-923, (1966).
[5.6] Hsu, C. T., “Analysis and design of square and rectangular columns by equation of failure surface,” ACI Journal, Vol. 85, pp. 167-179, (1988).
[5.7] Yen, R. J., “Quasi-Newton method for reinforced-concrete column analysis and design,” Journal of Structural Engineering, Vol. 117, No.3, pp. 657-666, (1991).
[5.8] Dundar, C., “Concrete box sections under biaxial bending and axial load,” Journal of Structural Engineering, V. 116, No. 3, pp. 860-865, (1990).
[5.9] Brondum-Nielsen, T., “Concrete sections under biaxial bending,”Journal of Structural Engineering, Vol. 113, pp. 2137-2144, (1987).
[5.10]Brondum-Nielsen, T., “Serviceability analysis of concrete sections under biaxial bending,” Journal of Structural Engineering, Vol. 123, No. 1, pp. 117-119, (1997).
[5.11]Rodriguez, J. A., Aristizabal-Ochoa, J. D., “Biaxial interaction diagrams for short RC columns of any cross section,” Journal of structural Engineering, Vol. 125, No. 6, pp. 627-683, (1999).
[5.12]Chang, Y. F., Chen Y. H., Sheu, M. S., “Strength and flexural rigidity of RC columns under biaxial bending,” Journal of Architecture, No.47, pp.15-34, (2004).
[5.13]Davister, M. D., “A computer program for exact analysis,” Concrete International, (1986).
[5.14]Wang, C. K., “Solving the biaxial bending problem in reinforced concrete by a three-level iteration procedure,” Microcomputers in Civil  Engineering, No. 3, pp.311-320, (1988).
[5.15]Li, K.-N., Aoyama, H., Otani, S., Reinforced concrete columns under varying axial load and bidirectional lateral load reversals,” Proceeding of Ninth World Conference on Earthquake Engineering, Vol.8, pp. 537-542, (1988).
[5.16]Hsu, C. T. T., Mirza, M. S., “Structural concrete-biaxial bending and compression,” Journal of the Structural Division, ASCE, Vol. 99, pp. 285-290, (1973).
[5.17]Al-Noury, S. I., Chen, W. F., “Behavior and design of reinforced and composite concrete section,” Journal of the Structural Division, ASCE, Vol. 108, pp. 1266-1284, (1982).
[5.18]賴宗吾,「鋼筋混凝土柱在變化偏心軸力作用下之構材行為」,博士論文,國立成功大學建築研究所,台南(1998)。
[5.19]ACI Committee 318, Building code requirements for reinforced concrete(ACI 318-02), American Concrete Institude, Detroit, (2002).
[5.20]Branson, D. E., Deformation of concrete structures, McGraw-Hill, Inc.,(1977).
[5.21]Branson, D. E., Trost, H., “Application of I-effective method in calculating deflections of partially prestressed concrete members,”PCI Journal, Vol. 27, pp 62-77, (1982).
[5.22]Eurocode 2: Design of Concrete Structures - Part 1-1: General rules and rules for buildings, EN 1992-1-1, European Committee for  Standardization, (2004).
[5.23]Ghali, A., Favre, R., Concrete structures: stresses and deformations, E & FN SPON, London, (1994).
[5.24]Tsao, W. H., Hsu, C. T. T., “A nonlinear computer analysis of biaxially loaded L-shaped slender reinforced concrete column,” Computers and  Structures, Vol. 49, pp. 597-588, (1993).
[5.25]Kim, J. K., Lee, S. S., “The behavior of reinforced concrete columns subjected to axial force and biaxial bending,” Engineering Structures, Vol. 23, pp. 1518-1528, (2000).
[5.26]Lie, T. T., Lin, T. D., Fire performance of reinforced concrete columns, National Research Council Canada, Division of Building Research, DBR Paper No. 1352, NRCC 25351.
[5.27]Harmathy, T. Z., Allen, L. W., “Thermal properties of selected masonry unit concrete,” Journal of the American Concrete Institute, Vol. 70,  pp.132-162, (1973).
[5.28]Ellingwood, B., Shaver, J., “Effects of fire on reinforced concrete members,” Journal of the Structural Division, ASCE, Vol. 106, pp. 2151-2166, (1980).
[5.29]CEB-FIP, Mode code for fire design of concrete structures, First draft, (1986).
[5.30]Peaceman, D. W., Rachford, H. H., “The numerical solution of parabolic and elliptic differential equations,” J. Soc. Ind. Appl. Math., Vol. 3, (1955).
[5.31]Eurocode 2: Design of concrete structures - Part 1-2: general rules-structure fire design, EN 1992-1-2, European Committee for standardization, (2004).
[5.32]Park, R., Priestley, M.J.N., Gill, W.D., “Ductility of square-confined concrete columns,” Journal of the Structural Division, ASCE, Vol. 108, pp. 929-950, (1982).
[5.33]Mander, J. B., Priestley, M. J. N., Park, R., “Theoretical stress-strain model for confined concrete”, Journal of Structural Engineering, Vol. 114, No. 8, pp. 1804-1826, (1988).
[5.34]Mohamad, J. T., Samir, A. H., “Effect of confinement on siliceous aggregate concrete subjected to elevated temperatures and cyclic  heating,” ACI Materials Journal, Vol. 94, No. 2, pp. 83-89, (1997).
[5.35]黃盟楊,「複材圍束補強含箍筋混凝土火害高溫影響之成載模式探討與分析」,碩士論文,逢甲大學土木及水利工程研究所,台中(2002)。
[5.36]李麗,「高溫後複合方箍約束混凝土力學性能的試驗研究」,碩士論文,青島建築工程學院,中華人民共和國(2004)。
[5.37]陳義宏,「鋼筋混凝土曲樑之試驗與分析」,博士論文草稿,國立成功大學建築研究所。
[5.38]蔡東宏,「火害後鋼筋混凝土樑之延性」,碩士論文,國立台灣工業技術學院工程技術研究所,台北 (1997)。
[5.39]Hsu, T. T. C., Unified Theory of Reinforced Concrete, CRC Press, Inc., Florida, (1993).
[5.40]Collins, M. P., Mitchell, D., Prestressed concrete structures, Prentice-Hall, Inc., New Jersey, (1991).
[5.41]Paulay, T., Priestley, M. J. N., Seismic design of reinforced concrete and masonry buildings, John Wiley & Sons, Inc., New York, (1992).
[6.1] Oliva, M. G., “Shaking table testing of a reinforced concrete frame with biaxial response”, Earthquake Engineering Research Center, University of California, Berkeley, EERC-80/28, (1980).
[6.2] Sheu, M. S., “A Gird model for prediction of monotonic and hysteretic behavior of reinforced concrete slab – column connections transferring moments,” Ph. D. Dissertation, University of Washington, Washington      (1976).
[6.3] 內政部營建署建築研究所編輯委員會,建築物耐震設計規範與解說,台北,(1999).
[6.4] ATC, “Seismic evaluation and retrofit of concrete building,” ATC-40 Report, Applied Technology Council, California, (1996).
[6.5] 陳奕信,「含磚牆 RC建築物結構之耐震診斷」,博士論文,國立成功大學建築研究所,臺南,(2003)。
[6.6] Structure Engineers Association of California Vision 2000 Committee, “Performance based seismic engineering of building,” SEAOC Vision 2000 Committee, Final Report, (1995).
[6.7] Zoldners, N. G., “Temperatures on concrete incorporating different aggregates”, Proceedings- American Society for Testing Materials, Vol. 60, pp. 1087-1108, (1960).
[6.8] Muto, K., “Aseismic design analysis of buildings” Maruzen Company, LTD., Tokyo, Japan, (1973).
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top